
S1 Expanded methods

In this section we present our model and inference approach in fuller detail than was possible given
space limitations in the main text. (To maintain the logical flow, in some cases we repeat points that
were made in the main text methods.)

S1.1 Deep Graph Pose model

The graphical model of DGP is summarized in Figure 1. We observe frames xt indexed by t, along
with a small subset of labeled markers yt,j (where j indexes the different targets we would like
to track). The target locations yt,j on most frames are unlabeled, but we have several sources of
information to constrain these latent variables: temporal smoothness constraints between the targets
yt,j and yt+1,j , which we capture with quadratic potentials �t; spatial constraints between the targets
yt,i and yt,j , modeled with quadratic potentials �s; and information from the image xt, modeled by
potentials �n parametrized by neural networks.

First let’s define the potential function �n between the input image x and the target’s 2D location
y. We define f✓(·) as a stack of a fixed pretrained ResNet-50 network and a trainable ConvNet
parametrized by ✓. f✓(·) takes a frame x as the input and outputs a 2D affinity map image, which
ideally has a sharp peak at the most likely coordinates of the target. We then denote the sigmoid
function as �(·), and refer to �(f✓(x)) as a “confidence map.”

With the potential �n, our target is to match this 2D confidence map to a 2D Gaussian bump centered
at y by minimizing the sigmoid cross entropy. Now let’s define the Gaussian bump. We construct a
bivariate Gaussian function with mean y = [ym, yn] and variance l2. The Gaussian function at the
mth row and the nth column is
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The variance parameter was set as l2 = 1 in practice.

The potential function �n for the mth row and the nth column entry in �(f✓(x)) is defined as

�n(y, x)mn =
1

2
wn

�
�G(y, l2)mn · log(�(f✓(x))mn)� (1�G(y, l2)mn) · log(1� �(f✓(x))mn)

�

=
1

2
wn

�
�f✓(x)mn ·G(y, l2)mn + f✓(x)mn + log(1 + exp(�f✓(x)mn))

�
.

Summing over all entries in the confidence map, we get the neural network potential �n as
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We will write everything in vector form hereafter. We define f as the vectorized f✓(x), define h as
the vectorized f✓(x) + log(1 + exp(�f✓(x))), and define G(y, l2) as the vectorized G(y, l2), which
is a function of mean y and variance l2. Thus, for each target j we can rewrite the j-th image-based
potential �j
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where j is the index for target j and t is the index for frame t.

We use a simple quadratic potential �t to impose temporal smoothness:

�j
t (yt,j , yt+1,j) =

1

2
wj

t ||yt,j � yt+1,j ||
2, (S6)

which penalizes the distance between targets in consecutive frames; the weights wj
t in general may

depend on the target index j, and can also vary in time. A more sophisticated version of the temporal
clique could be an L2 norm over the second or third order temporal difference, similar to optical flow.

The spatial potential �s is more dataset-dependent and can be chosen depending on the constraints
that the markers should satisfy. Typical examples include a soft constraint that the paw marker should
not exceed some distance from the elbow marker, or the nose should always stay within a certain
radius of a static waterspout. This can be achieved by a soft-thresholding quadratic loss, leading to

14



a smooth pairwise potential between these two markers. Again, we start with a simple quadratic
potential to encode these soft constraints:
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2, (S7)

which penalizes the distance between “connected” targets yt,i and yt,j (where the user can pre-specify
pairs of connected targets that should have neighboring locations in the frame, e.g. paw and elbow).

We want to “let the data speak” and avoid oversmoothing, so the penalty weights ws and wt should
be small. In practice we found that the temporal weights wj

t could be set using optical flow [27]
which captures the vector field between neighbor frames. We first computed the vector field between
two neighbor frames t� 1 and t using optical flow. Then we calculated the average motion vector
for target j from frame t � 1 to frame t. The magnitude of the motion vector was denoted as mj

t .
Finally wj

t = ⇠/mj
t , where ⇠ is a constant scalar independent of dataset, time and target indices. The

intuition is the larger the movement of the target is, the smaller the temporal clique weight should be.
We set the spatial weights as wij

s = c/dij , where dij is a rough estimate of the average distance (in
pixels) between targets i and j and c > 0 is a small scalar (again independent of dataset and target
indices i, j), led to robust results without any need to fit extra parameters.

We summarize the parameter vector as � = {✓, wn, wt, ws}, where ✓ denotes the neural net param-
eters. Given � and the full collection of images x, the joint probability distribution over targets y
is
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where E denotes the edge set of constrained targets (i.e., the pairs i, j with a nonzero potential
function), Z(x,�) =

R
p(y|x,�)dy is the normalizing constant marginalizing out y, T denotes the

total number of frames, and J denotes the total number of targets. The joint distribution can be
described as a combination of a neural network component and a probabilistic graphical model over
the latent variables (the unobserved targets y).

S1.2 Structured variational inference

Our goal is to estimate p(yh | yv, x,�), the posterior over locations of unlabeled targets yh, given
the frames from the video x, the locations of the labeled markers yv , and the parameters �. (Here h
denotes hidden, for the unlabeled data, and v denotes visible, for the labeled data.) Calculating this
posterior distribution exactly is intractable, due to the highly nonlinear potentials �n. We chose to
use structured variational inference, similar to [29], to approximate this posterior. We approximate
p(yh, yv | x,�) with a Gaussian graphical model (GGM) with the same graphical model as Figure 1.
We denote the approximate posterior as q(yh, yv|x,�q) (�q encodes variational parameters). To
obtain a fully Gaussian variational approximation, we replace the neural network potentials �j

n with
quadratic terms
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Here the precision variables wt,j
n,q and means µt,j

n are variational parameters that we could optimize
over independently. However, we found it more efficient to model the means µn as µt,j

n (xt) =P
m,n ↵mnSoftmax(f j

�(xt))mn, where ↵mn = [m,n]. Here f�(·) is an inference neural network
with parameters � whose output is a 2D affinity map, similar to f✓(·). Putting the pieces together, we
have the fully Gaussian approximate posterior
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where Ẑ(x,�q) is the normalizing constant (which can be computed explicitly, due to the fully-
Gaussian form of q), and �q = {�, wn,q, wt, ws}.
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Since q(yh, yv|x,�q) is a GGM, we can rewrite eq. S10 in the standard Gaussian form

q(yh, yv|x,�q) = N (µa,⌃a)
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Thus the mean and covariance of the variational distribution q(yh, yv|x,�q) are µa and ⌃a, where
µa is a function of �, wn,q , wt, and ws, and ⌃a is a function of wn,q , wt, and ws.

Let Ph and Pv denote the permutation matrices that map the vector y to yh and yv respectively, i.e.,

yh = Phy, yv = Pvy. (S16)

Due to the Gaussianity of the joint distribution, we can write down the closed-form expression for
q(yh | yv, x,�q) as

q(yh | yv, x,�q) = N (µh,⌃h), (S17)
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S1.2.1 Evidence Lower Bound (ELBO)

Given the approximate posterior (eq. S17), and abbreviating q(yh) = q(yh | yv, x,�q), we can now
write down the evidence lower bound (ELBO) as
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where V and H denote the sets of visible targets in visible frames and hidden targets in all frames
respectively.

The bottlenecks of the ELBO computation in the full DGP model are ⌃a⌃�1
n µn, log |⌃a|, and

diag(⌃a), where ⌃a 2 RTJ⇥TJ and ⌃�1
a is a block tridiagonal matrix. All of these terms can

be computed via message passing with O(TJ3) time complexity, due to the chain structure of the
graphical model (and the corresponding block tridiagonal structure of the precision matrix). We used
standard message passing algorithms to handle the required block tridiagonal matrix computations
[47, 48, 49].

S1.2.2 Semi-supervised DLC

To understand the various terms in the ELBO above it is helpful to start with a simpler special case.
If we turn off the temporal and spatial potentials in eq. S20 (i.e., set wt = ws = 0) we arrive at the
DGP-semi model discussed in the Results section. The corresponding ELBO is
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where ⌃h = (Ph⌃nP>

h )�1 and µh = Phµn. The first term is a conventional DLC-type cross entropy
for labeled frames. The second term is a semi-supervised cross entropy for unlabeled frames. Instead
of having the true marker locations for unobserved frames, we construct the Gaussian function using
the 2D location output from the neural net. The second term encourages the confidence map f✓ to be
unimodal to match the Gaussian approximate posterior. This semi-supervised term leads to better
performance of DGP-semi compared to the original fully-supervised DLC (Figure 3).

S1.3 Implementation details

There are a few issues regarding the optimization of the full DGP model that we considered during
the implementation:

• In eq. S20, the log normalization term logZ(x,�) involves an integration over all frames and
markers which makes the optimization intractable. In eq. S21, the graphical model factorizes over
markers j and frames t, which means that we can calculate the log normalization term logZ(x,�)
directly by summing over pixels for each t and j. But the summation over all pixels consumes a lot
of time. In practice, we found that dropping the logZ term did not affect the results significantly.
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• The optimization of the full ELBO involves two steps – expectation (E) and maximiza-
tion (M). We estimate a good q distribution in the E-step and optimize the network parameters given
the q distribution in the M-step. However, we found that in practice the E-step for the full DGP
model was very time-consuming and only marginally improved the performance. Thus during the
implementation, we simplified the q distribution by dropping the temporal and spatial cliques in
eq. S10, but still kept the full graph for p as in eq. S8. Equivalently, this simplified the ELBO as
well. The q distribution optimized in the E-step can now factorize over frames thus making the
computation a lot faster.

• With the simplified ELBO, the unknown parameters are {✓, �, wn, wt, ws, wn,q}. � and
wn,q are the unknown parameters we need to learn during the E-step. We found that setting � = ✓ led
to good results and reduced the number of parameters. Moreover, optimizing wn,q didn’t significantly
improve the performance. Thus, for computational considerations, we decided to skip the E-step
and set wn,q = 1, which is a reasonable precision for the Gaussian bump, and set � = ✓. In the
M-step, we fixed wj

t using optical flow which provided the vector field of the dynamics between
two neighbor frames, as described earlier. We set wij

s = c/dij , where dij is the average distance (in
pixels) between targets i and j and c > 0 is a small scalar (independent of dataset and target indices
i, j); this led to robust results without any need to fit extra parameters. We also differentiated wn to
be wv

n and wh
n for visible and hidden frames. Empirically, wh

n = 3 and wv
n = 2wh

nT/Tv (Tv is the
number of visible frames) led to good results; this upweighted the strength of labeled frames relative
to unobserved frames. Therefore, the only parameter left is ✓.

• When simplifying the objective function, we can get rid of the harsh contraints on the
form of the temporal and spatial cliques. The reason we choose both to be L2 norms as in eq. S6 and
S7 is that only L2 norms in the q distribution can lead to a closed-form expectation in the ELBO.
However, if we don’t consider these two cliques in the q distribution, we can allow arbitrary forms.
In the experiment, we still employed eq. S6 for the temporal clique, but employed a soft-thresholding
quadratic loss �ij

s (yt,i, yt,j) =
1
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⇥
||yt,i � yt,j ||2 � dij

⇤
for the spatial clique, where dij is

the average distance (in pixels) between targets i and j. This spatial clique penalizes two markers
when their distance is above the average distance calculated from the ground truth labels.

Therefore, the final objective function is
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where µt,j = yt,j if (t, j) is labeled; µt,j = µht,j otherwise. We maximized the above objective func-
tion and calculated the gradients for ✓ using standard automatic differentiation tools, and performed
standard stochastic gradient updates to estimate these parameters.

S2 Conditional convolutional autoencoder

S2.1 Implementation details

We fit conditional convolutional autoencoders (conditional CAEs) on 192x192 grayscale images from
[30]. In addition, we used 4 markers output by DLC/DGP: left paw, right paw, tongue, and nose.
To condition the encoder network on these values we turned each marker into a one-hot 2D array
and concatenated these with the corresponding frame, so that the input to the encoder was of size
(192, 192, 5). To condition the decoder network on these values we first centered the marker values
by subtracting their median (computed over the entire dataset) and then concatenated these values to
the latents before feeding them into the decoder. See Table S1 for network architecture details. We
trained the autoencoders by minimizing the MSE between original and reconstructed frames using
the Adam optimizer [50] with a learning rate of 10�4, a batch size of 100, and no regularization.
Models were trained for 300 epochs.
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Layer Type Channels Kernel Size Stride Size Zero Padding Output Size

0 conv 32 (5, 5) (2, 2) (1, 2, 1, 2) (96, 96, 32)
1 conv 64 (5, 5) (2, 2) (1, 2, 1, 2) (48, 48, 64)
2 conv 128 (5, 5) (2, 2) (1, 2, 1, 2) (24, 24, 128)
3 conv 256 (5, 5) (2, 2) (1, 2, 1, 2) (12, 12, 256)
4 conv 512 (5, 5) (2, 2) (1, 2, 1, 2) (6, 6, 512)
5 dense N NA NA NA (1, 1, N)
5 concatenate NA NA NA NA (1, 1, N+2M)
6 dense 36 NA NA NA (1, 1, 36)
7 reshape NA NA NA NA (6, 6, 1)
8 conv transpose 256 (5, 5) (2, 2) (1, 2, 1, 2) (12, 12, 256)
9 conv transpose 128 (5, 5) (2, 2) (1, 2, 1, 2) (24, 24, 128)

10 conv transpose 64 (5, 5) (2, 2) (1, 2, 1, 2) (48, 48, 64)
11 conv transpose 32 (5, 5) (2, 2) (1, 2, 1, 2) (96, 96, 32)
12 conv transpose 1 (5, 5) (2, 2) (1, 2, 1, 2) (192, 192, 1)

Table S1: Conditional CAE architecture for the mouse-wheel dataset using N latents and M markers
(each with an x and y value, for a total of 2M marker dimensions). Kernel size and stride size are
defined as (x pixels, y pixels); padding size is defined as (left, right, top, bottom); output size is
defined as (x pixels, y pixels, channels).

S2.2 Disentangling analysis

The disentangling analyses presented in Figure 5 require fixing some inputs to the network while vary-
ing others. Below we describe this manipulation in more detail. We performed these manipulations
on 2-latent networks to make visualization in the latent space easier.

Manipulating markers. We chose a random test frame and varied the x/y coordinates for a specific
marker (left paw). The limits of the x/y values were the 10th (minimum) and 90th (maximum)
percentiles of the DGP outputs on the test set for the specified marker. We did not allow different
limits for the DLC/DGP networks, in order to make the comparison more direct. After choosing
x/y values for the specified marker we converted these into a one-hot 2D array, as with the other
(unchanged) markers from the chosen frame. These one-hot 2D arrays were concatenated with the
original frame and then fed into the CAE encoder to produce the latents. The latents were then
concatenated with the median-subtracted marker values (one of which is being changed, the rest
of which stay the same). This vector was then pushed through the decoder network to produce the
reconstructions.

Note that in this conditional architecture the latents themselves are marker-dependent, so are not
truly held fixed. We also fit conditional CAE architectures where just the decoder was conditioned
on the markers, and the encoder only used the frame as input. We found the results from the
disentangling analysis to be qualitatively similar, though reconstructions generally looked cleaner
with the architectures that incorporated conditioning in both the encoder and decoder networks (data
not shown).

Manipulating latents. We chose a random test frame and this time varied the latents while keeping
the marker values fixed. Similar to above, we used the 10th (minimum) and 90th (maximum)
percentiles of the latents on the test set as limits (this time allowing different limits for each DLC/DGP
architecture). We then concatenated the new latent values with the marker values from the original
frame, and pushed this vector through the decoder network to produce the reconstructions.

Quantifying disentanglement. To quantify the disentanglement results from Figure 5 (center, right
panels), we chose the left paw as a (tracked) target of interest that should ideally not undergo large
changes when manipulating the latents. If disentanglement is high (which we desire), the differences
between the generated paw and the original paw should be small. For each image generated from the
latent manipulation, we take a small crop around the original location of the left paw and compute
the MSE between this generated paw and the original paw.
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Figure S1: Conditional CAEs display better disentangling properties when using DGP rather

than DLC markers. A: A total of 64 representative frames were chosen from the test set by
performing k-means on the 2-latent unconditional AE latents; pictured are 16 of those frames, which
include the left paw (the target feature of this analysis) in multiple positions. B: For each frame,
the markers are held fixed while the 2 latents are varied, producing a matrix of generated images.
For each generated image we crop around the left paw. The paw position should remain stable
throughout the latent manipulation if there is good disentanglement between latents and markers.
Latent manipulations of two example frames are shown (in columns) for networks trained using DGP
or DLC markers (in rows). Yellow circles indicate the left paw marker location. C: We compute
MSE between each generated frame and the original frame around the paw, and average over all
latent values. Small MSE indicates desired stability in the tracked paw. For almost all frames the
DGP-trained network exhibits lower MSE, thus demonstrating a higher degree of disentangling.

We repeat this process for an unbiased sample of test frames. To obtain these frames we performed
k-means clustering on the unconditional CAE latents. From each of 64 clusters we take the frame
that is closest to the cluster centroid (Figure S1A), and perform the process of generating frames by
evenly sampling the latent space - 4 grid points along each of 2 dimensions, for a total of 16 generated
frames. We compute the MSE in crops around the labeled paw position as described above (Figure
S1B, C). We find that on average the CAE-DGP networks have lower MSE, indicating that these
disentanglement results generalize to many other paw positions (and therefore marker values) found
in this dataset.

20



Figure S2: Different active learning strategies

can speed up training of DGP without the need

to query for new human labels. Evolution of the
RMSE during training using four different scoring
strategies to query for pseudo targets (unlabeled
frames) on the twomice-top-down dataset. The
RMSE decays faster by employing active learning
strategies to select unlabeled frames to train DGP.

S3 Active learning

Given a video with a set N of frames, let M be the set of user-labeled frames, and let U = N �M
be the set of frames not selected to be labeled. Many previous animal pose estimation algorithms
select M 2 N by applying k-means clustering to a randomly sampled subset of frames in the video,
and then uniformly sampling frames from these clusters. The number of clusters for k-means is
manually set usually as 10 or 25. Although this approach can work relatively well, several failure
modes can occur. For example, if the animals are in fixed positions or not moving for extended
periods of time (a common scenario in biological experimental settings), uniformly sampling frames
from such a video will result in selecting many identical or redundant frames. Furthermore, if the
frames of interest in the video—parts of the video where animals perform behaviors of interest to
experimenters—are sparse, randomly sampling frames from a video is highly likely to overlook
these frames. Additionally, even if the frames of interest are included during clustering, since these
frames are scarce, they may be considered as outliers by a naive k-means algorithm and there are
no guarantees that these frames of interest would be sampled from any clusters and selected for
downstream labeling or training steps.

This problematic lack of diversity in the training set can be addressed by fully supervised algorithms
by querying new labeled frames, i.e. by asking the user to manually label new frames based on
the performance of the network after training. This process can be repeated several times until
the network outputs are satisfactory. Previous work has shown that active learning by querying
informative and representative samples can be more effective than passive human labeling [51, 52].
Most of this work proposes strategies to score and sample unlabeled frames for manual labeling.

Here we propose to employ these strategies to select not only the set of frames to be manually
labeled by an experimenter or oracle M , but also to select the subset of unlabeled frames used during
training, S 2 U , which provide additional information to semi-supervised algorithms such as DGP.
Unlike semi-supervised learning, which exploits what the learner thinks it knows about the data by
employing, for example, unlabeled frames with pseudo targets during training, active learning exploits
what the learner does not know about the data, by exploring the space or querying for information
about the unlabeled frames [53]. These two approaches can be combined naturally; see [53] for a
review.

Scoring Description

random Frames are sampled at random from video
motion Frames are sampled based on their motion energy; frames that are very

similar to their nearest neighbors are sampled less
Hwin Frames are sampled based on the difference between the entropy of mean

predictions and the mean entropy of predictions [54]
pmax Frames are sampled based on their uncertainty; frames with more uncer-

tain network outputs are re-sampled more frequently

Table S2: Scoring strategies for active learning

21



We train DGP using the four different active learning strategies described in Table S2 to query for
pseudo targets (unlabeled frames) employed during training. Figure S2 illustrates the evolution of
the RMSE for a subset of hidden frames in the training set. We see that with active learning the loss
converges faster than by using random sampling. In future work we plan to investigate these different
active learning approaches in more detail and across additional datasets.

S4 Results on all datasets

Figures S3-S6 show the comparisons between DLC and DGP on the mouse-reach, fly-run, twomice-
top-down, and fish-swim datasets (Table 1). In each case, results were similar to those seen in Figure
2. Please check these videos to see the trace comparisons between DLC and DGP for these datasets.

We also did some additional experiments with the intermediate models between DLC and DGP,
including DLC-ours, DGP-semi and DGP-spatial described in Table S3.

Model Description

DLC original DLC implementation, binary target maps for cross entropy loss
DLC-ours our DLC implementation, gaussian target maps for cross entropy loss
DGP-semi DGP model without cliques, semi-supervised loss only

DGP-spatial DGP model with only spatial clique
DGP full DGP model with both spatial and temporal cliques

Table S3: All the models we ran for comparison.

Table S4 summarizes the experimental setup for each model and each dataset. Note that the total
number of iterations we ran DGP models was way less than the total number of iterations we ran
using DLC. For example, we initialized DLC-ours from DLC after 200k; then initialized DGP using
DLC-ours after 6k. Equivalently, we can assume that we initialized DGP using DLC after 206k
iterations and ran another 80k (8k x 10) iterations with batch size 1. Thus, we ran about 280k
iterations in total for DGP while we ran 1m (1,000,000) iterations for DLC.

Results are consistent across datasets: DGP and DGP-spatial achieve similar performance across
all five datasets, but DGP has smoother traces; each tends to outperform DGP-semi, which in turn
outperforms either implementation of DLC. We also provide full videos for the comparisons of 5
traces.
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Dataset Model Initialization Number of Batch size
iterations

mouse-wheel

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 86k 1
DGP-semi DLC-ours 6k 8k 10

DGP-spatial DLC-ours 6k 8k 10
DGP DLC-ours 6k 8k 10

mouse-reach

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 31k 1
DGP-semi DLC-ours 5k 5k 5

DGP-spatial DLC-ours 5k 5k 5
DGP DLC-ours 5k 5k 5

fly-run

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 185k 1
DGP-semi DLC-ours 5k 18k 10

DGP-spatial DLC-ours 5k 18k 10
DGP DLC-ours 5k 18k 10

twomice-top-down

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 114k 1
DGP-semi DLC-ours 2k 12k 10

DGP-spatial DLC-ours 2k 12k 10
DGP DLC-ours 2k 12k 10

fish-swim

DLC pre-trained ResNet 1m 1
DLC-ours DLC 200k 170k 1
DGP-semi DLC-ours 2k 17k 10

DGP-spatial DLC-ours 2k 17k 10
DGP DLC-ours 2k 17k 10

Table S4: Experimental setup for each dataset and each model. For DLC, we initialized it with a
pre-trained ResNet from ImageNet and ran 1m iterations using 1 batch stochastic gradient descent
(sgd) for all datasets. For the mouse-wheel dataset, we initialized DLC-ours from DLC after 200k
iterations and ran it for 86k iterations with batch size 1. We initialized DGP-semi, DGP-spatial, and
DGP from DLC-ours after 6k iterations and ran each for another 8k iterations with batch size 10.
Likewise, we ran the other four datasets correspondingly.
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Figure S3: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the mouse reaching
dataset from [4]. Conventions and conclusions as in Figure 2.
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Figure S4: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the fly ball-turning
dataset from [32]. Conventions and conclusions as in Figure 2.
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Figure S5: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the twomice-top-view
dataset with two mice. Conventions and conclusions as in Figure 2.
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Figure S6: Comparing DeepLabCut (DLC) versus Deep Graph Pose (DGP) on the swimming fish
dataset from [33]. Conventions and conclusions as in Figure 2.
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