
Appendix
A Proofs
A.1 Proof of Theorem 1
Theorem 1. Assume L1 and L2 are convex and differentiable. Suppose the gradient of L is L-
Lipschitz with L > 0. Then, the PCGrad update rule with step size t ≤ 1

L will converge to either (1)
a location in the optimization landscape where cos(φ12) = −1 or (2) the optimal value L(θ∗).

Proof. We will use the shorthand || · || to denote the L2-norm and ∇L = ∇θL, where θ is the
parameter vector. Following Definition 1 and 4, let g1 = ∇L1, g2 = ∇L2, g = ∇L = g1 + g2,
and φ12 be the angle between g1 and g2.

At each PCGrad update, we have two cases: cos(φ12) ≥ 0 or cos(φ12) < 0.

If cos(φ12) ≥ 0, then we apply the standard gradient descent update using t ≤ 1
L , which leads to a

strict decrease in the objective function value L(θ) (since it is also convex) unless∇L(θ) = 0, which
occurs only when θ = θ∗ [4].

In the case that cos(φ12) < 0, we proceed as follows:

Our assumption that ∇L is Lipschitz continuous with constant L implies that ∇2L(θ) − LI is a
negative semi-definite matrix. Using this fact, we can perform a quadratic expansion of L around
L(θ) and obtain the following inequality:

L(θ+) ≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
∇2L(θ)||θ+ − θ||2

≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
L||θ+ − θ||2

Now, we can plug in the PCGrad update by letting θ+ = θ− t · (g− g1·g2

||g1||2g1 − g1·g2

||g2||2g2). We then
get:

L(θ+) ≤ L(θ) + t · gT (−g +
g1 · g2

||g1||2
g1 +

g1 · g2

||g2||2
g2) +

1

2
Lt2||g − g1 · g2

||g1||2
g1 −

g1 · g2

||g2||2
g2||2

(Expanding, using the identity g = g1 + g2)

= L(θ) + t

(
−||g1||2 − ||g2||2 +

(g1 · g2)2

||g1||2
+

(g1 · g2)2

||g2||2

)
+

1

2
Lt2||g1 + g2

− g1 · g2

||g1||2
g1 −

g1 · g2

||g2||2
g2||2

(Expanding further and re-arranging terms)

= L(θ)− (t− 1

2
Lt2)(||g1||2 + ||g2||2 −

(g1 · g2)2

||g1||2
− (g1 · g2)2

||g2||2
)

− Lt2(g1 · g2 −
(g1 · g2)2

||g1||2||g2||2
g1 · g2)

(Using the identity cos(φ12) =
g1 · g2

||g1||||g2||
)

= L(θ)− (t− 1

2
Lt2)[(1− cos2(φ12))||g1||2 + (1− cos2(φ12))||g2||2]

− Lt2(1− cos2(φ12))||g1||||g2|| cos(φ12) (1)
(Note that cos(φ12) < 0 so the final term is non-negative)

14

Using t ≤ 1
L , we know that −(1− 1

2Lt) = 1
2Lt− 1 ≤ 1

2L(1/L)− 1 = −1
2 and Lt2 ≤ t.

Plugging this into the last expression above, we can conclude the following:

L(θ+) ≤ L(θ)− 1

2
t[(1− cos2(φ12))||g1||2 + (1− cos2(φ12))||g2||2]

− t(1− cos2(φ12))||g1||||g2|| cos(φ12)

= L(θ)− 1

2
t(1− cos2(φ12))[||g1||2 + 2||g1||||g2|| cos(φ12) + ||g2||2]

= L(θ)− 1

2
t(1− cos2(φ12))[||g1||2 + 2g1 · g2 + ||g2||2]

= L(θ)− 1

2
t(1− cos2(φ12))||g1 + g2||2

= L(θ)− 1

2
t(1− cos2(φ12))‖g‖2

If cos(φ12) > −1, then 1
2 t(1− cos2(φ12))‖g‖2 will always be positive unless g = 0. This inequality

implies that the objective function value strictly decreases with each iteration where cos(φ12) > −1.

Hence repeatedly applying PCGrad process can either reach the optimal value L(θ) = L(θ∗) or
cos(φ12) = −1, in which case 1

2 t(1 − cos2(φ12))‖g‖2 = 0. Note that this result only holds when
we choose t to be small enough, i.e. t ≤ 1

L .

Corollary 1. Assume the n objectives L1,L2, ...,Ln are convex and differentiable. Suppose the
gradient of L is Lipschitz continuous with constant L > 0. Assume that cos(g,gPC) ≥ 1

2 . Then, the
PCGrad update rule with step size t ≤ 1

L will converge to either (1) a location in the optimization
landscape where cos(gi,gj) = −1∀i, j or (2) the optimal value L(θ∗).

Proof. Our assumption that ∇L is Lipschitz continuous with constant L implies that∇2L(θ)− LI
is a negative semi-definite matrix. Using this fact, we can perform a quadratic expansion of L around
L(θ) and obtain the following inequality:

L(θ+) ≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
∇2L(θ)||θ+ − θ||2

≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
L||θ+ − θ||2

Now, we can plug in the PCGrad update by letting θ+ = θ − t · gPC. We then get:

L(θ+) ≤ L(θ)− t · gTgPC +
1

2
Lt2||gPC||2

(Using the assumption that cos(g,gPC) ≥ 1

2
.)

≤ L(θ)− 1

2
t||g|| · ||gPC||+ 1

2
Lt2||gPC||2

≤ L(θ)− 1

2
t||g|| · ||gPC||+ 1

2
Lt2||gPC|| · ||g||

Note that − 1
2 t||g|| · ||g

PC||+ 1
2Lt

2||gPC|| · ||g|| ≤ 0 when t ≤ 1
L . Further, when t < 1

L , − 1
2 t||g|| ·

||gPC||+ 1
2Lt

2||gPC|| · ||g|| = 0 if and only if ||g|| = 0 or ||gPC|| = 0.

Hence repeatedly applying PCGrad process can either reach the optimal value L(θ) = L(θ∗) or a
location in the optimization landscape where cos(gi,gj) = −1 for all pairs of tasks i, j. Note that
this result only holds when we choose t to be small enough, i.e. t ≤ 1

L .

Proposition 1. Assume L1 and L2 are differentiable but possibly non-convex. Suppose the gradient
of L is Lipschitz continuous with constant L > 0. Then, the PCGrad update rule with step size t ≤ 1

L
will converge to either (1) a location in the optimization landscape where cos(φ12) = −1 or (2) find
a θk that is almost a stationary point.

15

Proof. Following Definition 1 and 4, let g1k = ∇L1 at iteration k, g2k = ∇L2 at iteration k, and
gk = ∇L = g1k + g2k at iteration k, and φ12,k be the angle between g1k and g2k.

From the proof of Theorem 1, when cos(φ12, k) < 0 we have:

||gk||2 ≤
2

t

L(θk−1)− L(θk)

(1− cos2(φ12,k))
.

Thus, we have:

min
0≤k≤K

||gk||2 ≤
1

K

K−1∑
i=0

||gi||2

≤ 2

Kt

K−1∑
i=0

L(θi−1)− L(θi)

(1− cos2(φ12,i))

If at any iteration, cos(φ12,k) = −1, then the optimization will stop at that point. If ∀k ∈ [0,K],
cos(φ12,k) ≥ α > −1, then, we have:

min
0≤k≤K

||gk||2 ≤
2

K(1− α2)t

K−1∑
i=0

(L(θi−1)− L(θi))

=
2

K(1− α2)t
(L(θ0)− L(θK))

≤ 2

K(1− α2)t
(L(θ0)− L∗).

where L∗ is the minimal function value.

Note that the convergence rate of PCGrad in the non-convex setting largely depends on the value of
α and generally how small cos(φ12,k) is on average.

A.2 Proof of Theorem 2
Theorem 2. Suppose L is differentiable and the gradient of L is Lipschitz continuous with constant
L > 0. Let θMT and θPCGrad be the parameters after applying one update to θ with g and PCGrad-
modified gradient gPC respectively, with step size t > 0. Moreover, assume H(L; θ, θMT) ≥ `‖g‖22
for some constant ` ≤ L, i.e. the multi-task curvature is lower-bounded. Then L(θPCGrad) ≤ L(θMT)
if (a) cosφ12 ≤ −Φ(g1,g2), (b) ` ≥ ξ(g1,g2)L, and (c) t ≥ 2

`−ξ(g1,g2)L .

Proof. Note that θMT = θ − t · g and θPCGrad = θ − t(g − g1·g2

||g1||2g1 − g1·g2

||g2||2g2). Based on the
condition that H(L; θ, θMT) ≥ `‖g‖22, we first apply Taylor’s Theorem to L(θMT) and obtain the
following result:

L(θMT) = L(θ) + gT (−tg) +

∫ 1

0

(−tg)T
∇2L(θ + a · (−tg))

2
(−tg)da

≥ L(θ) + gT (−tg) + t2 · 1

2
` · ‖g‖22

= L(θ)− t‖g‖22 +
1

2
`t2‖g‖22

= L(θ) + (
1

2
`t2 − t)‖g‖22 (2)

where the first inequality follows from Definition 3 and the assumption H(L; θ, θMT) ≥ `‖g‖22. From
equation 1, we have the simplified upper bound for L(θPCGrad):

L(θPCGrad) ≤ L(θ)− (1− cos2 φ12)[(t− 1

2
Lt2) · (‖g1‖22 + ‖g1‖22) + Lt2‖g1‖2‖g2‖2 cosφ12]

(3)

16

Apply Equation 2 and Equation 3 and we have the following inequality:

L(θMT)− L(θPCGrad) ≥ L(θ) + (
1

2
`t2 − t)‖g‖22 − L(θ)

+ (1− cos2 φ12)[(t− 1

2
Lt2)(‖g1‖22 + ‖g2‖22) + Lt2‖g1‖2‖g2‖2 cosφ12]

= (
1

2
`t2 − t)‖g1 + g2‖22+(1− cos2 φ12)

[
(t− 1

2
Lt2)·(‖g1‖22+‖g2‖22)+Lt2‖g1‖2‖g2‖2 cosφ12

]
=

(
1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
(‖g1‖22 + ‖g2‖22 − 2‖g1‖2‖g2‖2 cosφ12)L

)
t2

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
t

=

(
1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
‖g1 − g2‖22L

)
t2

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
t

= t ·
[(

1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
(‖g1 − g2‖22)L

)
t

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)]
(4)

Since cosφ12 ≤ −Φ(g1,g2) = − 2‖g1‖2‖g2‖2
‖g1‖22+‖g2‖22

and ` ≥ ξ(g1,g2) =
(1−cos2 φ12)(‖g1−g2‖22)

‖g1+g2‖22
L, we

have
1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
‖g1 − g2‖22L ≥ 0

and
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12 ≥ 0.

By the condition that t ≥ 2
`−ξ(g1,g2)L = 2

`− (1−cos2 φ12)‖g1−g2‖22
‖g1+g2‖22

L
and monotonicity of linear func-

tions, we have the following:

L(θMT)−L(θPCGrad) ≥ [

(
1

2
‖g1+g2‖22`−

1−cos2 φ12

2
·‖g1−g2‖22L

)
· 2

`− (1−cos2 φ12)‖g1−g2‖22
‖g1+g2‖22

L

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
] · t

= [‖g1 + g2‖22 ·
(
`− (1− cos2 φ12) · ‖g1 − g2‖22

‖g1 + g2‖22
)L

)
· 1

`− (1−cos2 φ12)‖g1−g2‖22
‖g1+g2‖22

L

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
] · t

=
[
‖g1 + g2‖22 −

(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)]
· t

=
[
‖g1‖22+‖g2‖22+2‖g1‖2‖g2‖2cosφ12−

(
(‖g1‖22+‖g2‖22) cos2φ12+2‖g1‖2‖g2‖2cosφ12

)]
· t

= (1− cos2 φ12)(‖g1‖22 + ‖g2‖22) · t
≥ 0

A.3 PCGrad: Sufficient and Necessary Conditions for Loss Improvement

Beyond the sufficient conditions shown in Theorem 2, we also present the sufficient and necessary
conditions under which PCGrad achieves lower loss after one gradient update in Theorem 3 in the
two-task setting.

Theorem 3. Suppose L is differentiable and the gradient of L is Lipschitz continuous with constant
L > 0. Let θMT and θPCGrad be the parameters after applying one update to θ with g and PCGrad-
modified gradient gPC respectively, with step size t > 0. Moreover, assume H(L; θ, θMT) ≥ `‖g‖22
for some constant ` ≤ L, i.e. the multi-task curvature is lower-bounded. Then L(θPCGrad) ≤ L(θMT)
if and only if

17

• −Φ(g1,g2) ≤ cosφ12 < 0

• ` ≤ ξ(g1,g2)L

• 0 < t ≤ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

or

• cosφ12 ≤ −Φ(g1,g2)

• ` ≥ ξ(g1,g2)L

• t ≥ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

.

Proof. To show the necessary conditions, from Equation 4, all we need is

t · [(1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
(‖g1 − g2‖22)L)t

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
] ≥ 0 (5)

Since t ≥ 0, it reduces to show

(
1

2
‖g1 + g2‖22`−

1− cos2 φ12

2
(‖g1 − g2‖22)L)t

−
(
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12

)
≥ 0 (6)

For Equation 6 to hold while ensuring that t ≥ 0, there are two cases:

• 1
2‖g1 + g2‖22`− (1− cos2 φ12)(‖g1‖22 + ‖g2‖22)L ≥ 0,
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12 ≥ 0,
t ≥ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

• 1
2‖g1 + g2‖22`− (1− cos2 φ12)(‖g1‖22 + ‖g2‖22)L ≤ 0,
(‖g1‖22 + ‖g2‖22) cos2 φ12 + 2‖g1‖2‖g2‖2 cosφ12 ≤ 0,
t ≥ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

, which can be simplified to

• cosφ12 ≤ − 2‖g1‖2‖g2‖2
‖g1‖22+‖g2‖22

= −Φ(g1,g2),

` ≥ (1−cos2 φ12)(‖g1‖22+‖g2‖22)

‖g1+g2‖22
L = ξ(g1,g2),

t ≥ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

• − 2‖g1‖2‖g2‖2
‖g1‖22+‖g2‖22

= −Φ(g1,g2) ≤ cosφ12 < 0,

` ≤ (1−cos2 φ12)(‖g1‖22+‖g2‖22)

‖g1+g2‖22
L = ξ(g1,g2),

0 < t ≤ (‖g1‖22+‖g2‖22) cos2 φ12+2‖g1‖2‖g2‖2 cosφ12

1
2‖g1+g2‖22`−

1−cos2 φ12
2 (‖g1−g2‖22)L

.

The sufficient conditions hold as we can plug the conditions to RHS of Equation 6 and achieve
non-negative result.

18

A.4 Convergence of PCGrad with Momentum-Based Gradient Descent

In this subsection, we show convergence of PCGrad with momentum-based methods, which is more
aligned with our practical implementation. In our analysis, we consider the heavy ball method [43]
as follows:

θk+1 ← θk − αk∇L(θk) + βk(θk − θk−1)

where k denotes the k-th step and αk and βk are step sizes for the gradient and momentum at step k
respectively. We now present our theorem.

Theorem 4. Assume L1 and L2 are µ1- and µ2-strongly convex and also L1- and L2-smooth
respectively where µ1, µ2, L1, L2 > 0. Define φk12 as the angle between two task gradients g1(θk)

and g2(θk) and define Rk = ‖g1(θk)‖
‖g2(θk)‖ . Denote µk = (1 − cosφk12/Rk)µ1 + (1 − cosφk12 · Rk)µ2

and Lk = (1− cosφk12/Rk)L1 + (1− cosφk12 ·Rk)L2 Then, the PCGrad update rule of the heavy
ball method with step sizes αk = 4√

Lk+
√
µk

and βk = max{|1 − √αkµk|, |1 −
√
αkLk|}2 will

converge linearly to either (1) a location in the optimization landscape where cos(φk12) = −1 or (2)
the optimal value L(θ∗).

Proof. We first observe that the PCGrad-modified gradient gPC has the following identity:

gPC = g − g1 · g2

||g1||2
g1 −

g1 · g2

||g2||2
g2

= (1− g1 · g2

||g1||2
)g1 + (1− g1 · g2

||g2||2
)g2

= (1− g1 · g2

‖g1‖‖g2‖
‖g2‖
‖g1‖

)g1 + (1− g1 · g2

‖g1‖‖g2‖
‖g1‖
‖g2‖

)g2

= (1− cosφ12/R)g1 + (1− cosφ12 ·R)g2. (7)

Applying Equation 7, we can write the PCGrad update rule of the heavy ball method in matrix form
as follows:∥∥∥∥[θk+1 − θ∗

θk − θ∗
]∥∥∥∥

2

=

∥∥∥∥[θk + βk(θk − θk−1)− θ∗
θk − θ∗

]
− αk

[
gPC(θk)

0

]∥∥∥∥
2

=

∥∥∥∥[θk + βk(θk − θk−1)− θ∗
θk − θ∗

]
−αk

[
(1− cosφk12/Rk)g1(θk) + (1− cosφk12 ·Rk)g2(θk)

0

]∥∥∥∥
2

=

∥∥∥∥[θk + βk(θk − θk−1)− θ∗
θk − θ∗

]
−αk

[[
(1− cosφk12/Rk)∇2L1(zk) + (1− cosφk12 ·Rk)∇2L2(z′k)

]
(θk − θ∗)

0

]∥∥∥∥
2

for some zk, z′k on the line segment between θk and θ∗

=

∥∥∥∥[(1 + βk)I − αkHk −βkI
I 0

] [
θk − θ∗
θk−1 − θ∗

]∥∥∥∥
2

≤
∥∥∥∥[(1 + βk)I − αkHk −βkI

I 0

]∥∥∥∥
2

∥∥∥∥[θk − θ∗
θk−1 − θ∗

]∥∥∥∥
2

where Hk = (1− cosφk12/Rk)∇2L1(zk) + (1− cosφk12 ·Rk)∇2L2(z′k).

By strong convexity and smoothness of L1 and L2, we have the eigenvalues of ∇2L1(zk) are
between µ1 and L1. Similarly, the eigenvalues of ∇2L2(z′k) are between µ2 and L2. Thus the
eigenvalues of Hk are between µk = (1 − cosφk12/Rk)µ1 + (1 − cosφk12 · Rk)µ2 and Lk =
(1− cosφk12/Rk)L1 + (1− cosφk12 ·Rk)L2 [20]. Hence following Lemma 3.1 in [54], we have∥∥∥∥[(1 + βk)I − αkHk −βkI

I 0

]∥∥∥∥
2

≤ max{|1−√αkµk|, |1−
√
αkLk|}.

19

Thus we have∥∥∥∥[θk+1 − θ∗
θk − θ∗

]∥∥∥∥
2

≤ max{|1−√αkµk|, |1−
√
αkLk|}

∥∥∥∥[θk − θ∗
θk−1 − θ∗

]∥∥∥∥
2

=

√
κk − 1
√
κk + 1

∥∥∥∥[θk − θ∗
θk−1 − θ∗

]∥∥∥∥
2

(8)

≤
∥∥∥∥[θk − θ∗
θk−1 − θ∗

]∥∥∥∥
2

where κk = Lk
µk

and Equation 8 follows from substitution αk = 4√
Lk+

√
µk

. Hence PCGrad with

heavy ball method converges linearly if cosφk12 6= −1.

B Empirical Objective-Wise Evaluations of PCGrad
In this section, we visualize the per-task training loss and validation loss curves respectively on
NYUv2. The goal of measuring objective-wise performance is to study the convergence of PCGrad
in practice, particularly amidst the possibility of slow convergence due to cosine similarities near -1,
as discussed in Section 2.4.

We show the objective-wise evaluation results on NYUv2 in Figure 5. For evaluations on NYUv2,
PCGrad + MTAN attains similar training convergence rate compared to MTAN in three tasks in
NYUv2 while converging faster and achieving lower validation loss in 2 out of 3 tasks. Note that in
task 0 of the NYUv2 dataset, both methods seem to overfit, suggesting a better regularization scheme
for this domain.

In general, these results suggest that PCGrad has a regularization effect on supervised multi-task
learning, rather than an improvement on optimization speed or convergence. We hypothesize that this
regularization is caused by PCGrad leading to greater sharing of representations across tasks, such that
the supervision for one task better regularizes the training of another. This regularization effect seems
notably different from the effect of PCGrad on reinforcement learning problems, where PCGrad
dramatically improves training performance. This suggests that multi-task supervised learning and
multi-task reinforcement learning problems may have distinct challenges.

Figure 5: Empirical objective-wise evaluations on NYUv2. On the top row, we show the objective-wise training
learning curves and on the bottom row, we show the objective-wise validation learning curves. PCGrad+MTAN
converges with a similar rate compared to MTAN in training and for validation losses, PCGrad+MTAN converges
faster and obtains a lower final validation loss in two out of three tasks. This result corroborate that in practice,
PCGrad does not exhibit the potential slow convergence problem shown in Theorem 1.

C Practical Details of PCGrad on Multi-Task and Goal-Conditioned
Reinforcement Learning

In our experiments, we apply PCGrad to the soft actor-critic (SAC) algorithm [24], an off-policy RL
method. In SAC, we employ a Q-learning style gradient to compute the gradient of the Q-function

20

network, Qφ(s, a, zi), often known as the critic, and a reparameterization-style gradient to compute
the gradient of the policy network πθ(a|s, zi), often known as the actor. For sampling, we instantiate
a set of replay buffers {Di}Ti∼p(T). Training and data collection are alternated throughout training.
During a data collection step, we run the policy πθ on all the tasks Ti ∼ p(T) to collect an equal
number of paths for each task and store the paths of each task Ti into the corresponding replay buffer
Di. At each training step, we sample an equal amount of data from each replay buffer Di to form a
stratified batch. For each task Ti ∼ p(T), the parameters of the critic θ are optimized to minimize
the soft Bellman residual:

J
(i)
Q (φ) = E(st,at,zi)∼Di

[
Qφ(st, at, zi)− (r(st, at, zi) + γVφ̄(st+1, zi))

]
, (9)

Vφ̄(st+1, zi) = Eat+1∼πθ
[
Qφ̄(st+1, at+1, zi)− α log πθ(at+1|st+1, zi)

]
, (10)

where γ is the discount factor, φ̄ are the delayed parameters, and α is a learnable temperature that
automatically adjusts the weight of the entropy term. For each task Ti ∼ p(T), the parameters of the
policy πθ are trained to minimize the following objective

J (i)
π (θ) = Est∼Di

[
Eat∼πθ(at|st,zi)) [α log πθ(at|st, zi)−Qφ(st, at, zi)]

]
. (11)

We compute ∇φJ (i)
Q (φ) and ∇θJ (i)

π (θ) for all Ti ∼ p(T) and apply PCGrad to both following
Algorithm 1.

In the context of SAC specifically, we also propose to learn the temperature α for adjusting entropy of
the policy on a per-task basis. This allows the method to control the entropy of the multi-task policy
per-task. The motivation is that if we use a single learnable temperature for adjusting entropy of the
multi-task policy πθ(a|s, zi), SAC may stop exploring once all easier tasks are solved, leading to poor
performance on tasks that are harder or require more exploration. To address this issue, we propose
to learn the temperature on a per-task basis as mentioned in Section 3, i.e. using a parametrized
model to represent αψ(zi). This allows the method to control the entropy of πθ(a|s, zi) per-task. We
optimize the parameters of αψ(zi) using the same constrained optimization framework as in [24].

When applying PCGrad to goal-conditioned RL, we represent p(T) as a distribution of goals and let zi
be the encoding of a goal. Similar to the multi-task supervised learning setting discussed in Section 3,
PCGrad may be combined with various architectures designed for multi-task and goal-conditioned
RL [19, 14], where PCGrad operates on the gradients of shared parameters, leaving task-specific
parameters untouched.

D 2D Optimization Landscape Details
To produce the 2D optimization visualizations in Figure 1, we used a parameter vector θ = [θ1, θ2] ∈
R

2 and the following task loss functions:

L1(θ) = 20 log(max(|.5θ1 + tanh(θ2)|, 0.000005))

L2(θ) = 25 log(max(|.5θ1 − tanh(θ2) + 2|, 0.000005))

The multi-task objective is L(θ) = L1(θ) + L2(θ). We initialized θ = [0.5,−3] and performed
500,000 gradient updates to minimize L using the Adam optimizer with learning rate 0.001. We
compared using Adam for each update to using Adam in conjunction with the PCGrad method
presented in Section 2.3.

E Additional Multi-Task Supervised Learning Results
We present our multi-task supervised learning results on MultiMNIST and CityScapes here.

MultiMNIST. Following the same set-up of Sener and Koltun [53], for each image, we sample a
different one uniformly at random. Then we put one of the image on the top left and the other one on
the bottom right. The two tasks in the multi-task learning problem are to classify the digits on the top
left (task-L) and bottom right (task-R) respectively. We construct such 60K examples. We combine
PCGrad with the same backbone architecture used in [53] and compare its performance to Sener and
Koltun [53] by running the open-sourced code provided in [53]. As shown in Table 4, PCGrad results
0.13% and 0.55% improvement over [53] in left and right digit accuracy respectively.

21

left digit right digit

Sener and Koltun [53] 96.45 94.95

PCGrad (ours) 96.58 95.50

Table 4: MultiMNIST results. PCGrad achieves improvements over the approach by Sener and Koltun [53] in
both left and right digit classfication accuracy.

CityScapes. The CityScapes dataset [12] contains 19 classes of street-view images resized to
128×256. There are two tasks in this dataset: semantic segmentation and depth estimation. Following
the setup in Liu et al. [33], we pair the depth estimation task with semantic segmentation using the
coarser 7 categories instead of the finer 19 classes in the original CityScapes dataset. Similar to
NYUv2 evaluations described in Section 5, we also combine PCGrad with MTAN [33] and compare
it to a range of methods discussed in Appendix J.1. For the combination of PCGrad and MTAN, we
only use equal weighting as discussed in [33] as we find it working well in practice. We present the
results in Table 5. As shown in Table 5, PCGrad + MTAN outperforms MTAN in three out of four
scores while obtaining the top scores in both mIoU abd pixel accuracy for the semantic segmentation
task, suggesting the effectiveness of PCGrad on realistic image datasets. We also provide the full
results including three different weighting schemes in Table 7 in Appendix J.4.

#P. Architecture
Segmentation Depth

(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

2 One Task 51.09 90.69 0.0158 34.17
3.04 STAN 51.90 90.87 0.0145 27.46
1.75 Split, Wide 50.17 90.63 0.0167 44.73

2 Split, Deep 49.85 88.69 0.0180 43.86

3.63 Dense 51.91 90.89 0.0138 27.21

≈2 Cross-Stitch [39] 50.08 90.33 0.0154 34.49

1.65 MTAN 53.04 91.11 0.0144 33.63

1.65 PCGrad+MTAN (Ours) 53.59 91.45 0.0171 31.34

Table 5: We present the 7-class semantic segmentation and depth estimation results on CityScapes
dataset. We use #P to denote the number of parameters of the network. We use box and bold text
to highlight the method that achieves the best validation score for each task. As seen in the results,
PCGrad+MTAN with equal weights outperforms MTAN with equal weights in three out of four
scores while achieving the top score both scores in the segmentation task.

F Goal-Conditioned Reinforcement Learning Results

For our goal-conditioned RL evaluation, we adopt the goal-conditioned robotic pushing task with a
Sawyer robot where the goals are represented as the concatenations of the initial positions of the puck
to be pushed and the its goal location, both of which are uniformly sampled (details in Appendix J.3).
We also apply the temperature adjustment strategy as discussed in Section 3 to predict the temperature
for entropy term given the goal. We summarize the results in the plot second from right in Figure 3.
PCGrad with SAC achieves better performance in terms of average distance to the goal position,
while the vanilla SAC agent is struggling to successfully accomplish the task. This suggests that
PCGrad is able to ease the RL optimization problem also when the task distribution is continuous.

G Comparison to CosReg

We compare PCGrad to a prior method CosReg [55], which adds a regularization term to force the
cosine similarity between gradients of two different tasks to stay 0. PCGrad achieves much better
average success rate in MT10 benchmark as shown in Figure 7. Hence, while it’s important to reduce
interference between tasks, it’s also crucial to keep the task gradients that enjoy positive cosine
similarities in order to ensure sharing across tasks.

22

Figure 6: We present the goal-conditioned RL results. PCGrad outperforms vanilla SAC in terms of both
average distance the goal and data efficiency.

Figure 7: Comparison between PCGrad and CosReg [55]. PCGrad outperforms CosReg, suggesting that we
should both reduce the interference and keep shared structure across tasks.

H Ablation study on the task order

As stated on line 4 in Algorithm 1, we sample the tasks from the batch and randomly shuffle the
order of the tasks before performing the update steps in PCGrad. With random shuffling, we make
PCGrad symmetric w.r.t. the task order in expectation. In Figure 8, we observe that PCGrad with a
random task order achieves better performance between PCGrad with a fixed task order in the setting
of MT50 where the number of tasks is large and the conflicting gradient phenomenon is much more
likely to happen.

I Combining PCGrad with other architectures

In this subsection, we test whether PCGrad can improve performances when combined with more
methods. In Table 6, we find that PCGrad does improve the performance in all four metrics of the
three tasks on the NYUv2 dataset when combined with Cross-Stitch [39] and Dense. In Figure 9, we
also show that PCGrad + Multi-head SAC outperforms Multi-head SAC on its own. These results
suggest that PCGrad can be flexibly combined with any multi-task learning architectures to further
improve performance.

23

Figure 8: Ablation study on using a fixed task order during PCGrad. PCGrad with a random task order does
significantly better PCGrad with a fixed task order in MT50 benchmark.

Method
Segmentation Depth Surface Normal

mIoU Abs Err Angle Distance Within 11.25◦

Cross-Stitch 15.69 0.6277 32.69 21.63
Cross-Stitch + PCGrad 18.14 0.5805 31.38 21.75

Dense 16.48 0.6282 31.68 21.73
Dense + PCGrad 18.08 0.5850 30.17 23.29

Table 6: We show the performances of PCGrad combined with other methods on three-task learning on the
NYUv2 dataset, where PCGrad further improves the results of prior multi-task learning architectures.

J Experiment Details
J.1 Multi-Task Supervised Learning Experiment Details

For all the multi-task supervised learning experiments, PCGrad converges within 12 hours on a
NVIDIA TITAN RTX GPU while the vanilla models without PCGrad converge within 8 hours.
PCGrad consumes at most 10 GB memory on GPU while the vanilla method consumes 6GB on GPU
among all experiments.

For our CIFAR-100 multi-task experiment, we adopt the architecture used in [47], which is a
convolutional neural network that consists of 3 convolutional layers with 160 3× 3 filters each layer
and 2 fully connected layers with 320 hidden units. As for experiments on the NYUv2 dataset, we
follow [33] to use SegNet [1] as the backbone architecture.

We use five algorithms as baselines in the CIFAR-100 multi-task experiment: task specific-1-fc
[46]: a convolutional neural network shared across tasks except that each task has a separate last
fully-connected layer, task specific-1-fc [46] : all the convolutional layers shared across tasks with
separate fully-connected layers for each task, cross stitch-all-fc [40]: one convolutional neural
network per task along with cross-stitch units to share features across tasks, routing-all-fc + WPL
[47]: a network that employs a trainable router trained with multi-agent RL algorithm (WPL) to
select trainable functions for each task, independent: training separate neural networks for each task.

For comparisons on the NYUv2 dataset, we consider 5 baselines: Single Task, One Task: the
vanilla SegNet used for single-task training, Single Task, STAN [33]: the single-task version of
MTAN as mentioned below, Multi-Task, Split, Wide / Deep [33]: the standard SegNet shared for
all three tasks except that each task has a separate last layer for final task-specific prediction with two
variants Wide and Deep specified in [33], Multi-Task Dense: a shared network followed by separate
task-specific networks, Multi-Task Cross-Stitch [40]: similar to the baseline used in CIFAR-100
experiment but with SegNet as the backbone, MTAN [33]: a shared network with a soft-attention
module for each task.

J.2 Multi-Task Reinforcement Learning Experiment Details

Our reinforcement learning experiments all use the SAC [24] algorithm as the base algorithm, where
the actor and the critic are represented as 6-layer fully-connected feedforward neural networks for all

24

Figure 9: We show the comparison between Multi-head SAC and Multi-head SAC + PCGrad on MT10.
Multi-head SAC + PCGrad outperforms Multi-head SAC, suggesting that PCGrad can improves the performance
of multi-headed architectures in the multi-task RL settings.

Figure 10: The 50 tasks of MT50 from Meta-World [61]. MT10 is a subset of these tasks, which includes
reach, push, pick & place, open drawer, close drawer, open door, press button top, open window, close window,
and insert peg inside.

methods. The numbers of hidden units of each layer of the neural networks are 160, 300 and 200 for
MT10, MT50 and goal-conditioned RL respectively. For the multi-task RL experiments, PCGrad +
SAC converges in 1 day (5M simulation steps) and 5 days (20M simulation steps) on the MT10 and
MT50 benchmarks respectively on a NVIDIA TITAN RTX GPU while vanilla SAC converges in 12
hours and 3 days on the two benchmarks respectively. PCGrad + SAC consumes 1 GB and 6 GB
memory on GPU on the MT10 and MT50 benchmarks respectively while the vanilla SAC consumes
0.5 GB and 3 GB respectively.

In the case of multi-task reinforcement learning, we evaluate our algorithm on the recently proposed
Meta-World benchmark [61]. This benchmark includes a variety of simulated robotic manipulation
tasks contained in a shared, table-top environment with a simulated Sawyer arm (visualized in Fig. 10).
In particular, we use the multi-task benchmarks MT10 and MT50, which consists of the 10 tasks and
50 tasks respectively depicted in Fig. 10 that require diverse strategies to solve them, which makes
them difficult to optimize jointly with a single policy. Note that MT10 is a subset of MT50. At each

25

data collection step, we collect 600 samples for each task, and at each training step, we sample 128
datapoints per task from corresponding replay buffers. We measure success according to the metrics
used in the Meta-World benchmark where the reported the success rates are averaged across tasks.
For all methods, we apply the temperature adjustment strategy as discussed in Section 3 to learn a
separate alpha term per task as the task encoding in MT10 and MT50 is just a one-hot encoding.

On the multi-task and goal-conditioned RL domain, we apply PCGrad to the vanilla SAC algorithm
with task encoding as part of the input to the actor and the critic as described in Section 3 and compare
PCGrad to the vanilla SAC without PCGrad and training actors and critics for each task individually
(Independent).

J.3 Goal-conditioned Experiment Details

We use the pushing environment from the Meta-World benchmark [61] as shown in Figure 10. In this
environment, the table spans from [−0.4, 0.2] to [0.4, 1.0] in the 2D space. To construct the goals, we
sample the intial positions of the puck from the range [−0.2, 0.6] to [0.2, 0.7] on the table and the
goal positions from the range [−0.2, 0.85] to [0.2, 0.95] on the table. The goal is represented as a
concatenation of the initial puck position and the goal position. Since in the goal-conditioned setting,
the task distribution is continuous, we sample a minibatch of 9 goals and 128 samples per goal at
each training iteration and also sample 600 samples per goal in the minibatch at each data collection
step.

J.4 Full CityScapes and NYUv2 Results

We provide the full comparison on the CityScapes and NYUv2 datasets in Table 7 and Table 8
respectively.

#P. Architecture Weighting
Segmentation Depth

(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

2 One Task n.a. 51.09 90.69 0.0158 34.17
3.04 STAN n.a. 51.90 90.87 0.0145 27.46

Equal Weights 50.17 90.63 0.0167 44.73
1.75 Split, Wide Uncert. Weights [28] 51.21 90.72 0.0158 44.01

DWA, T = 2 50.39 90.45 0.0164 43.93
Equal Weights 49.85 88.69 0.0180 43.86

2 Split, Deep Uncert. Weights [28] 48.12 88.68 0.0169 39.73
DWA, T = 2 49.67 88.81 0.0182 46.63

Equal Weights 51.91 90.89 0.0138 27.21
3.63 Dense Uncert. Weights [28] 51.89 91.22 0.0134 25.36

DWA, T = 2 51.78 90.88 0.0137 26.67

Equal Weights 50.08 90.33 0.0154 34.49
≈2 Cross-Stitch [39] Uncert. Weights [28] 50.31 90.43 0.0152 31.36

DWA, T = 2 50.33 90.55 0.0153 33.37

Equal Weights 53.04 91.11 0.0144 33.63
1.65 MTAN Uncert. Weights [28] 53.86 91.10 0.0144 35.72

DWA, T = 2 53.29 91.09 0.0144 34.14
1.65 PCGrad+MTAN (Ours) Equal Weights 53.59 91.45 0.0171 31.34

Table 7: We present the 7-class semantic segmentation and depth estimation results on CityScapes
dataset. We use #P to denote the number of parameters of the network, and the best performing
variant of each architecture is highlighted in bold. We use box to highlight the method that achieves
the best validation score for each task. As seen in the results, PCGrad+MTAN with equal weights
outperforms MTAN with equal weights in three out of four scores while achieving the top score in
pixel accuracy across all methods.

26

Type #P. Architecture Weighting

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance Within t◦
(Lower Better) (Higher Better)

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Single Task 3 One Task n.a. 15.10 51.54 0.7508 0.3266 31.76 25.51 22.12 45.33 57.13
4.56 STAN† n.a. 15.73 52.89 0.6935 0.2891 32.09 26.32 21.49 44.38 56.51

Multi Task

Equal Weights 15.89 51.19 0.6494 0.2804 33.69 28.91 18.54 39.91 52.02
1.75 Split, Wide Uncert. Weights∗ 15.86 51.12 0.6040 0.2570 32.33 26.62 21.68 43.59 55.36

DWA†, T = 2 16.92 53.72 0.6125 0.2546 32.34 27.10 20.69 42.73 54.74

Equal Weights 13.03 41.47 0.7836 0.3326 38.28 36.55 9.50 27.11 39.63
2 Split, Deep Uncert. Weights∗ 14.53 43.69 0.7705 0.3340 35.14 32.13 14.69 34.52 46.94

DWA†, T = 2 13.63 44.41 0.7581 0.3227 36.41 34.12 12.82 31.12 43.48

Equal Weights 16.06 52.73 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35
4.95 Dense Uncert. Weights∗ 16.48 54.40 0.6282 0.2761 31.68 25.68 21.73 44.58 56.65

DWA†, T = 2 16.15 54.35 0.6059 0.2593 32.44 27.40 20.53 42.76 54.27

Equal Weights 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
≈3 Cross-Stitch‡ Uncert. Weights∗ 15.69 52.60 0.6277 0.2702 32.69 27.26 21.63 42.84 54.45

DWA†, T = 2 16.11 53.19 0.5922 0.2611 32.34 26.91 21.81 43.14 54.92

Equal Weights 17.72 55.32 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48
1.77 MTAN† Uncert. Weights∗ 17.67 55.61 0.5927 0.2592 31.25 25.57 22.99 45.83 57.67

DWA†, T = 2 17.15 54.97 0.5956 0.2569 31.60 25.46 22.48 44.86 57.24

1.77 MTAN† + PCGrad (ours) Uncert. Weights∗ 20.17 56.65 0.5904 0.2467 30.01 24.83 22.28 46.12 58.77

Table 8: We present the full results on three tasks on the NYUv2 dataset: 13-class semantic segmen-
tation, depth estimation, and surface normal prediction results. #P shows the total number of network
parameters. We highlight the best performing combination of multi-task architecture and weighting
in bold. The top validation scores for each task are annotated with boxes. The symbols indicate prior
methods: ∗: [28], †: [33], ‡: [40]. Performance of other methods taken from [33].

27

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	PCGrad: Sufficient and Necessary Conditions for Loss Improvement
	Convergence of PCGrad with Momentum-Based Gradient Descent

	Empirical Objective-Wise Evaluations of PCGrad
	Practical Details of PCGrad on Multi-Task and Goal-Conditioned Reinforcement Learning
	2D Optimization Landscape Details
	Additional Multi-Task Supervised Learning Results
	Goal-Conditioned Reinforcement Learning Results
	Comparison to CosReg
	Ablation study on the task order
	Combining PCGrad with other architectures
	Experiment Details
	Multi-Task Supervised Learning Experiment Details
	Multi-Task Reinforcement Learning Experiment Details
	Goal-conditioned Experiment Details
	Full CityScapes and NYUv2 Results

