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1 Simulation analyses

1.1 Dataset

We generated sequences of neuronal populations in areas X (e.g. early sensory cortex) and Y (e.g.
prefrontal cortex). We set the number of time steps to 24, and the number of neurons in areas X and
Y to 10 and 9, respectively. At each time step t, baseline activities for areas X and Y were drawn
randomly from a Gaussian distribution N (0, 1). Each trial was labelled with stimulus and decision.
There were 5 possible stimuli and 3 possible decisions, thus 3 × 5 = 15 possible combinations
of labels. For each combination, we generated 20 trials, resulting in 300 trials in total. Stimulus
onset occurred at time step 6. Noises were added to each neuron for each trial independently from a
Gaussian distribution N (0, 1

3.5 ).

Neurons in areas X and Y were affected by the stimulus and decision, and communicated with
each other as follows. First, neurons in area X were affected by the stimulus for three time steps
from the time of stimulus onset. The magnitudes of the effects were randomly determined for each
neuron, were linearly correlated with the level of the stimulus, and were linearly increased across
time. Neurons in area X passed the stimulus-related information to the neurons in area Y via a
random projection matrix after two time steps from the time when neurons in area X started to
process stimulus-related computation. After area Y received the stimulus-related input from area
X, neurons in area Y started to compute the decision. As with the stimulus-related computation in
area X, the magnitude of the effects were also randomly determined for each neuron, were linearly
correlated with the level of the decision, and were linearly increased across time. Area Y then passed
decision-related information back to area X via another random projection matrix after two time steps
from the time when decision-related computation in Y emerged.

1.2 Analyses

With the setting described above, we obtained a 10neurons× 300trials× 24timesteps array for
area X, and 9neurons× 300trials× 24timesteps array for area Y. To investigate the relationship
between areas X and Y in a time-resolved manner, we then constructed two matrices X and Y, where
X is the area X’s data matrix of size 10× 300 at time tX , and Y is the area Y’s data matrix of size
9× 300 at time tY . We assume that whichever neuronal population is currently earlier in time is the
‘source’ matrix, and whichever population is later in time is the ‘target’ matrix . We ignored the cases
where tX == tY .

To separate the data into training and testing sets, for each label combination, we held out one random
trial as test trial. Thus the number of test set trials is 3decisions× 5stimuli = 15. We then applied
jPECC (with CCA/RRR) or jPESC (with dSCA) to training set as follows. We then applied obtained
transformation matrices to test set. We repeated this procedure fifteen times for different train-test
splits, and averaged the results.
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jPECC with CCA/RRR was performed on the training set, L2 regularized using λ = 0.05. For CCA,
the test set trials were projected onto a canonical dimension, and the Pearson correlation coefficient
was computed between projected test set trials in the source and target areas. For RRR, we predicted
values of the test set target matrix from the test set source matrix, using transformation matrices
estimated by training set. We then computed explained variance between predicted and actual test set
target matrix. We used the top low-dimensional component both for CCA and RRR.

As with the jPECC with CCA/RRR, jPESC with dSCA was performed on the training set, L2
regularized using λ = 0.05. However, here we applied marginalization to the target matrix. We used
stimulus- and decision-marginalized target matrices for dSCA separately. We predicted values of
the marginalized target matrix from the source matrix in the test set, using transformation matrices
estimated by the training set. We then computed explained variance between predicted and actual
target matrices. We used the top low-dimensional component.

1.3 Statistical inference

To test whether areas of high correlation/explained-variance between two brain regions were signifi-
cantly larger than would be expected by chance, we used a cluster-based permutation test [1]. For
jPECC with CCA, we identified clusters in the correlation map that were larger than a cluster-forming
threshold (set at r > 0.4). For jPECC with RRR and jPESC with dSCA, we identified clusters in the
explained variance map that were larger than a cluster-forming threshold (set at R > −0.99). We
then permuted trials in one brain area to recompute jPECC/jPESC, and we identified clusters that
exceeded the cluster-forming threshold in the permuted data. Note that, we permuted trials but not
distorted temporal structure across time steps. For each of the 100 permutations, we stored the size of
the largest cluster. This procedure provided a null distribution of maximum cluster sizes that would
be expected by chance. We used 95th percentile of this null distribution as a threshold for deeming
whether the cluster sizes observed in the data were significant, at P < 0.05 (corrected for multiple
comparisons across all pairs of timepoints).

2 Perceptual decision making task (Steinmetz et al., 2019)

2.1 Dataset

The authors trained mice to perform visual discrimination task. During each recording session, the
authors simultaneously recorded from hundreds of neurons in multiple regions using Neuropixels
[2, 3] probe (n = 92 probe insertions over 39 sessions in 10 mice). The details of data acquisition and
preprocessing are described in [4]. Datasets is obtained from https://figshare.com/articles/
Dataset_from_Steinmetz_et_al_2019/9598406 and codes for preprocessing is obtained from
https://github.com/nsteinme/steinmetz-et-al-2019, both were published by the authors.

In their original paper, they applied jPECC with CCA to neural activities that were recorded at relative
to movement (-300 to 100 ms) between visual and frontal cortex (15 sessions), visual cortex and
midbrain (10 sessions), and frontal cortex and midbrain (9 sessions) (see [4] for precise anatomical
locations included in each of these subregions). For each combination, we analysed data from the
three sessions with the largest number of completed trials; this is because there was a substantial
variation in terms of the number of completed trials between sessions, and we found empirically that
a certain amount of trials are necessary for reliable estimation by dSCA.

If two task parameters are orthogonalized by experimental design, we do not need to do any procedure
before marginalization (as in economic decision making task). However, if two task parameters are
correlated by design (as in this task), to focus on a task parameter, we need to regress the other task
parameters out from neural data before marginalization. Therefore, we also prepared the neural data
that were regressed out Stimulus or Decision information. These regressed-out matrices were also
used for dSCA.

2.2 Analyses

We applied jPECC with CCA and jPESC with dSCA. All settings are the same as the simulation
analyses except for the following:
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• Before applying jPECC with CCA and jPESC with dSCA, we applied PCA to both source
and target matrices as was done in [4], across time points and trials to reduce population
activity to ten dimensions.

• For jPESC with dSCA, marginalization was performed two main task parameters: stimulus
and decision (see main manuscript for the definition). We also applied dSCA to matrices
after regressing out either stimulus or decision from these matrices. We confirmed that
applying PCA before applying jPESC with dSCA did not substantially change the results
(data not shown).
• We repeated the cross-validation procedure ten times, averaging the results.

2.3 Statistical inference

We used the same cluster-based permutation test procedure as described above for the simulation
analyses.

To quantify lead–lag relationships, we computed the asymmetry index by calculating the number of
significant timepoints included in the identified cluster from the above permutation procedure. We
calculated these numbers in right and left half of the obtained jPECC and jPESC matrices separately,
and then subtracted right from left. This procedure provided a null distribution of the difference in the
number of significant timepoints between left half and right half that would be expected by chance.
We used the 95th percentile of this null distribution as a threshold for deeming whether the difference
of number of significant timepoints between the left half and right half observed in the data were
significant, at P < 0.05.

3 Economic decision making task (Hunt et al., 2018)

3.1 Dataset

The authors recorded neuronal activity in the macaque OFC, ACC and DLPFC during sequential
attention-guided information search and choice. During a typical recording session, 8–24 electrodes
were lowered bilaterally into multiple target regions. We used the data from monkey coded ‘F’. The
details of data acquisition and preprocessing are described in [1]. Dataset and codes for preprocessing
are obtained from http://crcns.org/data-sets/pfc/pfc-7 that was published by the authors.

In this experiment, neural recordings were obtained in multiple sessions, so most of the neurons were
not recorded simultaneously. We therefore used ‘pseudopopulation’ matrices by averaging averaged
across task parameters to identify each neuron’s response to experimental variables. This allowed us
to collapse data across sessions.

3.2 Analyses

We applied jPECC with CCA and jPESC with dSCA, as per the previous analyses. All procedures
are the same as the simulation analyses except for the following settings:

• For jPECC with CCA and jPESC with dSCA, we applied PCA to both source and target
matrices as was done in [4], across time points and trials to reduce population activity to
eight dimensions.

• For jPESC with dSCA, marginalization was performed on two main task parameters in the
task: space and attended-value (see main manuscript for the definition). We confirmed that
applying PCA before applying jPESC with dSCA did not substantially change the results
(data not shown).
• For cross-validation in the pseudopopulation setting, to separate the data into training and

testing sets, we followed the procedure proposed in [5]. We first held out one random trial
for each neuron in each combination of task parameters, i.e. space and attended-value,
as a set of test pseudopopulations Xtest and Ytest. Because there are 5 possible stimuli
and 2 possible spaces, the dimensions of Xtest and Ytest is 5× 2 = 10. Remaining trials
were averaged to form a training sets of Xtrain and Ytrain. Note that test and training sets
(Xtest and Xtrain, or Ytest and Ytrain) have the same dimensions of 10. We repeated this
cross-validation procedure 20 times and averaged the results.
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3.3 Statistical inference

We used the same cluster-based permutation test procedure as described above for the simulation
analyses. We also used the same permutation test procedure for determining lead–lag relationships as
described above for the perceptual decision making task.
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Figure 1: Different metrics/methods provide similar results. CCA can identify two clusters when
accuracy is defined as correlation coefficient (left) or explained variance (middle). RRR (right) also
provides similar results
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Figure 2: Simulation results obtained from non-marginalized source matrix (top row) much
clearly captured the interaction between two areas compared to the results obtained from
marginalized source matrix (bottom row) that captured the smaller size of clusters.
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Figure 3: Marginalized source matrix for (a) perceptual decision-making task and (b) economic
decision-making task provide qualitatively similar results.
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Figure 4: For data from mice (Steinmetz et al., 2019), qualitatively similar (albeit weaker)
results could be obtained from all sessions, including those with fewer trials. a jPECC results
obtained from CCA are shown. For visualization purposes, we used arbitrary cluster-forming
threshold: r > 0.3 and size-of-cluster > 5. b jPESC results obtained from dSCA are shown. For
visualization purposes, we used arbitrary cluster-forming thresholds: for three regressors (stimulus,
decision, and stimulus that was controlled by decision), we used explained-variance > -0.99 and
size-of-cluster > 10; for the regressor of decision that was controlled by stimulus, we used a less
cluster-forming threshold (explained-variance > -1.01 and size-of-cluster > 10) due to the lower effect
size.
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Figure 5: Interpretation of the shared components by investigating the contribution of each
neuron. We visualize contribution (absolute weights) to the first shared component for each neuron in
the a simulation analysis and b economic decision making task. For economic decision ask, maximum
absolute weights across time are visualized for each neuron. The result is highly interpretable: for
example in the simulation analysis, neurons that contributed to Stimulus have higher contribution for
stimulus-related communication than the others (left), whereas neurons that contributed to Decision
have higher contribution for decision-related communication than the others (right).

9


	Simulation analyses
	Dataset
	Analyses
	Statistical inference 

	Perceptual decision making task (Steinmetz et al., 2019)
	Dataset
	Analyses
	Statistical inference 

	Economic decision making task (Hunt et al., 2018)
	Dataset
	Analyses
	Statistical inference 


