
Appendices
A The Persistence Interaction Detection Algorithm

Algorithm 1: The proposed Persistence Interaction Detection (PID) algorithm
Input: A trained feed-forward neural network, target layer l, norm p.
Output: ranked list of interaction candidates {Ii}.

1 Construct size pair (G, φ) and its filtration Gw′0 ⊆ ... ⊆ Gw′n
2 K ← initialize an empty dictionary mapping interaction candidate to persistence
3 for i=0:n do
4 λ← w′i; Gλ ← Gw′i
5 Calculate M

λup

(l) and Mλdown

(l) according to Equation (3)

6 for each row m of Mλdown

(l) indexed by r do
7 if all elements in rth column of Mλup

(l) are 0 then
8 continue // r-th unit in l-th layer is not connected with any

final output units
9 end

10 I ← initialize an empty set;
11 for j=0:d-1 do
12 if mj == 0 then
13 continue // r-th unit is not connected with feature j
14 end
15 dI ← λ // I merged with j
16 ;
17 bI∪j ← λ;
18 K[I]← K[I] + |bI − dI |p;
19 I ← I ∪ j ;
20 end
21 end
22 end
23 {Ii} ← interaction candidates in K sorted by their strengths in descending order.

Our PID framework is presented in Algorithm 1. Besides the 〈φ = λ〉-connectivity between I
and final outputs, we also consider: First, whether I and a particular neuron r are connected;
second, whether the neuron r and final outputs are connected under the threshold λ. Recall that the
measuring function φ is non-decreasing over G (Definition 2), and the birth time and death time of
each interaction candidates can be determined through one pass of all thresholds. As shown in Figure
3, calculating the interaction strength of I at neuron r is equivalent to running Algorithm 1 on a
neural network whose lth layer is only composed by neuron r.

The time complexity of PID is O(Ndpl), where N denotes the total number of weights used as
thresholds in the filtration and pl is the number of neurons at target layer l. One possible way to
reduce the time complexity is that, we can change theW ′ := {|w|/wmax|w ∈ W} in section 2.2
toW ′ := {|w|/wmax|w ∈ W ∧ w ≥ ηwmax}, where η is a hyperparameter which controls total
number of weights used as thresholds in Algorithm 1. We do not utilize this method to accelerate
PID in all experiments of this paper (i.e., set η as 0).

B Proof of Lemma 1

Lemma 1 (Proof in Appendix B). Let {0, ..., d− 1} denotes the input feature set, and Mλ denotes
the aggregated mask matrix corresponding to threshold λ, where the rth row of Mλ is denoted as
mλ
r ∈ Rd. The feature subset I and the corresponding rth unit at the final output layer are 〈φ = λ〉-

connected if all elements in [mλ
r]I ∈ R|I| are non-zero and all other elements in [mλ

r]{0,...,d−1}\I

are zero, where [mλ
r]I is the subvector of mλ

r selected by I.

13

We obtain Lemma 1 following from the theoretical analysis in Appendix E of [7].

Proof. If the network has exactly one layer, Mλ = (Mλ
(1))
> directly gives the connectivity between

input features and output units in the final output layer.

In cases when Mλ has more than one hidden layer, first consider the weight connectivity between
input features and the second hidden layer. Since a feed-forward neural network is a directed acyclic
graph and a hop is a transition from one layer to the next, we can view the connectivity from input
features to the second hidden layer as two hops or two applications of an adjacency matrix, A,
comprising of Mλ

(2) and Mλ
(1) as:

A =

0 (Mλ
(1))
> 0

0 0 (Mλ
(2))
>

0 0 0

 .
Therefore, the adjacency matrix for two hops is:

A2 =

0 0 (Mλ
(2))
>(Mλ

(1))
>

0 0 0
0 0 0

 .
Since the elements of A2 are the number of paths between graph vertices in two hops, the non-zero
elements of (Mλ

(2))
>(Mλ

(1))
> represent the existence of paths from features to the second hidden

layer, and the zero elements represent the lack of such paths. We can therefore repeatedly apply hops
up to the Lth hidden layer, yielding (Mλ

(L))
> · (Mλ

(L−1))
> · · · (Mλ

(1))
> to represent the zero and

non-zero paths from input features to the neurons in the Lth layer. Thus, if all elements in [mλ
r]I are

non-zero and all other elements in [mλ
r]{0,...,d−1}\I are zero, I and unit r are 〈φ = λ〉 − connected

by Definition 3.

�

C Proof of Theorem 1

In this subsection, we will prove Theorem 1 and evaluate it empirically. We first give the stability
lemma for connected components and then utilize it to derive Theorem 1.
Definition 4 (Hausdorff distance). For points p = (p1, p2) and q = (q1, q2) in R2, let ‖p − q‖∞
be the maximum of |p1 − q1| and |p2 − q2|. Let ‖f − g‖∞ = supx|f(x) − g(x)|. Let X and Y be
multisets of points. The Hausdorff distance is defined as

dH(X,Y) = max{supx∈X infy∈Y ‖x− y‖∞, supy∈Y infx∈X‖x− y‖∞},

For two feed forward neural networks f and g with the exact same architecture, let g be a neural
network that is obtained by perturbing the weights of f . The corresponding size pairs (Gf , φf) and
(Gg, φg) are constructed following instructions in Section 2.2. Let δ = maxe∈E |φf (e) − φg(e)|
be the magnitude of the perturbation, i.e., ‖φf − φg‖∞ = δ. Persistence diagrams of (Gf , φf)
and (Gg, φg) are denoted as D[(Gf , φf)] and D[(Gg, φg)], respectively. We note that φf and φg are
piecewise linear functions on simplicial complexes, where a simplicial complex is a high-dimensional
generalization of a graph in topological space. Piecewise linear functions satisfy the following
Lemma:
Lemma 2 (Proof in [31]). dH(D[(Gf , φf)],D[(Gg, φg)]) ≤ δ.

When weights in the networks are perturbed, the birth time and death time of connected components
are also changed. Lemma 2 shows that the Hausdorff distance between the persistence diagrams is
bounded by the magnitude of the perturbation, i.e., for the set of all connected components J , suppose
its birth time bJ and death time dJ changes to b′J and d′J , then max(|bJ − b′J |, |dJ − d′J |) ≤ δ.

For any interaction candidate I that are detected in both f and g by Algorithm 1, we denote the birth
time of I in f and g as bI and b′I , respectively. Similarly, we use dI and d′I for the death time of

14

I in f and g, respectively. Suppose the connected component J and the connected component J ′
cause the birth of interaction I in f and g, respectively. We have the following corollary:

Corollary 1. |bI − b′I | ≤ 3δ.

Proof. From Definition 3, we have |bI − b′I | = |bJ − bJ ′ | = |mine∈J φf (e)−mine∈J ′ φg(e)|. If
J and J ′ are composed of identical set of edges, then we can directly prove Corollary 1 following
Lemma 2. If J and J ′ contain different edges, without loss of generality, let J ′\J 6= ∅. ∀e, φf (e) ≤
mine′∈J φf (e′)− 2δ, we have the following inequality:

φg(e) ≤ min
e′∈J

φg(e
′). (4)

Inequality (4) follows from the fact that ∀e, |φf (e)− φg(e)| ≤ δ, which implies that, ∀e, φf (e) ≤
mine′∈J φf (e′)− 2δ, e has to wait for all edges in J to be added to the filtration before being added
itself. Namely, I is born before the threshold arrives at φg(e) and, consequently, e /∈ J ′. Thus,
∀e, e ∈ J ′\J , e satisfies φf (e) ≥ mine′∈J φf (e′)− 2δ. Following this fact, we have

min
e∈J ′

φg(e) = min{ min
e∈J ′∪J

φg(e), min
e∈J ′\J

φg(e)}

≥ min{ min
e∈J ′∪J

φf (e)− δ, min
e∈J ′\J

φf (e)− δ} (5)

≥ min{ min
e∈J ′∪J

φf (e)− δ,min
e∈J

φf (e)− 3δ} (6)

≥ min{min
e∈J

φf (e)− δ,min
e∈J

φf (e)− 3δ}

= min
e∈J

φf (e)− 3δ. (7)

Inequality (5) follows from ∀e ∈ E, |φf (e)− φg(e)| ≤ δ. The inequality (6) follows from the fact
that ∀e ∈ J ′\J , φf (e) ≥ mine′∈J φf (e′)− 2δ. By equation (7), we have bJ − bJ ′ ≤ 3δ.

By exchanging f with g, we have bJ ′ − bJ ≤ 3δ. Combining them together finishes the proof.

�

It is trivial to show that Corollary 1 can be extended to the death time, i.e., we also have |dI−d′I | ≤ 3δ.

After proving Corollary 1, we return to prove the theorem.

Theorem 1 (Proof and empirical analysis in Appendix C). Let δ = maxe∈E |φf (e)− φg(e)| be the
magnitude of perturbation. For all interaction candidate I that are both detected in f and g by
Algorithm 1, it satisfies |ρf (I)− ρg(I)| ≤ Cδ.

Proof. In Algorithm 1, interaction candidates are generated at each neuron r of a particular layer l.
As shown in Figure 3, calculating the interaction strength of I at neuron r is equivalent to running
Algorithm 1 on a neural network whose lth layer is only composed by neuron r. Thus Corollary
1 also holds for interaction candidate I generated at each neuron. We use per

(r)
f (I), b(r)(I), and

d(r)(I) to represent the persistence, the birth time, and the death time of I generated at neuron r
corresponding to f , respectively. Similarly, for g, the persistence, the birth time, and the death time
of I generated at neuron r are denoted as per

(r)
g (I), b′(r)(I), and d′(r)(I) , respectively.

per
(r)
f (I) = |b(r)I − d

(r)
I |

= |b(r)I − b
′(r)
I + b

′(r)
I − d′(r)I + d

′(r)
I − d(r)I |

≤ per(r)g (I) + 6δ,

15

By exchanging f with g, we have per
(r)
g (I) ≤ 6δ + per

(r)
f (I). Combining them together, we have

|per
(r)
f (I)− per

(r)
g (I)| ≤ 6δ. Then it follows

|ρf (I)− ρg(I)| = |
∑

r∈lthlayer

[per
(r)
f (I)]p − [per(r)g (I)]p|

≤ p|
∑

r∈lthlayer

[per
(r)
f (I)− per(r)g (I)] max{per

(r)
f (I),per

(r)
f (I)}p−1|

≤ 6pNlδ. (8)

Where Nl is the number of units in layer l. The inequality (8) follows from the fact that
max{per

(r)
f (I),per

(r)
f (I)} ≤ 1.

�

Beyond Theorem 1, there exists the corner case that there are interaction candidates only detected in
one neural network, but not the other. We will show that this corner case only happens if δ is greater
than a threshold.

Let [d] := {0, · · · , d − 1} be the input feature set. Without loss of generality, suppose interaction
candidate I ⊂ [d] only born in f , but not in g; and the connected component J cause the birth of I in
f . Let g be a neural network that is obtained by perturbing the weights of f . According to Definition
3, if I only born in f , it means that there exists some edges corresponding to the connection between
input features and hidden units in the first layer, which satisfy the following:

∃e′ ∈ [d]\I,
s.t. φf (e′) ≥ min

e∈J
φf (e)− 2δ (9)

The above inequality follows from the fact that ∀e, |φf (e) − φg(e)| ≤ δ, which implies that,
∀e, φf (e) ≤ mine′∈J φf (e′) − 2δ, e has to wait for all edges in J to be added to the filtration
before being added itself. Therefore, if I does not born in g, there must ∃e′ ∈ [d]\I such that
φf (e′) ≥ mine∈J φf (e)− 2δ. In conclusion, if I only detected in f , the perturbation magnitude δ
must satisfy:

δ ≥
mine∈J φf (e)−maxe∈[d]\I φf (e)

2
(10)

Table 3: Perturbation results.
δ |ρf (I)− ρg(I)|

0.001 0.0935
0.01 0.1645
0.1 0.1990
1 0.3321

Here we randomly perturb the weights of an MLP trained on synthetic dataset F1, which has
architecture of 64-32-16 first-to-last hidden layer sizes. The layer l in Algorithm 1 is set to the first
layer, and the norm p in Algorithm 1 is set to 2. The results are shown in Table 3.

D Extensibility

In this section, first, we show how to extend PID to CNNs. Second, we introduce how to extend our
method to local interaction detection.

Let H ∈ Rheight×width be a convolution kernel and X ∈ RH×W be a tensor. Let ∗ refer to the
convolution operation. Suppose the height and width of the H ∗X are Hout and Wout, respectively.
We defineH ∈ RHout×Wout×H×W as the corresponding four dimensional convolution tensor such
that:

H(i, j, i : i+ height, j : j + width) = H,

16

for ∀i ∈ [0, Hout),∀j ∈ [0,Wout). Then we have the following equation:
H ∗X = H⊗X, (11)

whereH⊗X is the tensor product such that [H⊗X]i,j =
∑H
k=0

∑W
l=0Hi,j,k,lXk,l. Generally, for

H′ ∈ RCout×Cin×height×width and X′ ∈ RCin×H×W , we can convert the convolution between H′

and X′ into H′ ∗X′ = H′′X′′ [32] using equation (11), whereH′′ ∈ RCoutHoutWout×CinHW is the
flattened matrix ofH′ with multi-channels, and X′′ ∈ RCinHW is the flattened vector of X′. Then
we can build the filtration of CNNs just as MLPs.

Given a data point x ∈ Rd, the feed forward neural network f with ReLU activation function is a
linear model in a region surrounding x:

f(x) = W(L)>
x · · ·W(1)>

x x, (12)

where W
(L)
x is the equivalent weight matrix which combines the resulted activation pattern with

W(L), e.g., ReLU(W(1)>x) = W
(1)>
x x, where W

(1)
x is modified from W(1) by setting the

columns, whose corresponding activation patterns are 0, to be all zero vectors. We denote the
output value of the ith neuron in the lth layer, before activation, as zli. From equation (12), for local
interaction detection, the measuring function φ can be revised to

φ((vl−1,i, vl,j)) =
|W (l)

i,j |ReLU(zl−1i)

Φ
, (13)

where Φ = maxi,j,l |W (l)
i,j |ReLU(zl−1i).

E Supplemental Material for the Synthetic Data Experiments

E.1 Experiment Setting

Table 4: Test suite of data-generating functions.

F1(x) πx0x1
√

2x2 − sin−1(x3) + log(x2 + x4)− x8

x9

√
x6

x7
− x1x6

F2(x) πx0x1
√

2|x2| − sin−1(0.5x3) + log(|x2 + x4|+ 1) + x8

1+|x9|

√
x6

1+|x7| − x1x6
F3(x) e|x0−x1| + |x1x2| − x2|x3|

2 + log(x23 + x24 + x26 + x27) + x8 + 1
1+x2

9

F4(x) e|x0−x1| + |x1x2| − x2|x3|
2 + log(x23 + x24 + x26 + x27) + x8 + 1

1+x2
9

+ x20x
2
3

F5(x) 1
1+x2

0+x
2
1+x

2
2

+
√
ex3+x4 + |x5 + x6|+ x7x8x9

F6(x) e|x0x1+1| − e|x2+x3|+1 + cos(x4 + x5 − x7) +
√
x27 + x28 + x29

F7(x) (tan−1x0 + tan−1x1)2 + max(x2x3 + x5, 0)− 1
1+(x3x4x5x6x7)2

+ (|x6|
1+|x8|)

5 +
∑9
i=0 xi

F8(x) x0x1 + 2x2+x4+x5 + 2x2+x3+x4+x6 + sin(x6sin(x7 + x8)) + cos−1(0.9x9)

F9(x) tanh(x0x1 + x2x3)
√
|x4|+ ex4+x5 + log(x25x

2
6x

2
7 + 1) + x8x9 + 1

1+|x9|
F10(x) sinh(x1 + x2) + cos−1(tanh(x2 + x4 + x6)) + cos(x3 + x4) + sec(x6x8)

The synthetic datasets in section 4.1 are shown in Table 4. F1 is a commonly used function in
interaction detection literature [3, 21, 33]. All features were uniformly distributed between -1 and
1 except in F1, where we used the same variable ranges as those reported in [21]. In all synthetic
experiments, we evenly split train set, validation set and test set on 30k data points. All networks
consisted of four hidden layers with first-to-last layer sizes of: 140, 100, 60, and 20 units. All
networks employed ReLU activation and were trained using Adam optimizer with a 5e− 3 learning
rate cross all ten datasets. The L1 regularization strength was set to 5e− 5. The early stopping round
was set to 100 to prevent overfitting. The mean square error of all trained MLPs are less than 3e− 3
on test data.

E.2 Detailed Analysis

Main effects describe the univariate influences of features on outcomes [11], e.g., sin−1(0.5x3) in the
synthetic dataset F2. Main effects might entangle with true interactions, resulting in spurious interac-
tions. For example, in F2, {0, 1, 2} is true interaction and {0, 1, 2, 3} is a spurious interaction, which

17

Figure 5: Heat maps of pairwise interaction strengths proposed by our PID corresponding to Table 1.
Cross-marks indicate ground truth interactions.

is an entanglement between true interaction {0, 1, 2} and main effect {3}. Handling main effects is
an important problem in interaction detection [4, 34, 35]. We remark that in synthetic experiments,
higher AUCs indicates the interaction detection algorithms can more thoroughly disentangle main
effects from true interactions.

In Figure 5, heat maps of synthetic functions show the relative strengths of all possible pairwise
interactions proposed by PID, and the ground truth is indicated by red cross-marks. In general, the
interaction strengths are higher at the cross-marks. Although most of the synthetic functions contain
main effects, from Figure 5 and Table 1, the influence of main effects is limited: only the AUCs of
F2 and F7 are under 0.9. We hypothesize that if a overparameterized neural network is trained with
proper regularization, the neural network will push the modeling of main effect to a small portion of
neurons at the first layer.

To confirm our hypothesis, here we analyze the MLP trained on synthetic dataset F3. For F3, main
effects are x8 and 1

1+x2
9

. Let W(1) ∈ Rd×p1 be the weight matrix of the first layer. The weights

corresponding to input feature r are the rth row of W(1), which is denoted as W(1)
r,: . For convince,

we mark different neurons at the first layer by their indices. In Figure 6, we show the statistics
of magnitudes of W(1)

8,: and W
(1)
9,: of an MLP trained on synthetic dataset F3. In general, only a

few neurons have large weights connecting to x8 and x9, which are corresponding to the peaks in
Figure 6. We plot the weights of all input features to these neurons in Figure 7. To be specific, given a
representative neuron c, we plot the weight statistics of input features to that neuron, which is denoted
as W(1)

:,c . For W(1)
9,: , two peaks in Figure 6 have identical patterns. Here we only show statistics for

one of them. For W(1)
8,: , we show weights statistics of all input features to neuron 36; For W(1)

9,: , we
show weights statistics of all input features to neuron 53. This result is consistent with our hypothesis:
neural networks will naturally separate different interactions in the first hidden layer.

Figure 6: Statistics of the magnitudes of W(1)
8,: and W

(1)
9,: (the MLP is trained on F3).

18

Figure 7: The magnitude of weights corresponding to different input features at the selected represen-
tative neurons in the first layer (these neurons are corresponding to the peaks in Figure 6).

E.3 Sensitivity to the Architecture and Regularization Strength

We try to analyze the sensitivity of interaction detection algorithms to the architecture of MLPs. In
Figure 8, 64 represents an MLP with first-to-last layer sizes of 64-32-16; 128 represents an MLP with
the 128-64-32 architecture; 140 represents an MLP with the 140-100-60-20 architecture; and 256
represents an MLP with the 256-128-64 architecture. The training hyperparameters of these MLPs
are identical to those reported in Appednix E.1. We ran ten trials of NID and PID on each dataset and
removed two trials with the highest and the lowest AUC scores. The mean square errors of all MLP
models used for detecting interactions are less than 3e−3 on test data.

(a) Average AUCs of pairwise interaction de-
tected by NID and PID using MLPs with
different architectures.

(b) Average Mean Square Error (MSE) of
MLPs with different architectures on test
data.

Figure 8: The sensitivity analysis of interaction detection algorithms to the architecture of MLPs (L1
is set to 5e− 5).

(a) Average AUCs of pairwise interaction de-
tected by NID and PID using MLPs with
different architectures.

(b) Average Mean Square Error of MLPs with
different architectures on test data.

Figure 9: The sensitivity analysis of interaction detection algorithms to the regularization strength (L1
is set to 5e− 6).

19

(a) Average AUCs of pairwise interaction de-
tected by NID and PID using MLPs with
different architectures.

(b) Average Mean Square Error of MLPs with
different architectures on test data.

Figure 10: The sensitivity analysis of interaction detection algorithms to the regularization strength (L1
is set to 5e− 4).

Table 5: AUC of pairwise interaction strengths proposed by PID and NID on the synthetic functions.
The L1 regularization strength is set to 5e− 4 here.

NID PID
F1(x) 0.898± 0.0145 0.915± 0.0144
F2(x) 0.700± 0.0419 0.717± 0.0349
F3(x) 0.964± 0.0318 0.966± 0.0342
F4(x) 0.928± 0.0649 0.938± 0.0585
F5(x) 1.000± 0.0000 1.000± 0.0000
F6(x) 0.740± 0.0531 0.769± 0.0669
F7(x) 0.807± 0.0318 0.806± 0.0385
F8(x) 0.996± 0.0085 0.997± 0.0084
F9(x) 0.785± 0.0778 0.811± 0.0475
F10(x) 0.937± 0.0285 0.927± 0.0383
average 0.876± 0.1033 0.885± 0.0954

Figure 11: Heat maps of pairwise interaction strengths proposed by our PID corresponding to Table 1.
Cross-marks indicate ground truth interactions. (L1 is set to 5e− 4).

The regularization strength controls the weight sparsity in neural networks. Intuitively, it significantly
influences the interaction detection results because it will change the connectivity in networks. Here
we change the L1 strength to 5e−4 and 5e−6, and all other experiment settings are identical.

Figure 9 shows the results using MLP with L1 set to 5e− 6. The average MSE of all MLP models
used here is less than 2e− 3 on test data. Similar to Figure 8, PID can achieve better performance
than NID but the gap is small. Figure 10 shows the results using MLP with L1 set to 5e− 4. The
average MSE of all MLP models used here is less than 1e − 2 on test data. Comparing Figure 10

20

with Figure 8, the mean square error is worse but is acceptable. However, the false discovery rate
increases dramatically. To better understand the impact of regularization strength, we further analyze
the MLP of 140-100-60-20 architecture. Similar to Figure 5, we plot the heat map in Figure 11, and
the detailed results are shown in Table 5. Comparing Table 5 with Table 1, both the performances of
PID and NID dropped. Moreover, the AUCs of F6 and F9 dropped more than 0.1. Here we provide a
detailed case study for MLPs trained on synthetic dataset F6. Comparing Figure 11 with Figure 5, it
should be noted that the interaction strength between {x7, x8, x9} is very small (near 0 actually). As
[6] Appendix I points out, in synthetic dataset F6, {x7, x8, x9} can be approximated as√

x27 + x28 + x29 ≈ c+ x27 + x28 + x29.

In [6], the authors show that {x7, x8, x9} are modeled as spurious main effects in the MLP-M (the
MLP-M is an MLP with optional univariate networks, which details can be found in [6] Figure 2).
Here we hypothesize that, under strong regularization strength, they are also modeled as spurious
main effects in MLPs. Figure 12 shows the weight statistics of the magnitudes of W(1)

7,: , W(1)
8,: , and

W
(1)
9,: of an MLP trained on F6. There is a similar pattern between Figure 12 and Figure 6. Similar to

Figure 7, we further plot the weights of input features to the representative neurons corresponding to
the peaks in Figure 13. We remark that, for all these neurons corresponding to peaks in Figure 12, they
share a similar pattern. Therefore, we show only one of their statistics for illustrative purposes. In
Figure 13, we select neuron 5, 131, and 19 for W(1)

7,: , W(1)
8,: , and W

(1)
9,: , respectively. From Figure 13,

it can be seen that MLP do not model the interaction {x7, x8, x9}. Instead, they are modeled as
spurious main effects.

Figure 12: Statistics of the magnitudes of weights corresponding to x7, x8 and x9 at different neurons
of the first layer (the MLP is trained on F6 with L1 regularization strength set to 5e− 4).

Figure 13: The magnitude of weights corresponding to different input features at the selected
representative neurons of x7, x8 and x9 (L1 is set to 5e− 4).

In conclusion, both NID and PID are insensitive to the architecture of MLPs and both of them are
sensitive to the regularization strength. A detailed case study for the impact of regularization strength
is shown in Figure 11, Figure 12, and Figure 13. This suggests that we should carefully choose
the regularization strength. From Figure 8, Figure 10, and Figure 9, PID always achieves better
performance. Also, we observe PID is more resilient to changes in regularization strength. Generally
speaking, interaction detection algorithms have better AUC when the MLP has better performance. It
makes sense that, when the MLP fits the true distribution, the interactions encoded in the networks
are more accurate.

21

F Details for the Automatic Feature Engineering Experiments

F.1 Experiment Setting

Table 6: Statistics of datasets. “# Dense”and “# Sparse” are the number of numerical features and the
number of categorical features, respectively. “# Samples” is total available samples in each dataset.

Dataset #Samples # Features
Dense # Sparse

Amazon Employee 32769 0 9
Higgs Boson 98050 28 0
Creditcard 284807 30 0
Spambase 4601 57 0
Diabetes 768 8 0

We perform most of the experiments on five open-source tabular datasets from different domains:
Amazon Employee2, Higgs Boson3, Creditcard 4, Spambase5 and Diabetes6. For the ease to
reproduce our results, we use OpenML [36] to obtain all these datasets and adopt standard cross
validation provided by OpenML. The statistics of datasets we used in Section 4.2 is described in
Table 6.

The MLPs for NID and PID have architectures of 256-128-64 first-to-last hidden layer sizes, and they
are trained with learning rate of 5e− 3, batchsize of 100, and the Adam optimizer. As pointed out in
Appendix E.3, the regularization strength significantly influences the results of NID and PID. We
tune the L1 regularization strength with a search space [1e− 6, 1e− 1] for each dataset. The early
stopping round is set to 20 to prevent overfitting.

The synthetic feature xLi
is created by explicitly crossing sparse features indexed in Li. If interaction

Li involves dense features, we bucketize the dense features before crossing them. The bucket size is
set to 100 across all experiments. Let |Li| = t and {0, ..., t− 1} is the interaction candidate specified
by Li. A synthetic feature xLi is an t-ary Cartesian product among t features, which means xLi

takes on all possible values in {(x1, ..., xt)|∀xi ∈ xi, i = 0, ..., t− 1}.
Concerning the cardinality of synthetic features can be extremely large, yet many combinations do
not exist in the training data, we limit the order of crossing features up to 4 over all five datasets. For
sparse categorical features, like CatBoost [37], we apply target encoding to make them applicable to
the random forest.

We run five trials of PID and NID on each dataset to obtain five different sets of top ten interactions.
For each set of top ten interactions, we construct synthetic features and integrate them with original
input features, and then we split the concatenated data into five folds. Subsequently, five random
forest models are trained and evaluated with each fold given a chance to be the test set. Totally, we
trained 25 random forest models on each dataset and removed two models with the highest and the
lowest performance. We implement the random forest via LightGBM [38]. The hyperparameters of
random forest is summerized in Table 7.

F.2 Additional Experiment Results

The statistics of detected interaction orders by PID and NID are shown in Table 8. Interaction orders
are averaged over 5 folds of cross-validation.

Here we present the case study for the “Amazon Employee” dataset in Table 9 and Table 10. The
main reasons for choosing “Amazon Employee” are as follows: first, it is a dataset used for Kaggle
challenges and, thus, the top solution is available. Second, the key technique in the top solution is
to construct synthetic features for 2-order and 3-order interactions, so we can compare our detected
interactions against the best hand-crafted interactions.

2https://www.kaggle.com/c/amazon-employee-access-challenge
3https://archive.ics.uci.edu/ml/datasets/HIGGS
4https://www.openml.org/d/1597
5https://archive.ics.uci.edu/ml/datasets/spambase
6https://www.openml.org/d/37

22

Table 7: Hyperparameters of the random forest.
Name Value

early_stopping_rounds 50
num_boost_round 5000

learning_rate 0.05
lambda_1 0.2
lambda_2 0.2

bagging_raction 0.85
bagging_req 3

Table 8: Interaction order statistics.
Method Amazon Employee Higgs Boson Creditcard Spambase Diabetes

NID
max 4.00± 0.00 4.00± 0.00 4.00± 0.00 4.00± 0.00 3.60± 0.80
mean 3.30± 0.06 2.50± 0.11 2.70± 0.17 2.62± 0.12 2.30± 0.17
min 2.00± 0.00 2.00± 0.00 2.00± 0.00 2.00± 0.00 2.00± 0.00

PID
max 4.00± 0.00 3.80± 0.40 4.00± 0.00 4.00± 0.00 4.00± 0.00
mean 3.30± 0.14 2.64± 0.20 2.84± 0.31 2.94± 0.24 3.48± 0.35
min 2.00± 0.00 2.00± 0.00 2.00± 0.00 2.00± 0.00 2.40± 0.49

Table 9: Top ten interaction candidates proposed by PID for Amazom Employee dataset.
Interaction Candidates Interaction Strength

{RESOURCE, MGR_ID, ROLE_FAMILY_DESC} 2.206
{RESOURCE, MGR_ID} 1.456

{RESOURCE, MGR_ID, ROLE_DEPTNAME, ROLE_FAMILY_DESC} 1.333
{MGR_ID, ROLE_FAMILY_DESC} 0.418

{RESOURCE, MGR_ID, ROLE_DEPTNAME} 0.393
{RESOURCE, MGR_ID, ROLE_TITLE, ROLE_FAMILY} 0.385

{RESOURCE, MGR_ID, ROLE_ROLLUP_2, ROLE_FAMILY_DESC} 0.315
{RESOURCE, MGR_ID, ROLE_TITLE, ROLE_FAMILY_DESC} 0.270

{RESOURCE, MGR_ID, ROLE_FAMILY} 0.220
{MGR_ID, ROLE_DEPTNAME} 0.190

Table 10: Top ten interaction candidates proposed by NID for Amazom Employee dataset.
Interaction Candidates Interaction Strength

{RESOURCE, MGR_ID, ROLE_FAMILY_DESC} 26.757
{RESOURCE, MGR_ID} 22.060

{RESOURCE, MGR_ID, ROLE_DEPTNAME, ROLE_FAMILY_DESC} 10.423
{MGR_ID, ROLE_FAMILY_DESC} 7.713

{RESOURCE, MGR_ID, ROLE_TITLE, ROLE_FAMILY_DESC} 2.697
{RESOURCE, MGR_ID, ROLE_FAMILY_DESC, ROLE_CODE} 2.448

{RESOURCE, ROLE_FAMILY_DESC} 2.436
{RESOURCE, MGR_ID, ROLE_ROLLUP_2, ROLE_FAMILY_DESC} 2.316

{RESOURCE, MGR_ID, ROLE_FAMILY_DESC, ROLE_FAMILY} 1.187
{ROLE_CODE, MGR_ID, ROLE_TITLE, ROLE_FAMILY_DESC} 1.070

In general, the interaction candidates detected by NID and PID are similar. However, there exists
some interaction candidates only detected by PID or NID, respectively. For example, “{MGR_ID,
ROLE_FAMILY_DESC}” are only detected by NID. We note that the scale of the interaction strength
proposed by PID and NID are different and only the rankings of interaction candidates are comparable.
From Table 9, most of the interaction candidates proposed by PID for Amazon Employee are 3-order
interactions. None of the top ranked interactions contain the input feature ROLE_CODE. This result is
consistent with the top solution: “Transform the data to higher degree features by considering all

23

pairs and triples of the original data ignoring ROLE_CODE”7. In contrast, “ROLE_CODE” are contained
in the interaction candidates proposed by NID. And our top ranked interactions are also consistent
with the hand-designed synthetic features built from interactions,8 such as {RESOURCE, MGR_ID}
corresponding to “The number of unique resources that a MGR_ID received requests for”.

G Details for High-order Interaction Detection on Image Datasets

Figure 14: Saliency maps of interaction strength found from applying PID on the CNN trained on
MNIST dataset.

The neural network is composed of two convolutional layers of kernel size 5 and stride 1, followed
by a max pooling layer and ReLU activation, and ended with a dense layer. The two convolutional
layers contain 8 and 16 filters, respectively. It is trained with learning rate of 5e− 3, batchsize of 100,
the Adam optimizer, L1 regularization of 5e− 4, and train epochs of 5.

Similar to Figure 4, Figure 14 also shows that PID are capable of detecting high-order interactions
that represent object shapes.

7https://www.kaggle.com/c/amazon-employee-access-challenge/discussion/4838
8https://www.kaggle.com/c/amazon-employee-access-challenge/discussion/5283

24

