
We thank all reviewers for the constructive reviews as well as the insightful suggestions on future improvements. We1

are happy they unanimously support this paper. All comments will be addressed in revision.2

R1 More recent baseline methods. Thanks for pointing out additional methods. As suggested, we perform further3

new experiments by plugging DAFD to [ea19a, ea19b] using their implementation. Detailed results on [ea19a] are4

presented in Table A. And we achieved 46.7 mIoU (improved by 1.2) on GTA->Cityscapes with [ea19b]. We also add5

comparisons to [24] in Table B. Due to small overlap between the experiments of two papers and no public available6

implementation of [24], we compare the best results on three sub-tasks of Office-31 with AlexNet. On average, DAFD7

achieves higher performance. All additional comparisons will be added to the revision.8

Table A: Experiments on CAN [ea19a].

Methods A→W D→W W→D A→D D→A W→A Avg.

CAN 94.5 99.1 99.8 95.0 78.0 77.0 90.6
CAN + Ours 95.2 99.2 100.0 96.1 78.9 78.2 91.27 (0.67 ↑)

Table B: Comparisons to [24].

Methods A→W D→W W→D Avg.

[24] 76.0 96.7 99.6 90.8
Ours 77.2 97.9 98.5 91.2 (0.4 ↑)

R1 & R4 Comparison to [1]. Domain separation networks (DSN) [1] share the motivation with us by using ‘domain9

specific’ and ‘domain shared’ network components to improve domain invariant feature learning. However,10

- Our method works as a plug-and-play module as demonstrated with the numerous architectures in the experiments,11

with no additional loss functions as in [1], which consequently introduces additional hyperparameters to tune.12

- Our method introduces only hundreds of parameters to model one extra domain; while in DSN, three encoder networks13

and one decoder networks are required to model two domains, which introduces many times more parameters.14

- The aforementioned additional costs also prevent DSN from being extended to large-scale experiments like the15

unsupervised image segmentation which can be however easily performed by using the proposed DAFD with no16

additional training objectives and neglectable parameter overheads.17

Despite the remarkable simplicity, DAFD is comparable to DSN according to the performance on SVHN->MNIST.18

Due to limited overlap of the experiments reported in DSN with ours, we show additional comparisons in Table C by19

reimplementing DSN (since the code link provided with the original paper is taken down now), and we will add the20

discussion to the final revision and more experiments in the supplementary.21

Table C: Comparisons to domain separatioon networks (DSN) with
DANN as underlying method. Datasets include USPS (U), SVHN (S),
MNIST (M), MNIST-M (MM), Synth Digits (SD), Synth Signs (SS),
and GTSRB(G). ∗ denotes numbers obtained by our reimplementation.

Methods M→U U→M S→M M→MM SD→S SS→G
DSN 90.6∗ 92.1∗ 82.7 83.2 91.2 93.1
Ours 92.3 95.4 83.2 86.2 91.7 94.0
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Figure 1: Ablation study on K performed on
SVHN→MNIST with DANN as underlying
method.

R1 & R3 Comparing to basic branching on unsupervised adaptations. Basic branching relies on heavy supervisions22

for every domain. In the unsupervised setting, due to the weak supervision across domains and the large number of23

parameters to train, the basic branching mostly cannot perform better than random guess no matter what underlying24

methods and initialization tricks we use. We followed the suggestion of R1 and ran experiments by equipping the25

domain adaptive batch normalization methods to basic branching. With several rounds of tuning, none of the methods26

achieved observable improvement over random guess on unsupervised experiments with basic branching. Due to the27

page limit, we originally removed the comparisons to basic branching in the unsupervised domain adaptation section,28

and we will add back the discussion in revision.29

R2 Filters in real datasets. In experiments on real-world datasets, we find it challenging to interpret visual examples of30

learned dictionaries for domains. Thus, we bridge the gap between explainable toy examples and real-world experiments31

with theoretical analysis in Section 3 and supplementary material. We will visualize some of the filters and dictionaries32

in the supplementary.33

R1 & R3 Implementation details. We use K = 6 as mentioned in L135. We add the ablation study on K here, which34

shows that DAFD is only sensitive to very small K, which degrades the expressiveness. We ease the hyperparameters35

tuning by decomposing all the convolution layers in every experiment as mentioned in L231, L285, and Section 3.36

Our goal is to illustrate in the experiments, that DAFD is a general plug-and-play module requiring little tuning of37

configurations and hyperparameters. We will clarify implementation details in the revision of supplementary material.38
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