
Appendix

A Notation Glossary

Sets of Agents
N Set of agents in the population
Recipients Set of agents who receive invitation letters (random variable)
Pool Set of agents in the pool (random variable)
Panel Set of agents on the panel (random variable)

Sortition Panel Parameters
n Size of the population
r Number of invitation letters sent out
k Size of the panel
F Set of all features
Vf Set of possible values for a specific feature f ∈ F
F (i) Feature vector of agent i
nf,v Number of agents in the population with value v of feature f
`f,v, uf,v Lower and upper quotas for every feature-value pair
qi Probability that agent i ∈ N enters the pool, conditioned on being invited
q∗ Minimum value of qi over all agents (q∗ := mini∈N qi)
α Parameter defined as α := q∗ r/k

B Supplementary Material for Section 3

B.1 Discussion of Theorem Preconditions

We show that pools are good with high probability under two preconditions: that each feature-value
group constitutes at least 1/k fraction of the population (so nf,v/n ≥ 1/k for all f, v), and that the
number of recipients is sufficiently high relative to the participation probabilities and the panel size
(α = q∗ r/k →∞).

The first condition is natural because if a group should proportionally receive less than one seat on
the panel, any positive lower bound on selection probabilities for agents in groups would violate
proportionality.

The second condition enforces that the number of agents invited r is large enough relative to the
minimum participation probability q∗ and the size of the panel. Without this condition, there can be
a constant probability that the pool will feature zero agents with a certain feature-value: Suppose
that α is an arbitrary positive constant, set all qi := αk/r, and consider a feature-value pair f, v
with nf,v = n/k agents. In expectation, there will be (r/n) (n/k) = r/k agents with feature-value
f, v among the recipients. If r ∈ ω(k), there are at most 2 r/k such recipients with high probability.
Then, the probability that the pool contains no agent with f, v is at least

(1− αk/r)2 r/k = (1− qi)2α/qi =
(

(1− qi)1/qi︸ ︷︷ ︸
→ 1/e as qi → 0

)2α → e−2α > 0.

B.2 Discussion of Ties to Discrepancy Theory

In rounding agents’ marginal selection probabilities to select a panel, we round fractional variables to
0 or 1 such that the sum of certain sets of variables changed only by a small amount. This problem is
closely connected to combinatorial discrepancy [9, 23], which can be summarized in the same words,
by additionally assuming that the initial fractional values are 1/2. In fact, the original Beck-Fiala
theorem arises in the context of discrepancy, showing that, if each variable appears in a bounded
number t of sets, discrepancy Θ(t) can be achieved (where in our setting, t corresponds to |F |, the
number of features). Beck and Fiala [3] conjectured that it is actually possible to achieve discrepancy
in O(

√
t). Should this conjecture be true, similar ideas might translate to our setting to guarantee the

satisfaction of quotas closer to exact proportionality. To this day, however, the best known bound in t
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is still in Θ(t) [7]. In accordance with this result, we guarantee a relaxation of |F | from proportional
representation of groups.

We note that there do exist other disrepancy results that give sub-linear dependencies on |F |, but at
the cost of introducing dependencies on other parameters. One such result is Theorem 5.3 in [2],
which guarantees discrepancy a square-root dependency on |F |. However, subject to our requirement
that the per-person marginal probability must deviate from k/n by only ±δk/n where δ ∈ o(1),
Bansal’s result guarantees a discrepancy bound of O(

√
|F | log(kn/δ)), which grows in n, making it

unfavorable in our setting.

B.3 Proof of Lemma 2

The results in this section allow k ≥ 1 and r ≥ 1 to vary arbitrarily in n; they just require that
α := q∗r/k →∞ as n→∞ (without requiring α to grow at a specific minimum rate relative to n).
All convergences are relative to n going to infinity.
Lemma 2. Suppose that α→∞ and nf,v ≥ n/k for all f, v. Then, for all agents i ∈ Population ,
P[Pool is good | i ∈ Pool ]→ 1.

In the following proofs, it is convenient to refer to 1/q∗, the largest possible value of ai, as a∗. Note
that a∗ = r

α k . We will refer to the random set of recipients with a certain feature-value pair f, v as
Recipientsf,v := {i ∈ Recipients | f(i) = v}.
We begin by showing in Lemmas 5 and 7 that, conditioned on i being in the pool, the following three
events occur with high probability:

A. k a∗ ≤
∑
j∈Pool aj

B.
∑
j∈Pool aj ∈ [(1− α−.492) r, (1 + α−.492) r]

C.
∑
j∈Pool:f(j)=v aj ∈ [(1− α−.492)

nf,v
n r, (1 + α−.492)

nf,v
n r] ∀f, v

We then show in Lemma 8 that, when these events occur on some pool, the pool must be good, which
concludes the proof of Lemma 2.
Lemma 5. Under the assumptions of Lemma 2, P [Event A ∧ Event B | i ∈ Pool ]→ 1.

Proof. Fix the set of recipients R (including i). With respect to the randomness in the pool self-
selection, the random variables aj · 1{j ∈ Pool} across all j ∈ R \ {i} are independent, bounded in
[0, a∗], and have expected value aj qj = 1. Thus, by a Chernoff bound, and using that a∗ = r/(αk),

P

∣∣∣∣∣∣
∑

j∈Pool\{i}

aj − (r − 1)

∣∣∣∣∣∣ ≥ α−.495 (r − 1)

 ≤ 2 e−α
−.99 r−1

a∗ /3

= 2 e−α
−.99 r−1

r αk/3

≤ 2 e−Ω(α.01) → 0,

where the last inequality uses the fact that r ≥ 2 for large enough n11 and that k ≥ 1.

Conditioning on this high-probability event, it follows that, for large enough n,∑
j∈Pool

aj ≥ 1 +
∑

j∈Pool\{i}

aj ≥ 1 + (1− α−.495) (r − 1) ≥ (1− α−.492) r,

which shows the lower bound in Event B. For the upper bound,∑
j∈Pool

aj ≤ a∗ +
∑

j∈Pool\{i}

aj ≤ a∗ + (1 + α−.495) (r − 1) ≤ r/(αk) + (1 + α−.495) r

≤ (1 + α−.495 + 1/α) r ≤ (1 + α−.492) r ≤ 1/(1− α−.492) r.

This establishes Event B.
11Since r = αk/q∗ ≥ α/q∗ ≥ α→∞.
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For large enough n, the lower bound on
∑
j∈Pool aj can be extended as∑

j∈Pool

aj ≥ (1− α−.492) r ≥ r/α ≥ k a∗,

which shows Event A.

For Event C, we need to show that
∑
j∈Pool:f(j)=v aj is concentrated for a feature-value pair f, v.

As an intermediate step, we first show that the number of pool members (“
∑
j∈Pool:f(j)=v 1”) with

this feature-value pair is concentrated:

Lemma 6. Under the assumptions of Lemma 2, for each f, v,

P
[
(1− α−.495)

nf,v
n

r ≤
∣∣Recipientsf,v∣∣ ≤ (1 + α−.495)

nf,v
n

r
∣∣∣ i ∈ Pool

]
→ 1.

Proof. Conditioned on i ∈ Pool ⊆ Recipients , Recipients \ {i} is distributed as if r − 1 members
of Population \ {i} were drawn with equal probability and without replacement. Thus,

E
[∣∣Recipientsf,v∣∣ ∣∣ i ∈ Pool

]
=

{
nf,v

r−1
n−1 if f(i) 6= v

1 + (nf,v − 1) r−1
n−1 if f(i) = v.

In both cases, we show that E
[∣∣Recipientsf,v∣∣ ∣∣ i ∈ Pool

]
∈ [(1− k/r)nf,v r

n , (1 + k/r)nf,v
r
n ].

Indeed, for the upper bound,

E
[∣∣Recipientsf,v∣∣ ∣∣ i ∈ Pool

]
≤ 1 + (nf,v − 1)

r − 1

n− 1
≤ 1 + nf,v

r

n
=

(
1 +

n

nf,v
/r

)
nf,v

r

n

≤ (1 + k/r)nf,v
r

n
≤ (1 + 1/α)nf,v

r

n
.

For the lower bound,

E
[∣∣Recipientsf,v∣∣ ∣∣ i ∈ Pool

]
≥ nf,v

r − 1

n− 1
=
r − 1

r
nf,v

r

n
= (1− 1/r)nf,v

r

n

≥ (1− k/r)nf,v
r

n
≥ (1− 1/α)nf,v

r

n
.

As the (independent) union of the deterministic set {i} and indicator variables for sampling without
replacement, the variables 1{j ∈ Recipients} satisfy negative association and therefore Chernoff
inequalities [25]. Thus, for the upper tail bound,

P
[∣∣Recipientsf,v∣∣ ≥ (1 + α−.497) (1 + 1/α)nf,v

r

n

∣∣∣ i ∈ Pool
]
≤ e−α

−.994 (1+1/α)nf,v
r
n/3

≤ e−α
−.994 nf,v

r
n/3 ≤ e−α

−.994 r
k /3 ≤ e−α

−.994 α/3 ≤ e−α
.006/3 → 0.

Similarly, for the lower tail bound,

P
[∣∣Recipientsf,v∣∣ ≤ (1− α−.497) (1− 1/α)nf,v

r

n

∣∣∣ i ∈ Pool
]
≤ e−α

−.994 (1−1/α)nf,v
r
n/2

(α≥3)

≤ e−α
−.994 nf,v

r
n/3 ≤ e−α

.006/3 → 0.

The claim follows from observing that, for r/k large enough,

(1− α−.497) (1− 1/α) ≥ 1− α−.497 − α−1 ≥ 1− α−.495

and
(1 + α−.497) (1 + 1/α) = 1 + α−.497 + α−1 + α−1.497 ≤ 1− α−.495.

Lemma 7. Under the assumptions of Lemma 2, P [Event C | i ∈ Pool ]→ 1.
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Proof. Fix a single feature-value pair f, v. By Lemma 6, with high probability, the number of
recipients rf,v with feature-value pair f, v is in[

(1− α−.495)
nf,v
n

r, (1 + α−.495)
nf,v
n

r
]
.

Going forward, we will fix a set of recipients R, and we assume that rf,v indeed falls in this range.
For large enough n, this implies that rf,v is positive. For ease of notation, we will implicitly condition
on i ∈ Pool and these high-probability events.

The self-selection process of agents with feature-value pair f, v might look a bit different depending
on whether f(i) = v. If f(i) 6= v, the self selection of agents with feature-value pair f, v is
independent from our knowledge about i being in the pool. Thus, the random variable

∑
j∈Pool,
f(j)=v

aj

is the sum of independent random variables aj 1{j ∈ Pool} for each j ∈ R, f(j) = v, where each

variable is bounded in [0, a∗] and has expectation 1. In particular, E
[∑

j∈Pool,
f(j)=v

aj

]
= rf,v.

Else, if f(i) 6= v,
∑
j∈Pool,
f(j)=v

aj is still the sum of independent random variables aj 1{j ∈ Pool} and

each variable is bounded in [0, a∗]. However, the specific variable ai 1{i ∈ Pool} is deterministically

ai (all other variables still have expectation 1). Thus, E
[∑

j∈Pool,
f(j)=v

aj

]
= rf,v − 1 + ai.

rf,v − 1 + ai =

(
1 +

ai − 1

rf,v

)
rf,v ≤

(
1 +

a∗

rf,v

)
rf,v ≤

(
1 +

r/(αk)

(1− α−.495) r nf,v/n

)
rf,v

≤
(

1 +
r/(αk)

(1− α−.495) r/k

)
rf,v =

(
1 +

1

(1− α−.495)α

)
rf,v

≤ (1 + 2/α) rf,v. (for α.495 ≥ 2)

Thus, across both cases, the expectation E
[∑

j∈Pool,
f(j)=v

aj

]
is at least rf,v ≥ (1− α−.495)

nf,v
n r and

at most (1 + 2/α) rf,v ≤ (1 + 2/α) (1 + α−.495)
nf,v
n r ≤ (1 + α−.493)

nf,v
n r for large n, and we

can use Chernoff bounds.

For bounding the lower tail,

P

 ∑
j∈Pool,
f(j)=v

aj ≤ (1− α−.495) (1− α−.495)
nf,v
n

r

 ≤ e−α−.99 (1−α−.495)
nf,v
n r/(2 a∗)

(α.495≥3)

≤ e−α
−.99 nf,v

n r/(3 a∗) = e−α
−.99 nf,v

n r/(3 r/(αk)) ≤ e−α
−.99 nf,v

n αk/3

≤ e−α
−.99 α/3

≤ e−α
.01/3 → 0.

For bounding the upper tail,

P

 ∑
j∈Pool,
f(j)=v

aj ≥ (1 + α−.495) (1 + α−.493)
nf,v
n

r

 ≤ e−α−.99 (1+α−.493)
nf,v
n r/(3 a∗)

≤ e−α
−.99 nf,v

n r/(3 a∗) = e−α
−.99 nf,v

n αk/3 ≤ e−α
−.99 α/3 ≤ e−α

.01/3 → 0.

Note that, for large n, (1 − α−.495) (1 − α−.495) ≥ 1 − 2α−.495 ≥ 1 − α−.492. Similarly, (1 +
α−.495) (1 + α−.493) ∈ 1 +O(α−.493)) ≤ 1 + α−.492.

This shows that, for each f, v, (1− α−.492)
nf,v
n r ≤

∑
j∈Pool,
f(j)=v

aj ≤ (1 + α−.492)
nf,v
n r with high

probability. The claim follows by a union bound over all (finitely many) feature-value pairs.
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Lemma 8. For large enough n, if Events A, B, and C occur for a pool P , P is good.

Proof. Suppose that Events A, B, and C occur in a pool P .

Condition (1): ∀j ∈ P. 0 ≤ πj,P ≤ 1. Clearly, πj,P is nonnegative, and Event A implies that
πj,P = k aj/

∑
j′∈P aj′ ≤ k a∗/

∑
j′∈P aj′ ≤ 1.

Condition (2): ∀f, v. (1 − α−.49) k nf,v/n ≤
∑
j∈P :f(j)=v πj,P ≤ (1 + α−.49) k nf,v/n. Fix

any feature-value pair f, v. Recall that, by Event B,∑
j∈P

aj ∈ [(1− α−.492) r, (1 + α−.492) r],

and, by Event C, ∑
j∈P :f(j)=v

aj ∈ [(1− α−.492)
nf,v
n

r, (1 + α−.492)
nf,v
n

r].

Observe that, for any x ∈ [0, 1/3],

1 + x

1− x
≤ 1 + x+ x (1− 3x)

1− x
=

1 + 2x− 3x2

1− x
= 1 + 3x.

Then, if n is large enough such that α−.492 ≤ 1/3, it follows that∑
j∈P :f(j)=v

πj,P = k

∑
j∈P :f(j)=v aj∑

j∈P aj
≤ k

(1 + α−.492)
nf,v
n r

(1− α−.492) r
≤ (1 + 3α−.492) k

nf,v
n

≤ (1 + α−.49) k
nf,v
n
.

Next, observe that, for any x,

1− x
1 + x

≥ 1− x− 2x2

1 + x
= 1− 2x.

Thus, ∑
j∈P :f(j)=v

πj,P = k

∑
j∈P :f(j)=v aj∑

j∈P aj
≥ k

(1− α−.492)
nf,v
n r

(1 + α−.492) r
≥ (1− 2α−.492) k

nf,v
n

≥ (1− α−.49) k
nf,v
n
.

Condition (3):
∑
i∈P ai ≤ r/(1 − α−.49). This follows from Event B since

∑
j∈P aj ≤ (1 +

α−.492) r ≤ (1 + α−.49) r = 1−α−.98
1−α−.49 r ≤ r/(1− α

−.49) for large enough n.

B.4 Proof of Lemma 3

B.4.1 Rounding the Linear Program Using Discrepancy Methods

In Part II of the algorithm, we need to implement the marginal probabilities πi,P from Part I by
randomizing over panels of size k. Additionally, the panels produced by this procedure should
guarantee that the number of panel members of a feature-value pair (f, v) lies in a narrow interval
around the proportional number of panel members k nf,v/n. Technically, this corresponds to
randomly rounding the fractional solution xi := πi,P of an LP, such that afterwards all variables are
0 or 1, i.e., indicator variables for membership in a random panel.

Formally, we prove the following lemma:
Lemma 3. There is a polynomial-time sampling algorithm that, given a good pool P , produces a
random panel Panel such that (1) P[i ∈ Panel ] = πi,P for all i ∈ P , (2) |Panel | = k, and (3)∑
i:f(i)=v πi,P − |F | ≤ |{i ∈ Panel | f(i) = v}| ≤

∑
i:f(i)=v πi,P + |F |.
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To round the linear program, we use an iterative rounding procedure based on the famous Beck-Fiala
theorem [3]. For ease of exposition, we first describe an algorithm for deterministic rounding and
describe in the subsequent subsection how to turn it into a randomized rounding procedure. From
here on, we drop the index “P ” from the marginal probabilities πi,P , both for ease of notation and
to emphasize that the lemma applies to any set of marginal probabilities adding up to k (such other
marginals might arise, say, from clipping and rescaling the πi,P if some of them are greater than 1).
Lemma 9. For a pool P , let (πi)i∈P be any collection of variables in [0, 1] such that

∑
i∈P πi = k.

Then, we can efficiently compute a deterministic 0/1 rounding (xi)i∈P such that
∑
i∈P xi = k and

such that, for each feature-value pair f, v,∑
i∈P :f(i)=v

πi − |F | ≤
∑

i∈P :f(i)=v

xi ≤
∑

i∈P :f(i)=v

πi + |F |.

Proof. We initialize xi ← πi,P , and the following inequalities are therefore satisfied:∑
i∈P

xi = k (4)∑
i∈P :f(i)=v

xi =
∑

i∈P :f(i)=v

πi,P ∀f, v. (5)

We then iteratively update the xi and maintain a set of equations that starts as the equations in Eqs. (4)
and (5), but from which we will iteratively drop some equations of type (5). Throughout this process,
we maintain that the xi satisfy all remaining (i.e., not dropped) equations and that xi ∈ [0, 1] for all i.
We call xi ∈ (0, 1) active; once an xi stops being active, it stays at its value 0 or 1 to the end of the
rounding. We continue our iterative process until no more active variables remain, at which point we
return our 0/1 rounding.

Whenever the number of remaining equalities is lower than the number of active agents, the values xi
for the active variables must be underdetermined by the equalities. More precisely, after considering
all inactive xi as constants, the space of remaining xi that satisfies the remaining equalities forms
an affine subspace of non-zero dimension. Since this subspace must intersect the boundary of the
unit hypercube, there is a way of updating the xi such that all equalities are preserved, such that
no inactive variable gets changed, and such that at least one additional variable becomes inactive
(progress).12

Else, we know that the number of active agents n′ is at most the number of remaining equalities m. If
m = 1, i.e., if Eq. (4) is the only remaining equation, there cannot be any active agents since Eq. (4)
can only be satisfied if no xi or at least two xi are non-integer. Thus, in the following, m ≥ 2. For
any remaining equality of type (5) corresponding to some feature-value pair f, v, say that it ranges
over t many active variables if there are t many active variables xi such that f(i) = v. Should any of
the remaining constraints range over all n′ many active variables, then this constraint must be implied
by constraint (4) and the values of the inactive variables. We can thus drop the redundant constraint
without consequences (progress), and repeat the iterative process.

If none of these steps apply, we show that some constraint of type (5) ranges over at most |F | active
variables: Clearly, this is the case if n′ ≤ |F |, and furthermore if n′ = |F |+ 1 because we removed
constraints of type (5) ranging over all active variables. If n′ > |F | + 1, note that every active
agent appears in at most |F | many equations of type (5), at most one per feature. It follows that
the total number of active agents summed up over all remaining equalities of this type is at most
n′ |F | < n′ |F | − (|F | + 1) + n′ = (n′ − 1) (|F | + 1) ≤ (m − 1) (|F | + 1), which implies that
one of the m− 1 equalities of type (5) ranges over less than |F |+ 1 active variables. Drop all such
equalities (progress) and repeat.

Since n′ + m decreases in every iteration, this algorithm will produce a deterministic panel in
polynomial time. Since constraint (4) is never dropped, the panel size must be exactly k. By how
much might the equations of type (5) for a feature-value pair f, v be violated in the result? Clearly,
they are maintained exactly up to the point where they are dropped.13 From this point on, however,

12This step can be implemented in polynomial time by solving systems of linear equations.
13We do not count if the equality was dropped because it was implied by constraint (4), in which case it is

preserved exactly throughout the rounding.
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only |F | many active variables could still change the value of
∑
i∈P :f(i)=v xi. Since each of these

variables remains in its range [0, 1] throughout the rounding process, the final xi must satisfy∑
i∈P :f(i)=v

πi − |F | ≤
∑

i∈P :f(i)=v

xi ≤
∑

i∈P :f(i)=v

πi + |F |.

B.4.2 Randomizing the Beck-Fiala rounding

We give two methods of transforming the previous deterministic rounding algorithm into a randomized
rounding algorithm. To prove Lemma 3, we can directly apply a result by Bansal [2] to our
deterministic rounding procedure:
Lemma 3. There is a polynomial-time sampling algorithm that, given a good pool P , produces a
random panel Panel such that (1) P[i ∈ Panel ] = πi,P for all i ∈ P , (2) |Panel | = k, and (3)∑
i:f(i)=v πi,P − |F | ≤ |{i ∈ Panel | f(i) = v}| ≤

∑
i:f(i)=v πi,P + |F |.

Proof. We apply Theorem 1.2 by Bansal [2] to the deterministic rounding procedure of Lemma 9.
To apply the theorem, we need to give a δ > 0 such that, when there are n′ many active variables
left, the number of remaining equalities in the next iteration is at most (1 − δ)n′ constraints. In
Lemma 9, we showed that m is always set to a value of at most n′ − 1. Thus, for δ := 1/n, we get
that m ≤ n′ − 1 = (1− 1/n′)n′ ≤ (1− 1/n)n′ and can apply the theorem.

While the previous algorithm runs in polynomial time, we found an alternative way of randomizing
the rounding to be more efficient in practice. This technique is based on naïve column generation,
which is not guaranteed to run in polynomial time, but has the following advantages:

• it uses linear programs rather than semi-definite programs,
• instead of a single random panel, the column generation (deterministically) generates a

distribution over panels, which allows us to analyze the distribution after a single run, and
• there is a continuous progress measure that allows us to stop the optimization process once

we implement the πi with sufficient accuracy.

We describe this algorithm in the proof of the following version of Lemma 3, which does not require
polynomially-bounded runtime:
Lemma 10. There is a sampling algorithm that, given a good pool P , produces a random panel
Panel such that (1) P[i ∈ Panel ] = πi,P for all i ∈ P , (2) |Panel | = k, and (3)

∑
i:f(i)=v πi,P −

|F | ≤ |{i ∈ Panel | f(i) = v}| ≤
∑
i:f(i)=v πi,P + |F |.

Proof. First, note that we can strengthen Lemma 9 slightly by giving it an arbitrary vector ~c ∈ R|P |
as part of its input and additionally requiring that 〈~c, ~x〉 ≥ 〈~c, ~π〉, where ~x is the vector of xi and ~π
the vector of πi. This stronger statement follows from the same proof if we require every update of
the xi to additionally maintain that 〈~c, ~x〉 ≥ 〈~c, ~π〉. Since this intersects the non-zero dimensional
affine subspace formed by the constraints with a half space that contains at least the current point ~x,
the resulting intersection is still unbounded, which means that we can find an intersection with the
boundary of the hypercube. We refer to this procedure as the “modified Lemma 9.”

Now, let B 6= ∅ be any set of panels satisfying the constraints of the lemma, possibly exponentially
many. Consider the following linear program and its (simplified) dual:

PRIMAL(B): DUAL(B):

minimize δ maximize

(∑
i∈P

πi zi

)
− ẑ

s.t.

∣∣∣∣∣πi − ∑
B∈B:i∈B

λB

∣∣∣∣∣ ≤ δ ∀i ∈ P s.t.
∑
i∈B

zi ≤ ẑ ∀B ∈ B∑
B∈B

λB = 1 |zi| ≤ 1 ∀i ∈ P

δ ≥ 0, λB ≥ 0 ∀B ∈ B
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The primal LP searches for a distribution over the panels B such that the largest absolute deviation
between the marginal

∑
B∈B:i∈B λB and the target value πi of any i ∈ P is as small as possible. Let

B denote the set of panels that can be returned by the modified Lemma 9, for any vector ~c in its input.

Observation 1: For any B 6= ∅, the LP has an objective value obj (B) ≥ 0. Indeed, in the primal,
the objective value is clearly bounded below by 0, and the LP is feasible for any distribution over B
and large enough δ. By strong duality, the dual LP must have the same objective value.

Observation 2: obj (B) = 0. For the sake of contradiction, suppose that the objective value was
strictly positive, i.e., that ~π does not lie in the convex hull of B. Then, there must be a plane separating
~π from this convex hull, and an orthogonal vector ~c such that 〈~c, ~π〉 > 〈~c, ~x〉 for any ~x corresponding
to a panel in B. Applying the modified Lemma 9 with this vector ~c would lead to a contradiction.

Consider Algorithm 1, which iteratively generates a subset B ⊆ B by column generation.

Algorithm 1: Column generation
1 B← {result of running modified Lemma 9 with arbitrary ~c}
2 while obj (B) > 0 do
3 fix optimal values zi, ẑ for DUAL(B)
4 B ← result of running modified Lemma 9 with ~c as the vector of zi
5 B← B ∪ {B}
6 return B

Observation 3: Algorithm 1 terminates. It suffices to show that, in Line 4, the generated panel
B is not yet contained in B since, then, the size of B grows in every iteration and is always upper-
bounded by the finite cardinality of B. By the definition of the modified Lemma 9, B always
satisfies

∑
i∈B zi ≥

∑
i∈P πi zi. However, since the objective value is positive, any B′ ∈ B satisfies∑

i∈P πi zi > ẑ ≥
∑
i∈B′ zi, which shows that B /∈ B.

Once Algorithm 1 terminates with a set B, we know that obj (B) = 0, which means that, by solving
PRIMAL(B), we obtain a distribution over valid panels that implements the marginals πi, which
concludes the proof.

In practice, it makes sense to exit the while loop in Line 2 already when obj (B) is smaller than some
small positive constant, which guarantees a close approximation to the marginal probabilities while
reducing running time and preventing issues due to rounding errors.

B.5 Proof of Theorem 1

Theorem 1. Suppose that α → ∞ and nf,v ≥ n/k for all feature-value pairs f, v. Consider a
sampling algorithm that, on a good pool, selects a random panel, Panel , via the randomized version
of Lemma 3, and else does not return a panel. This process satisfies, for all i in the population, that

P[i ∈ Panel ] ≥ (1− o(1)) k/n.

All panels produced by this process satisfy the quotas `f,v := (1 − α−.49) k nf,v/n − |F | and
uf,v := (1 + α−.49) k nf,v/n+ |F | for all feature-value pairs f, v.

Proof. The claim about the quotas immediately follows from Lemma 3 and the definition of a good
pool. Concerning the selection probabilities,

P[i ∈ Panel ] =
∑

good pools P
i∈P

P[i ∈ Panel | Pool = P ]P[Pool = P ] =
∑

good pools P
i∈P

k ai∑
j∈P aj

P[Pool = P ].
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Since
∑
j∈P aj ≤ r/(1− α−.49) for good pools, we continue

≥ (1− α−.49) k/(r qi)
∑

good pools P
i∈P

P[Pool = P ] = (1− α−.49)
k

r qi
P[i ∈ Pool ∧ Pool is good]

= (1− α−.49)
k

r qi
P[Pool is good | i ∈ Pool ]︸ ︷︷ ︸

∈ 1− o(1) by Lemma 2

P[i ∈ Pool ]︸ ︷︷ ︸
=qi r/n

∈ (1− o(1))
k

n
.

C Supplementary Material for Section 4

Participation Model Let yi = 1 for agents who would join the pool if invited, and yi = 0 for
agents who would not. We want to predict qi = P[yi = 1] for all agents in the pool. To do so, we
learn the following parametric model, which describes the relationship between an agent’s feature
vector F (i) and value of qi.

qi = β0

∏
f∈F

βf,f(i)

This type of generative model describes a decision process known as simple independent action [11,
as cited in [28]]. To express this model in a more standard form, let xi be a vector describing agent i’s
values for all features in F , where each index j of xi corresponds to a feature-value f, v and contains
a binary indicator of whether agent i has value v for feature f . Let M be the length of xi, where
M = 1 + #feature-values. We then reshape parameters β0, βf,v for all f, v into a parameter
vector β of length M , and correspondingly, xi must have value 1 at its first index for all agents i,
corresponding to the parameter β0. We can then write an equivalent version of our model in more
standard form. Note that qi is technically a function of xi,β, but we omit this notation for simplicity.

qi =
∏
j∈[M ]

β
xi,j
j

Maximum Likelihood Estimation with Contaminated Controls To estimate the parameters β
of this model on fixed pool P and fixed background sample B, we apply the estimation methods in
Section 3 of Lancaster and Imbens [16]. We use the objective function in Equation 3.3, which is
designed to perform maximum-likelihood estimation (MLE) in the setting of contaminated controls.
Let zi be an indicator such that zi = 1 for i ∈ P and zi = 0 for i ∈ B. Let wi be the weight of
agent i ∈ B (for details on these weights, see Appendix D). Recall that q is the average participation
probability in the underlying population. Then, the likelihood function L(β) that we would maximize
to directly learn our model is

L(β) =
∑

i∈B∪P

zi ∑
j∈[M ]

(
xi,j logβj

)
− wi log

q |B|/|P |+ ∏
j∈[M ]

β
xi,j
j


Unfortunately, L(β) is not obviously concave in β. To get around this, we re-parameterize our model
such that we can instead learn the logarithms of our parameters. Defining a new parameter vector θ
such that θj = log(βj) for all j ∈ [M ], we can rewrite our model equivalently as the exponential
model.

qi =
∏
j∈[M ]

β
xi,j
j = exp

log

 ∏
j∈[M ]

β
xi,j
j

 = exp

 ∑
j∈[M ]

xi,j log(βj)

 = eθxi

By Equation 3.3 in Lancaster and Imbens [16], the likelihood function L′(θ) we maximize is now
the following. By Theorem 11, this objective function is concave, so it can therefore be maximized
efficiently (under the constraint that θ ≤ 0).

L′(θ) =
∑
i

(
ziθxi − wi log

(
q |B|/|P |+ eθxi

))
(6)

Theorem 11. The log-likelihood function for the simple independent action model under contami-
nated controls is concave in the model parameters.
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Proof. The first term of the sum is linear, so both concave and convex. The second term is concave
by Lemma 12,

Lemma 12. Let function f(θ) = − log(c+ eθX), where c > 0 is a constant. f is concave.

Proof. The i, jth term of the Hessian matrix H of f can be written as

Hi,j = −XiXj
ceθX

(c+ eθX)
2

Now, let ψ =
√
ceθX

c+eθX
. Noting that X is considered a column vector, we can then rewrite the Hessian

in terms of ψ as H = −(ψX)(ψX)T . In words, the negative Hessian can be written as the outer
product of the vector ψX with itself. Therefore, the negative Hessian is positive semi-definite, and
the Hessian is negative semi-definite, implying that f is concave.

Discussion of Methods The reader may note that we treat q as a known constant in our estimation,
but the objective function we use from Lancaster and Imbens is designed for the setting in which q is
a variable. There is precedent in the literature for doing so [27]. As Lancaster and Imbens discuss,
using q as a constant rather than a variable when maximizing Equation 3.3 introduces issues of
over-parameterization, because it is not enforced that the average qi over the population be q. While
we cannot estimate qi values for the entire population for lack of data, it would be a worrying sign if
the average qi over the background sample, a uniform sample from the population, was far from our
assumed q. However, we find that the average of our estimated qi values over the background sample
is 2.9%, which matches q = 2.9%.

D Supplementary Material for Section 5

For estimation, we use two datasets. For our positively-labeled data, we use the set of pool members
from the UK Climate Assembly (for details, see Appendix D.1). For our background sample, we use
the European Social Survey (ESS), which serves as an unlabeled uniform sample of the population.

D.1 Climate Assembly UK Details & Pool Dataset

Our pool dataset contains the agents from the pool of the Climate Assembly UK, a national-level
sortition panel on climate change held in the UK in 2020. We use “panel” to refer to the group of
people who deliberate, and “assembly” to refer to the actual deliberation step. The panel for this
assembly as selected by the Sortition Foundation, a UK-based nonprofit that selects sortition panels.
A document by the Sortition Foundation gives the following description of this assembly:14

This Citizens’ Assembly will meet across four weekends in early 2020 to consider
how the UK can meet the Government’s legally binding target to reduce greenhouse
gas emissions to net zero by 2050. The outcomes will be presented to six select
committees of the UK parliament, who will form detailed plans on how to implement
the assembly’s recommendations. These plans will be debated in the House of
Commons.

In the formation of the panel for this assembly, 30 000 letters were sent out inviting people to
participate. Of these letter recipients, 1 727 people entered the pool, and 110 people were selected for
the panel. The features and corresponding sets of values used for this panel are described in Table 1.

Those with value Other for gender were dropped from the pool data because an equivalent value
could not be constructed in the ESS data. This resulted in us dropping 12 people out of the original
1727, for a pool dataset of final size 1715. Note that dropping these people did not affect our estimate
of q — before and after dropping these agents, it was 2.9%. The Climate Concern Level feature was
dropped altogether from the set of features used for analysis because there were too few people in the
pool with value Not at all concerned to give these agents proportional representation on the panel.

14https://docs.google.com/spreadsheets/d/1kwgOpxMX4pwR3Myu4pXku4gjcnOS53bPOKwOGjZNxyI/
edit#gid=0
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Feature (f ∈ F ) Values (Vf )

Gender Male, Female, Other
Age 16-29, 30-44, 45-59, 60+
Region North East, North West, Yorkshire and the Humber, East Midlands,

West Midlands, East of England, London, South East, South West,
Wales, Scotland, Northern Ireland

Education Level No Qualifications/Level 1, Level 2/Level 3/Apprenticeship/Other,
Level 4 and above

Climate Concern Level Very concerned, Fairly concerned, Not very concerned, Not at all
concerned, Other

Ethnicity White, Black or ethnic minority (BAME)
Urban / Rural Urban, Rural

Table 1: Climate Assembly UK features and values.

Due to privacy agreements between the Sortition Foundation and the pool members, we are unable to
share this dataset.

D.2 Background Data

We define the size of the ESS dataset to be the sum of the weights of the agents within it.15 For
details on weights, see the Re-weighting paragraph of this section. In order to use this data as our
background sample, we construct feature vectors for each person in the ESS data that correspond to
those used in Climate Assembly UK, as defined in Table 1.

In this section, we describe how we constructed the variables corresponding to the features and their
values as specified by the Sortition Foundation. We dropped 44 people out of the original 1959 people
in the ESS dataset, and we briefly discuss this decision and its implications. Finally, we describe
how we re-weighted the ESS data to correct for sampling and non-response bias to approximate
the scenario in which the surveyed individuals were uniformly sampled from the population. This
step is important because, in our qi estimation procedure, we assume that our background sample is
uniformly sampled.

Variable construction Fortunately, the ESS data contained variables and categories that either
exactly or very closely corresponded to the features and values specified by the Sortition Foundation.
Essentially the only modification to the ESS data we made to construct valid feature vectors was
the aggregation over categories in the Education Level and Urban/Rural ESS variables, which were
broken down into more fine-grained categories than those specified in Table 1. In general, for features
with values containing the value “other”, missing data was assigned the value “other”. Below is a
table showing which variables and values from the ESS data were used to construct each feature from
the Climate Assembly UK. Exact details on how these variables were used is documented in the code
(see Appendix D.3 for reference to readme).

Feature (Climate Assembly UK) Variable (ESS raw data)
Gender gndr
Age agea
Region region
Education Level edulvlb
Climate Concern Level wrclmch
Ethnicity blgetmg
Urban/Rural domicil

Dropping people As described in Table 1, the Climate Assembly’s youngest valid age category
was 16-29. We therefore dropped all four people in the ESS data who were under 16 years old.

15This sum should ideally be equal to the number of people in the ESS data, but because we drop a few people,
the sum of weights no longer exactly equals the number of people.
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Dropping people who fall outside our demographic ranges of interest is not a problem for weights,
because the weights of all people of interest (who we want to be fair to) will remain the same relative
to each other, and we care only about the composition of this relevant population.
There were an additional 40 people who may have been within our demographic range of interest, but
who were missing age, race, or urban/rural data. Among these 40 people, 33, 6, and 4 people did not
have data for variables corresponding to the features age, ethnicity, and urban / rural, respectively.
While dropping these people could affect the weighting scheme, the distribution of weights of those
dropped is strongly right-skewed, meaning that those who we dropped belong to groups that tended
to be oversampled in the ESS data. These people are therefore likely more numerous in the ESS data
overall, and dropping some of them will have a smaller proportional effect.
Finally, the ESS did not permit people to answer “other” for gender, a category permitted on the
Sortition Panel. Without any way to construct the gender = other feature-value in the ESS data, we
dropped the members of the Climate Assembly pool with this feature-value.

Re-weighting The ESS recommends re-weighting their data to correct for bias, and they provide
multiple sets of possible weighting schemes for doing so16. Of the provided options, we elected to
apply the Post-Stratification Weights, because these weights account for not only sampling bias, but
also non-response bias, by incorporating auxiliary information from other demographic surveys. By
this weighting scheme, each person in the ESS data is given a weight wi, representing how much that
person should count in the analysis of the ESS data, where the weights are normalized to 1. This
weight is encoded in the ESS data as ‘pspwght’.

Estimation of q We bolster the identification of our model with an estimate of q, the rate of true
positives in the population. In our setting, this is the number of people who would ultimately enter the
pool if invited. We estimate q in Climate Assembly UK data roughly as the fraction of people who
joined the pool (1 715) out of those who were invited (30 000). These numbers seem to imply that
the q ≈ 1 715/30 000 = 5.7%. However, there is a complication: each letter is sent to a household,
rather than an individual, and any eligible member of an invited household may join the pool. Using
the ESS data, we compute (see below) the average number of eligible panel participants per household
to be 2.00, implying that in reality, 60 000 eligible people were invited to participate in the pool. As a
result, we estimate q to be q = 1 715/60 000 ≈ 2.9%.

Let ESS be the set of agents in the cleaned ESS data. Computing the average number of eligible
panel participants per household from the ESS data is not entirely trivial, because sampling people
uniformly (or in the case of the ESS, approximating uniform sampling by re-weighting) is biased
toward larger households. To account for this, for each person i ∈ ESS, we scale their weight wi by
the inverse of the number of eligible people in their household, householdsizei. Then,

average number of eligible people per household =

∑
i∈ESS

(
wi

householdsizei

)
· householdsizei∑

i∈ESS

(
wi

householdsizei

)
We compute householdsizei for each person i ∈ ESS using the weighted ESS data. Age is the
only feature from the UK Climate Assembly for which the ESS data may contain values rendering
a person ineligible (specifically, the ESS data surveys people down to age 15, while the climate
assembly accepted only those over 16). To count the number of people in each household who are
eligible, we use variables ‘agea’, ‘pspwght’, and ‘yrbrn2-12’, which describe the ages of person i’s
household members (up to 12 household members).

D.3 Implementation Details

Our experiments were implemented in Python, using PyTorch for the MLE estimation and Gurobi for
solving the linear programs in the column generation. Our code is contained in the supplementary
material and will be made available as open source when published. The file “README.md” in the
code gives detailed instructions for reproducibility.

We found the log-likelihood presented in Eq. (6) to be easy to maximize. For accuracy, we chose
a small step size of 10−5 and a large number 105 of optimization steps. The final objective was
4157.32345, and objective changes between iterations 20 000 and 100 000 were less than 3× 10−6.

16https://www.europeansocialsurvey.org/docs/methodology/ESS_weighting_data_1.pdf
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Our experiments were run on a 13-inch MacBook Pro (2017) with a 3.1 GHz Dual-Core i5 processor.
Optimizing the log-likelihood took 46 seconds. Running the column generation took 38 minutes to
reach the desired accuracy of 10−6, which is much smaller than the smallest πi,P at around 2%. For
the version including climate concern, MLE estimation took 37 seconds reaching a log-likelihood of
4601.01427, and column generation took 26 minutes.

Sampling 100 000 pools each and simulating our algorithm for the end-to-end experiments took 30
minutes for r = 10 000, 55 minutes for r = 11 000, 61 minutes for r = 12 000, 76 minutes for
r = 15 000, and 95 minutes for r = 60 000. All running times should be seen as upper bounds
since other processes were running simultaneously. Sampling the same number of pools for the case
including the climate concern feature took around 410 minutes for r = 600 000. The equivalent
experiments with the greedy algorithm took around 19 hours (floor and ceiling quotas) and around 12
hours (no quotas).

D.4 Results and Validation of β, qi Estimation

Pool and Background Data Composition First, we examine the frequency at which each feature-
value occurs in the pool and the background data. As shown in the figure below, those with the most
education are highly over-represented in the Climate Assembly UK pool compared to the background
sample, and people with low education are under-represented. Similarly, we see men are slightly
over-represented in the pool, and increasing age also seems to increase likelihood of entering the
pool.
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Estimates of β We find that β0 = 8.8%, meaning that all agents participate with a baseline
probability of 8.8%. In the figure below are estimates of βf,v for all feature-values f, v. Recall that
1− βf,v can be interpreted as the probability of not participating due to having value v for feature
f ; in other words if βf,v is 1, then feature-value f, v has no adverse effect on whether a person
participates.

Notably, these β estimates are consistent with the composition of the pool compared to the background
data. For example, people of increasing age were increasingly over-represented in the pool compared
to the background data, and we see here that β associated with age increase with increasing age.
Similarly, we see that having low education greatly diminishes a person’s likelihood of participation,
corresponding to the observation that the pool contained a disproportionately low number of people
with the two lower levels of education. In fact, one can confirm that across all feature-values, β values
correspond with the composition of the pool data compared to the background data, indicating that
the β values learned with our model are a good fit to the data used to learn them.
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Estimates of qi We compute our qi estimates based on β estimates according to the model in
Appendix C. We get the following distributions of qi values in the pool and background datasets.

The data shown in this plot is limited to density of qi values between 1% and 8%, because bins
outside this range contain fewer than 7 people, and are withheld to avoid potential privacy issues.
Less than 0.3% of agents in either dataset are excluded for this reason.
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Not very surprisingly, we find that the pool overrepresents agents with higher participation probability
with respect to their share in the background sample.

Test for Calibration of qi Estimates To validate whether our model fits the data well, we form
a hypothetical pool by imagining that the weighted background sample was selected as the set of
recipients and that the members of this set participate with our estimated probability qi. For some
attributes that agents might have or not have, the expected number of agents in the hypothetical pool
with this attribute is ∑

i∈B:i has attribute

qi.
17

Since the set of invitation recipients to the Climate Assembly and the background sample are both
assumed to be representative samples of the population, we would expect the above sum to be (close
to) proportional to the fraction of pool members with this attribute — at least if the model fits the data
well.

For instance, this idea allows us to re-examine the previous plot of qi values by letting the orange
bars not denote the (scaled) number of members in the background sample with qi in the right range,
but instead the (scaled) sum of qi values of members in the background sample with qi in this range.

17Of course, all operations on the background sample respect the weights, which we ignore here for the sake
of clarity.
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The fact that these distributions align fairly well can be seen as our qi passing a sort of calibration
test — of those agents with a certain qi value, roughly a qi proportion would participate when invited.
Relative to our background sample, the Climate Assembly pool does not seem to untypically skew
towards agents with low or high values of qi.

Once again, for privacy reasons we display frequencies of qi values only between 1% and 8%. Once
again, less than 0.3% of agents in either dataset are excluded for this reason.
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Comparison of Realized Pool Composition and Hypothetical Pool Composition We now plot
the same comparison between the Climate Assembly pool and the hypothetical pool but for the
prevalence of each feature-value pair.

The figure below shows that if our β estimates and the qi estimates they yield are true for members
of the population, then if we sampled the underlying population as was done to form the Climate
Assembly UK pool, we would get in expectation a pool that looks almost identical to realized pool.
This illustrates in another way that our β estimates are a good fit to the data we provided.
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Testing Model Capture of 2-Correlations Our model assumes that each feature-value affects
people’s probability of participating independently of all other feature-values. This analysis tests
whether this causes our model to severely misjudge the participation probability for some group
defined by the intersection of two feature-value pairs, again comparing the prevalence of these groups
in the Climate Assembly UK pool vs. the hypothetical pool that would be drawn from a population
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with the same composition as the background sample. On the plot below, each point represents
an intersection of two feature-values. Each point’s x and y coordinates are the fraction of people
with that intersection in the Climate Assembly UK pool and the fraction of the hypothetical pool,
respectively. We would hope for this relationship to be exactly linear, illustrating that each pair of
feature-values occurs at the same rate in the real vs. hypothetical pool.
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D.5 Details on End-To-End Experiment

As described in the body of the paper, we generate a synthetic population by scaling up the ESS
participants to a population of 60 million individuals. The number of copies of a participant is
proportional to their weight in the ESS, and is rounded to an integer using the Hamilton apportionment
method. 100 000 times per experiment, we select a set of letter recipients of size r uniformly from the
population, and flip a biased coin with probability qi for each letter recipient to determine whether
she joins the pool. For each pool, we then obtain the selection probabilities of the pool members
conditioned on this being the pool (or an unbiased estimate of these probabilities):

• For our algorithm, we check whether the pool P is good. If the pool is not good, we (conser-
vatively) assume that no panel is returned, and that pool members have zero probability of
being selected. Else, we return the selection probabilities πi,P .

• We use the implementation of the greedy algorithm developed by the Sortition
Foundation and available at https://github.com/sortitionfoundation/
stratification-app/tree/4a957359b708a327aad0103ab2a59d061aeaeeb4.
Since we do not have a closed form for individual selection probabilities, we run the greedy
algorithm 10 times and report the average time that each pool member was selected. While
these estimates of selection probabilities are noisy, they are unbiased estimates of the
end-to-end probability and independent between pools. Thus, the noise largely averages out
over the 100 000 random pools. In no case did the greedy algorithm fail to satisfy the quotas.

Each point in the diagrams corresponds to one agent in the ESS sample and indicates this agents’ qi
as well as the average selection probability of its copies, averaged over the different pools and the
different copies. Since both our algorithm and the greedy algorithm treat agents with equal feature
vector symmetrically, averaging over the copies of an ESS participant is a valid way to estimate the
end-to-end probability of any single copy, which greatly reduces sample variance.

In the body of the paper, we mention the behavior of the greedy algorithm without any quotas. In this
case, the panel members seem to be sampled with near-equal probability from the pool, which leads
to end-to-end probabilities that are roughly proportional to qi:
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D.6 Additional Results for Section 5

End-to-End Fairness Results for Varied r Values This plot shows the end-to-end probabilities
for all agents in the synthetically-generated population over varied values of r. To recall, we copied
the agents in the background sample (in proportion to their weight) to obtain a synthetic population
of size 60 million (the order of magnitude of eligible participants for the Climate Assembly).

We display these end-to-end probabilities for r values 11 000, 12 000, 13 000, and 60 000, where
60 000 is the r value used to form the real-life Climate Assembly UK pool. Every point in the scatter
plot corresponds to an original member of the background sample, and the point’s y-value is the mean
selection probabilities averaged over 100 000 sampled pools and over all copies of this background
agent.18

An important question is what we do when a bad pool occurs. In the corresponding figure in the body
of the text (examining only r = 60 000), we did not credit any selection probability to any agent
when bad pools occurred. When we take this approach for multiple r values, the result shows a sharp
discontinuity between r = 11 000 (when everyone’s end-to-end probability is essentially zero) and
r = 12 000 (when it is around 95%). As it turns out, the property that makes nearly all pools bad
when r = 11 000 is Eq. (3). Note that this property is the least consequential of the three defining
properties of a good pool: if we proceed with Part II of the algorithm on a pool that satisfies only
Eqs. (1) and (2), we still satisfy the quotas but just can’t bound the end-to-end probabilities. Since
the end-to-end probabilities are what we are measuring here anyway, we will in the following graph
count bad pools as good pools if they only violate Eq. (3).

As shown in the figure below, we see a smooth transition towards the end-to-end guarantee, where
higher values of r give better guarantees. The agents with the lowest selection probabilities are
suffering most from low values of r, with their end-to-end probability trailing that of the majority of
other agents. From r = 15 000 upwards, however, all agents in the population receive an end-to-end
probability that is very close to k/n. This threshold roughly coincides with the point at which α
becomes larger than one.
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D.7 Validation and Results including Climate Concern Feature

This section includes all the analysis in this paper and appendices, re-done with the climate concern
level feature included. Figures in this section are provided in the same order as they were presented
in the body of the paper, Appendix D.4, and Appendix D.6.

18Averaging over the copies of an agent makes use of the fact that the selection process treats copies of the
same agent symmetrically, which makes the empirical means converge faster.
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(Figures from Paper Body)

We omit the figure showing end-to-end probabilities at r = 60, 000, because when the Climate
Concern Level feature is included, good pools are so rare at this value of r that all end-to-end
probabilities are 0. Similarly, for the greedy algorithm, the floor and ceiling quotas are often not
satisfiable. In 754 out of 1 000 random pools, this is because fewer pool members are “not at all
concerned” about climate change than the lower quota for this feature, which is 6. In 86 out of the
remaining pools, the greedy algorithm fails to identify a valid panel within the first 100 restarts. Only
in the remaining 160 pools did the greedy algorithm find a valid panel in fewer than 100 iterations.

Legend: proportional no. seats expectated no. seats range in no. seats over all panels in distribution
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(Figures from Appendix D.4)

Pool and Background Data Composition
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Estimates of qi β0 = 24.3%. Frequencies of qi values above 15% are not shown due to privacy
concerns. 6.8%, 1% of agents in pool, background datasets respectively are not presented for this
reason.
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Testing model capture of 2-correlations
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(Figures from Appendix D.6)

End-to-End Fairness Results for Varied r Values This figure demonstrates that, for large enough
r, we can get k/n end-to-end probability for all agents in the synthetic population when we include
the Climate Concern Level feature. We only include analysis for only one r value because the r
values must be extremely large to give any end-to-end guarantees when the Climate Concern Feature
is included, and running the analysis with such large r costs substantial computational time.
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