
A Experimental Setup

Dataset Description The discrete and continuous VAE literature use slightly different training
procedures. For continuous VAEs, we follow the sampling procedure described in footnote 2, page
6 of Burda et al. [7], and sample binary-valued pixels with expectation equal to the original gray
scale 28×28 image. We split MNIST [24] and Fashion MNIST [45] into 60k training examples and
10k testing examples across 10 classes.

For Sigmoid Belief Networks, we follow the procedure described by Mnih and Rezende [28] and
use 50k training examples and 10k testing examples (the remaining 10k validation examples are not
used) with the binarized MNIST [36] dataset.

Training Procedure All models are written in PyTorch and trained on GPUs. For each sched-
uler, we train for 10, 000 epochs using the Adam optimizer [16] with a learning rate of 10−3, and
minibatch size of 1000. All weights are initialized with PyTorch’s default initializer. For the neural
network architecture, we use two hidden layers of [100, 25] nodes.

Reward Evaluation To obtain the bandit feedback in Eq. (7), we use a fixed, linear schedule
with d = 50 for calculating Lt with Eq. (5). This yields a tighter log pθ(x) bound, decouples
reward function evaluation from model training and schedule selection in each round, and is still
efficient using SNIS in Eq. (4). We limit the value of d for TVO training following observations of
deteriorating performance in [26].

B GP kernels and treatment of GP hyperparameters

We present the GP kernels and treatment of GP hyperparameters for the black-box function f .

We use the exponentiated quadratic (or squared exponential) covariance function for input hyper-

parameter kβ(β,β′) = exp
(
− ||β−β

′||2
2σ2
β

)
and a time kernel kT (t, t′) = (1 − ω)

|t−t′|
2 where the

observation β and t are normalized to [0, 1]d and the outcome y is standardized y ∼ N (0, 1) for
robustness. As a result, our product kernel becomes

k ([β, t], [β′, t′]) = k(β,β′)× k(t, t′) = exp

(
−||β − β

′||2
2σ2

β

)
(1− ω)

|t−t′|
2 .

The length-scales σβ is estimated from the data indicating the variability of the function with regards
to the hyperparameter input x and number of training iterations t. Estimating appropriate values
for them is critical as this represents the GP’s prior regarding the sensitivity of performance w.r.t.
changes in the number of training iterations and hyperparameters. We note that previous works have
also utilized the above product of spatial and temporal covariance functions for different settings
[20, 5, 29].

We fit the GP hyperparameters by maximizing their posterior probability (MAP),
p (σl, ω | β, t,y) ∝ p (σl, ω,β, t,y), which, thanks to the Gaussian likelihood, is available
in closed form as [33]

ln p (y,β, t, σl, ω) =
1

2
yT
(
K + σ2IN

)−1
y − 1

2
ln
∣∣K + σ2IN

∣∣+ ln phyp (σx, ω) + const (19)

where IN is the identity matrix in dimension N (the number of points in the training set), and
phyp(σl, ω) is the prior over hyperparameters, described in the following.

We maximize the marginal likelihood in Eq. (19) to select the suitable lengthscale parameter σl,
remembering-forgetting trade-off ω, and noise variance σ2

f .

Optimizing Eq. (19) involves taking the derivative w.r.t. each variable, such as ∂ ln p(y,β,t,σl,ω)
∂ω =

∂ ln p(y,β,t,σl,ω)
∂K × ∂K

∂k(t,t′) ×
∂k(t,t′)
∂ω . While the derivatives of σl and σ2

f are standard and can be
found in [33], we present the derivative w.r.t. ω as follows

∂k(t, t′)

∂ω
= −v (1− ω)

v−1 where v = |t− t′|/2. (20)
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We optimize Eq. (19) with a gradient-based optimizer, providing the analytical gradient to the algo-
rithm. We start the optimization from the previous hyperparameter values θprev . If the optimization
fails due to numerical issues, we keep the previous value of the hyperparameters.

C Proof of Theorem 1

Our use of the TVGP within the TVO setting requires no problem specific modifications compared
to the general formulation in Bogunovic. As such, the proof of Theorem 1 closely follows the proof

of Theorem 4.3 in Bogunovic et al. [5] App. C. with time kernel kT (i, j) = (1− ω)
|i−j|

2 . At a
high level, their proof proceeds by partitioning the T random functions into blocks of length Ñ , and
bounding each using Mirsky’s theorem. Referring to Table 1 for notation, this results in a bound on
the maximum mutual information

γ̃Ñ ≤
(
T

Ñ
+ 1

)(
γÑ + Ñ3ω

)
, (21)

which leads directly to their bound on the cumulative regret (cf. App C.2 in [5]). Our contribution is
to recognize we can achieve a tighter bound on the maximum mutual information with an application
Cauchy Schwarz and Jensen’s inequality.

Proof. Beginning from Bogunovic et al. [5] Eq. (58), we have

γ̃Ñ ≤ γÑ +

Ñ∑

i=1

log (1 + ∆i) (22)

γ̃Ñ ≤ γÑ + Ñ log


1 +

1

Ñ

Ñ∑

i=1

∆i


 Jensen’s inequality (23)

γ̃Ñ ≤ γÑ + Ñ log


1 +

1√
Ñ

√√√√
Ñ∑

i=1

∆2
i


 Cauchy-Schwartz (24)

γ̃Ñ ≤ γÑ + Ñ log
(

1 + Ñ3/2ω
) Ñ∑

i=1

∆2
i ≤ Ñ4ω2 (25)

γ̃Ñ ≤ γÑ + Ñ5/2ω log(1 + x) ≤ x (26)

This bound is tighter than [5] Eq. (60) (Ñ5/2 ≤ Ñ3), where the latter was achieved via a simple
constrained optimization argument. Using (26), Theorem 1 follows using identical arguments as in
[5].

D Additional Experiments and Ablation Studies

We present additional experiments on a Probabilistic Context Free Grammar (PCFG) model and
Sigmoid Belief Networks in §D.1 and §D.2, a wall-clock time benchmark in §D.3, ablation studies
in §D.4, and additional training curves in §D.5.

D.1 Training Probabilistic Context Free Grammar

In order to evaluate our method outside of the Variational Autoencoder framework, we consider
model learning and amortized inference in the probabilistic context-free grammar setting described
in Section 4.1 of Le et al. [23]. Here pθ(x, z) = p(x | z)pθ(z), where pθ(z) is a prior over parse
trees z, p(x | z) is a soft relaxation of the {0, 1} likelihood which indicates if sentence x matches
the set of terminals (i.e the sentence) produced by z, and θ is the set of probabilities associated
with each production rule in the grammar. The inference network φ is a recurrent neural network
which outputs qφ(z |x), the conditional distribution of a parse tree given an input sentence. We use
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Table 1: Supporting notations in regret analysis. We use notation to similar to Appendix C of
Bogunovic et al. [5] when possible.

Parameter Domain Meaning

ω scalar, (0, 1) Remembering-forgetting trade-off parameter (ε in [5])
fT vector, RT Vector of T function evaluations from f , fT := [f(x1), ..., f(xT )]T .

f̃T vector, RT (time-varying case) Vector of T function evaluations from f1:T ,
f̃T := [f1(x1), ..., fT (xT )]T

I(yT ; fT ) scalar, R+ The mutual information in fT after revealing yT = fT + ε.
For a GP with covariance functionKT , I(yT ; fT ) = 1

2 log |I + σ−2KT |
Ĩ(yT ; f̃T ) scalar, R+ (time-varying case) Mutual information Ĩ(yT ; f̃T ) = 1

2 log |I + σ−2K̃T |,
where K̃T is a covariance function that incorporates time kernel kT(i, j)

γT scalar, R+ The maximum information gain γT := max
x1,...,xT

I(yT ; fT ) after T rounds

γ̃T scalar, R+ (time-varying case) The analogous time-varying maximum information
gain γ̃T := max

x1,...,xT
Ĩ(yT ; f̃T )

Ñ scalar, R+ An artifact of the proof technique used by [5]. The T time steps
are partitioned into blocks of length Ñ

the Astronomers PCFG considered by Le et al. [23], and therefore have access to the ground truth
production probabilities θtrue, which we will use to evaluate the quality of our learned model θ.

We compare the TVO with GP-bandit and log schedules against REINFORCE, WAKE-WAKE, and
WAKE-SLEEP, where WAKE-WAKE and WAKE-SLEEP use data from the true model x ∼ pθtrue(x)
and learned model x ∼ pθ(x) respectively. For each run, we use a batch size of 2 and train for 2000
epochs with Adam using default parameters. For all KL divergences (see caption in Figure 6), we
compute the median over 20 seeds and then plot the average over the last 100 epochs.

As observed by Le et al. [23], sleep-φ updates avoid the deleterious effects of the SNIS bias and
is therefore preferable to wake-φ updates in this context. Therefore for all runs we use the TVO to
update θ, and use sleep-φ to update φ. Sleep-φ is a special case of the TVO (cf. Masrani et al. [26]
Appendix G.1).

In Figure 6 we see that both GP-bandits and log schedules have comparable performance in this
setting, with TVO-log, S = 20 achieving the lowest KL[pθ||pθtrue ] and KL[qφ(z |x)||pθtrue(z |x)]
across all trials. KL[qφ||pθtrue ] is a preferable metric to KL[qφ||pθ] because the former does not
depend on the quality of the learned model. We also note that GP-bandits appears to be less sensitive
to the number of partitions than the log schedule.

D.2 Training Sigmoid Belief Network on Binarized Omniglot

We train the Sigmoid Belief Network described in §5.2 on the binarized Omniglot dataset. Omniglot
[21] has 1623 handwritten characters across 50 alphabets. We manually binarize the omniglot[22]
dataset by sampling once according to procedure described in [7], and split the binarized omniglot
dataset into 23, 000 training and 8, 070 test examples. Results are shown in Figure 7. At S = 50,
GP-bandit achieves similar model learning but better inference compared to log scheduling.

D.3 Wall-clock time Comparison

We benchmark the wall-clock time of our GP-bandit schedule against the cumulative wall-clock
time of the grid-search log schedule. For both schedules we train a VAE on the Omniglot dataset
for S = 10 and 5000 epochs. For the log schedule, we run the sweep ran by Masrani et al. [26]
(cf. section 7.2), i.e. 20 β1 linearly spaced between [10−2, 0.9] for d = 2, ..., 6, for a total of 100
runs. For a fair comparison against the log schedule, we loop over d = 2, ..., 6 for our GP bandits
because d is unlearned, for a total of five runs. We note that each run of the GP bandits schedule

15



2 5 10 15

0.02

0.04

0.06

0.08

0.10

0.12

KL
[

|
tr

ue
]

S=2

tvo (log) (0.078)
tvo (gp_bandits) (0.091)
wake-sleep (0.102)
wake-wake (0.112)
reinforce (0.072)

2 5 10 15

S=5

tvo (log) (0.103)
tvo (gp_bandits) (0.097)
wake-sleep (0.102)
wake-wake (0.146)
reinforce (0.082)

2 5 10 15

S=10

tvo (log) (0.065)
tvo (gp_bandits) (0.076)
wake-sleep (0.074)
wake-wake (0.139)
reinforce (0.084)

2 5 10 15

S=20

tvo (log) (0.059)
tvo (gp_bandits) (0.064)
wake-sleep (0.072)
wake-wake (0.106)
reinforce (0.09)

PCFG

2 5 10 15
12

14

16

18

20

22

24

KL
[

|
tr

ue
]

tvo (log) (20.651)
tvo (gp_bandits) (20.707)
wake-sleep (21.602)
wake-wake (36.737)
reinforce (28.341)

2 5 10 15

tvo (log) (20.261)
tvo (gp_bandits) (20.038)
wake-sleep (20.01)
wake-wake (30.627)
reinforce (25.779)

2 5 10 15

tvo (log) (17.969)
tvo (gp_bandits) (18.704)
wake-sleep (18.302)
wake-wake (27.85)
reinforce (36.469)

2 5 10 15

tvo (log) (17.021)
tvo (gp_bandits) (17.383)
wake-sleep (17.641)
wake-wake (25.727)
reinforce (33.281)

2 5 10 15
Number of Partitions

4

6

8

10

12

14

KL
[

|
]

tvo (log) (10.465)
tvo (gp_bandits) (11.117)
wake-sleep (11.364)
wake-wake (12.711)
reinforce (10.92)

2 5 10 15
Number of Partitions

tvo (log) (10.286)
tvo (gp_bandits) (10.639)
wake-sleep (11.103)
wake-wake (13.184)
reinforce (9.288)

2 5 10 15
Number of Partitions

tvo (log) (10.41)
tvo (gp_bandits) (10.381)
wake-sleep (10.74)
wake-wake (11.744)
reinforce (13.099)

2 5 10 15
Number of Partitions

tvo (log) (9.625)
tvo (gp_bandits) (9.827)
wake-sleep (10.288)
wake-wake (12.637)
reinforce (11.466)

Figure 6: Evaluation of model learning in a PCFG, where θ is the set of probabilities associated with
each production rule in the grammar, and φ is an RNN which generates the conditional probability
of a parse tree given a sentence. GP-bandits (ours) is comparable to the baseline log schedule and
less sensitive to number of partitions, as evaluated by the KL divergence between learned and true
model parameters (top row). Inference network learning is evaluated by the KL divergence between
qφ(z |x) and pθtrue(z |x) (middle row) and pθ(z |x) (bottom row). We compare against REINFORCE,
WAKE-WAKE, and WAKE-SLEEP, where some baselines aren’t shown due to being out of range.
At S = 20, TVO with log and GP-bandits schedule outperforms REINFORCE, WAKE-WAKE, and
WAKE-SLEEP both in terms of the quality of the generative model (top row, right) and inference
network (middle row, right) for all S ∈ {2, 5, 10, 20}.
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Figure 7: Performance of the Sigmoid Belief Network described in §5.2 on the binarized omniglot
dataset. The GP-bandit schedule at d = 15, S = 50 outperforms all baselines in terms of model and
inference network learning.

includes learning the GP hyperparameters as described in Appendix B. For both schedules, we take
the best log p(x) and corresponding KL divergence, and plot the cumulative run time across all
runs. The results in Table 2 show that the GP-bandits schedule does comparable to the grid searched
log schedule (log likelihood: −110.72 vs −110.99) while requiring significantly less cumulative
wall-clock time (10 hrs vs 178 hrs).
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Figure 8: We compare the performance between our GP-bandit against the Random search (Rand)
baseline which uniformly generates the integration schedules βt. The GP-bandit schedule outper-
forms the random counterpart by using information obtained from previous choices, as described in
Algorithm 1.

Table 2: Wallclock time of the GP-bandit schedule compared to the grid-search of [26] for the log
schedule. GP-bandit approach achieves a competitive test log likelihood and lower KL divergence
compared with the grid-searched log schedule, but requires significantly lower cumulative run-time.

best log p(x) best kl number of runs cumulative run time (hrs)

GP bandit (ours) -110.995 7.655 5 10.99
grid-searched log -110.722 8.389 100 177.01

D.4 Ablation studies

Ablation study between GP-bandit and random search. To demonstrate that our model can
leverage useful information from past data, we compare against the Random Search picks the inte-
gration schedule uniformly at random.

We present the results in Figure 8 using MNIST (left) and Fashion MNIST (right). We observe that
our GP-bandit clearly outperforms the Random baseline. The gap is generally increasing with larger
dimension d, e.g., d = 15 as the search space grows exponentially with the dimension.

Ablation study between permutation invariant GPs. We compare our GP-bandit model using
two versions of (1) non-permutation invariant GP and (2) permutation invariant GP in Table 3.

Our permutation invariant GP does not need to add all permuted observations into the model, but is
still capable of generalizing. The result in Table 3 confirms that if we have more samples to learn
the GP, such as using larger epochs budget T , the two versions will result in the same performance.
On the other hand, if we have limited number of training budgets, e.g., using lower number of
epochs, the permutation invariant GP will be more favorable and outperforms the non-permutation
invariant. In addition, the result suggests that for higher dimension d = 15 (number of partitions)
our permutation invariant GP performs consistently better than the counterpart.

D.5 Training Curves

We show example training curves for S = 10, d ∈ {5, 15} obtained using the linear, log, moment,
and GP-bandit schedules in Figure 9. We can see sudden drops in the GP-bandit training curves
indicating our model is exploring alternate schedules during training (cf. Section 4.1).
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Table 3: Comparison between permutation invariant and non-permutation invariant in MNIST
dataset using S=10 (top) and S=50 (bottom). The best scores are in bold. Given T used epochs,
the number of bandit update and thus the number of sample for GP is T/w where w = 10 is the
frequency update. The permutation invariant will be more favorable when we have less samples for
fitting the GP, as indicated in less number of used epochs T = 1000, 2000. The performance is
comparable when we collect sufficiently large number of samples, e.g., when T/w = 1000.

S=10 Used Epoch T / Bandit Iteration 1000/100 2000/200 5000/500 10000/1000

d=5
Perm Invariant −91.488 −90.129 −89.130 −88.651

Non Perm Invariant −91.554 −90.206 −89.262 −88.552

d=10
Perm Invariant −91.430 −90.219 −89.159 −88.603

Non Perm Invariant −91.553 −90.249 −89.110 −88.466

d=15
Perm Invariant −91.386 −90.059 −88.957 −88.504

Non Perm Invariant −91.550 −90.224 −89.215 −88.564

S=50 Used Epoch T / Bandit Iteration 1000/100 2000/200 5000/500 10000/1000

d=5
Permutation Invariant −90.071 −89.068 −88.163 −87.979

Non Permutation Invariant −90.119 −89.142 −88.215 −87.860

d=10
Perm Invariant −90.125 −89.115 −88.187 −87.859

Non Permutation Invariant −90.212 −89.225 −88.231 −87.702

d=15
Permutation Invariant −90.029 −89.082 −88.102 −87.579

Non Permutation Invariant −90.157 −89.247 −88.173 −87.631
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Figure 9: We plot log p(x) on the training set throughout S = 10, d ∈ {5, 15} for each dataset using
the experimental setup described in Appendix A. The final training log likelihoods are consistent
with the test log likelihoods. Small drops in the GP-bandit training curves indicate the algorithm
exploring the reward landscape (see Section 4.1).
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