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Abstract

Novel View Synthesis (NVS) is concerned with synthesizing views under camera
viewpoint transformations from one or multiple input images. NVS requires explicit
reasoning about 3D object structure and unseen parts of the scene to synthesize
convincing results. As a result, current approaches typically rely on supervised
training with either ground truth 3D models or multiple target images. We propose
Continuous Object Representation Networks (CORN), a conditional architecture
that encodes an input image’s geometry and appearance that map to a 3D consistent
scene representation. We can train CORN with only two source images per object
by combining our model with a neural renderer. A key feature of CORN is that
it requires no ground truth 3D models or target view supervision. Regardless,
CORN performs well on challenging tasks such as novel view synthesis and single-
view 3D reconstruction and achieves performance comparable to state-of-the-art
approaches that use direct supervision. For up-to-date information, data, and code,
please see our project page 1.

1 Introduction

In 1971, Shephard and Metzler [44] introduced the concept of mental rotation, the ability to rotate
3D objects mentally and link the model to its projection. Novel View Synthesis (NVS) research
seeks to replicate this capability in machines by generating images of a scene from previously unseen
viewpoints, unlocking applications in image editing, animation, or robotic manipulation. View
synthesis is a challenging problem, as it requires understanding the 3D scene structure, reason on
image semantics, and the ability to render the internal representation into a target viewpoint. A
common approach for NVS is to use a large collection of views to reconstruct a 3D mesh [10, 43].
Recent methods have made progress in learning 3D object representations, such as voxel grids [60, 46,
52, 33, 32], point clouds [1, 61, 56], or meshes [54, 12, 48, 55]. However, the discrete nature of these
representations limit the achievable resolution and induce significant memory overhead. Continuous
representations [36, 25, 42, 47, 58, 6, 24, 27] address these challenges. However, proposed methods
require either 3D ground truth or multi-view supervision, limiting these approaches’ applicability to
domains where data is available.

We introduce Continuous Object Representation Networks (CORNs), a neural object representation
that enforces multi-view consistency in geometry and appearance with natural generalization across
scenes, learned from as few as two images per object. The key idea of CORNs is to extract
local and global features from the input images and represent the scene implicitly as a continuous,
differentiable function that maps local and global features to 3D world coordinates. We optimize
CORNs from only two source views using transformation chains and 3D feature consistency as
self-supervision, requiring 50× fewer data during training than the current state-of-the-art models.

1Project page: nicolaihaeni.github.io/corn/
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Figure 1: Our model learns to synthesize novel views using only two source images per object during
training (a). For this instance, even though both source images are from the back of the car, our
model can reconstruct unseen areas with a reasonable detail level. During training, the target view
prediction isnot directly supervised with ground truth. Instead, it is transformed into the second
source image while maintaining the consistency of the learned representation. During inference (b),
our model predicts novel views from a single input image. It can accommodate drastically different
source and target poses.

The conditional formulation of CORNs, combined with a differentiable neural renderer, enforces
multi-view consistency and allows for the fast inference of novel views from a single image during test
time, without additional optimization of latent variables. We evaluate CORNs on various challenging
3D computer vision problems, including novel view synthesis, 3D model reconstruction, and out of
domain view synthesis.

To summarize, our approach makes the following contributions:

� A continuous, conditional novel view synthesis model, CORNs based on a novel repre-
sentation that captures the scene's appearance and geometry at arbitrary spatial resolution.
CORNs are end-to-end trainable and uses only two images per object during training time,
without any 3D space or 2D target view supervision.

� Despite being self-supervised, CORN performs competitively or even outperforms current
state-of-the-art approaches that use dozens of images per object and direct supervision on
the target views.

� We demonstrate several applications of our method, including novel view synthesis, single-
view 3D reconstruction, and novel view synthesis from out-of-domain samples.

2 Related Work

Our goal is to generate novel camera perspectives of static 3D scenes. As such, our work lies at
the intersection of novel view synthesis, 3D object reconstruction, and generative modeling. In the
following, we review related work in these areas.

Novel view synthesis.Novel view synthesis is the problem of generating new camera perspectives
of a scene. Key challenges of novel view synthesis are inferring the scene's 3D structure and
inpainting occluded and unseen parts. Existing methods differ in their generality, some aim to
learn a general model for a class of objects [59, 33, 5, 47], while others learn instance-speci�c
models [46, 26, 28]. Training an instance-speci�c model generally produces higher quality results, at
the cost of lengthy training times for each object instance. For real-world applications, this is often
prohibitive. Improving general models is an open problem, and as CORNs generalize naturally across
object instances, we focus our literature review on methods that synthesize novel views for a general
category of objects.

Traditionally, novel view synthesis uses multi-view geometry [7, 10, 43] to triangulate 3D scene
content. Once the 3D scene is reconstructed, novel views can be generated by rendering the resulting
3D mesh. Instead of explicit 3D mesh reconstruction, other approaches have sought to represent
3D knowledge implicitly; by directly regressing pixels in the target image [50, 49, 59], weakly
disentangling view pose and appearance [67, 62, 22] or by learning appearance �ow [65, 35, 49, 5].
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Other prior work proposed to apply the view transformations in latent space [57] or learn a complete
latent space of posed objects [51] from which to sample. While these techniques successfully predict
novel views under small viewpoint transformations, they do not allow 3D structure extraction. Our
proposed method encapsulates both the scenes 3D structure and appearance and can be trained
end-to-end via a differentiable renderer.

Neural scene representations.Deep-learning-based image rendering has become an active research
area, creating a plethora of geometric proxy representations. Broadly, these representations can be
categorized on whether they represent 3D geometry implicity or explicitly. Explicit representations
include voxels [60, 46, 52, 33, 32], meshes [54, 12, 48, 55] or point clouds [1, 61, 56]. While
these discretization based methods have enabled some impressive results, they are memory intensive
and limited in the representation of complicated surfaces. To improve upon these shortcomings,
recent work focuses on learning neural scene representations. Generative Query Networks (GQN)
(GQN) [9, 23, 31] a framework to learn low dimensional embedding vectors that represent both the
3D scenes structure and appearance. While GQNs allow sampling of 2D view samples consistent
with its lower-dimensional embedding, they disregard the scenes 3D structure.

Continuous function representations represent 3D space as the level set of a function, parametrized
by a memory-ef�cient neural network, which can be sampled to extract 3D structure. Different
function representations have emerged, such as binary occupancy classi�ers [6, 24, 27], signed
distance functions [36, 25, 42, 47, 58] or volumetric representations [28]. While these techniques
are successful at modeling 3D geometry, they often require 3D supervision. When combined with a
differentiable renderer, some approaches are supervised with 2D target images instead, relying on
large image collections for training. However, it can be dif�cult for real-world applications to obtain
dozens or even hundreds of images of each object we would like to model. In contrast, our proposed
method encapsulates scene geometry and appearance fromonly two reference images per objectand
can be trained end-to-end via a learned neural rendering function through self-supervision.

Generative models.Our work builds on recent advances in generating high-quality images with deep
neural networks. Especially Generative Adversarial Networks (GAN) [13, 38, 3] and its conditional
variants [30, 16, 66] have achieved photo-realistic image generation. Some approaches synthesize new
views by incorporating explicit spatial or perspective transformations into the network [15, 17, 60].
Another approach is to treat novel view synthesis as an inverse graphics problem [22, 62, 21, 53, 45,
63]. However, these 2D generative models only learn to parametrize 2D views and their respective
transformations and struggle to produce multi-view consistent outputs since the underlying 3D
structure cannot be exploited.

3 Method

Given a datasetD = f (I i
1;2; K i

1;2; T i
1;2)gN

i =1 of N objects, each consisting of a tuple with two images
I i

1;2 2 RH � W � 3 and their respective intrinsicK i
1;2 2 R3� 3 and extrinsicT i

1;2 2 R3� 4 camera
matrices, our goal is to learn a functionf that synthesizes novel views at arbitrary goal camera
posesT i

G 2 R3� 4 (Fig. 2). We parametrizef = f � as a neural network with parameters� that
naturally enforces 3D structure and enables generalization of shape and appearance across objects.
We are interested in a conditional formulation off � that requires no additional optimization of latent
variables at inference time, and that can be optimized from only two images per object. In the
following, we �rst introduce the three components of our network and then discuss how to optimize
with limited data from only two input images per object. For notational simplicity, we drop the
superscript denoting the speci�c object.

3.1 Feature encoding

The feature encoder networke maps input images to a lower-dimensional feature encoding. Inspired
by Xu et al. [58], we hypothesize that combining a global feature encoding with spatial pixel-wise
features increases the level of detail of the generated images, which we con�rm in Sec. 4. The global
encoder predicts a global feature vectorz that should represent object characteristics such as geometry
and appearance. The spatial feature encoder predicts feature maps at the same resolution as the input
image. Sampling from this feature map should represent scene semantics beyond merely RGB color
and provide additional details to the 3D scene representation.
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Figure 2:Our proposed end-to-end model.CORN takes two source imagesI 1;2, together with
their respective camera posesT1;2, and a target camera poseTG as input. We aim to learn a function
Î G = f � (I 1; 1TG ) that synthesizes novel viewŝI G at target poseTG . Our approach consists of
three parts. Thefeature predictor eembeds the input image in a lower dimensional feature space
(visualization by projecting features with PCA). Theneural scene representation, � , maps these
features to a 3D consistent neural representation in world coordinates(x; y; z) (the diagram shows
RGB for clarity). Finally, aneural rendererr renders the scene from arbitrary novel viewsTG .

Global feature encoder.To predict a global feature embedding, we use a ResNet-18 [14] network
to extract a 128-dimensional global featurez 2 R128. We initialize the ResNet-18 with weights
pretrained on the ImageNet dataset and allow further optimization during training.

Spatial feature network. The spatial feature network builds on the UNet [40] architecture. It
takes the last two-dimensional feature map of the global feature encoder as input, followed by four
upsampling and skip-connection layers to extract a 64-dimensional per-pixel featurel 2 R64� H � W

of the same size as the input image.

3.2 Neural scene representation

Our neural scene representation� maps a spatial locationx 2 R3, the global object descriptorz,
and local featuresl to a feature representation of learned scene properties at spatial locationx. The
feature representation may encode visual information, such as RGB color, but it may also encode
higher-order information, such as binary occupancy. In contrast to discrete representations, such
as voxel grids or point clouds, which only sparsely sample object properties,� densely models
object properties, which can, in theory, be sampled at arbitrary resolutions. In contrast to recent work
on representing scenes as continuous functions with a single global object descriptor [36, 47] we
combine global and local features. Combining local and global features is similar to recent work by
Xu et al. [58] on single-view 3D model reconstruction, which has shown improved performance on
modeling �ne details.

Our implicit representation� is aware of the 3D structure of objects, as the input to� contains world
coordinatesx. We samplek 3D pointsf x j gk

j =1 uniformly at random from a cubic volume and extract
local features by projecting the 3D points to the feature mapl using the known camera pose. We
follow a perspective pinhole camera model that is fully speci�ed by its extrinsicE = [ R; t ] 2 R3� 4

and intrinsicK 2 R3� 3 camera matrices. The extrinsic camera matrix contains rotation matrix
R 2 R3� 3 and translation vectort 2 R3. Given a 3D coordinatex j , the projection from world space
to the camera frame is given by:

u = [ u v 1]> = K (R x j + t) (1)

whereu andv are the pixel coordinates in the image plane. We extract local featuresluv using
bilinear sampling, which is fast to compute and differentiable. The neural representation network�
takes concatenated global features, local features, and world coordinates(z; luv ; x) 2 Rm as input
and maps them to a higher dimensional featurev j 2 Rn at the given spatial coordinatex j :

� : Rm ! Rn ; (z; luv ; x j ) 7! �( z; luv ; x j ) = v j (2)
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