
Supplementary Material for
Self-supervised Co-Training for Video Representation Learning

Tengda Han, Weidi Xie, Andrew Zisserman
VGG, Department of Engineering Science

University of Oxford
{htd, weidi, az}@robots.ox.ac.uk

1 More Implementation Details

1.1 Encoder Architecture

We use the S3D architecture for all experiments. At the pretraining stage (including InfoNCE and
CoCLR), S3D is followed by a non-linear projection head. Specifically, the project head consists of
two fully-connected (FC) layers. The projection head is removed when evaluating downstream tasks.
The detailed dimensions are shown in Table 1.

Stage Detail Output size: T×HW×C
S3D followed by average pooling 1× 12 × 1024
Projection head FC-1024→ReLU→FC-128 1× 12 × 128

Table 1: Feature encoder architecture at the pretraining stage. ‘FC-1024’ and ‘FC-128’ denote the output
dimension of each fully-connected layer respectively.

1.2 Classifier Architecture

When evaluating the pretrained representation for action classification, we replace the non-linear
projection head with a single linear layer for the classification tasks. The detailed dimensions are
shown in Table 2.

Stage Detail Output size: T×HW×C
S3D followed by average pooling 1× 12 × 1024
Linear layer one layer: FC-num_class 1× 12 × num_class

Table 2: Classifier architecture for evaluating the representation on action classification tasks. ‘FC-num_class’
denotes the output dimension of fully-connected layer is the number of action classes.

1.3 Momentum-updated History Queue

To cache a large number of features, we adopt a momentum-updated history queue as in MoCo [1].
The history queue is used in all pretraining experiments (including both InfoNCE and CoCLR). For
the pretraining on UCF101, we use softmax temperature τ = 0.07, momentum m = 0.999 and
queue size 2048; for the pretraining on K400, we use softmax temperature τ = 0.07, momentum
m = 0.999 and queue size 16384.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Example Code for CoCLR

In this section, we give an example implementation of CoCLR in PyTorch-like style for training L1

in Eq.2, including the use of a momentum-updated history queue as in MoCo, selecting the topK
nearest neighbours in optical flow in Eq.3, and computing a multi-instance InfoNCE loss. We will
release all the source code later.

Algorithm 1: Pseudocode for CoCLR in PyTorch-like style.

f_q, f_k: encoder networks for query and key, for RGB input
g: frozen encoder network for Flow input
f_q, g are initialized with InfoNCE weights
queue_rgb: dictionary as a queue of K keys (CxK), for RGB feature
queue_flow: dictionary as a queue of K keys (CxK), for Flow feature
topk: number of Nearest-Neighbours in Flow space for CoCLR training
m: momentum
t: temperature
f_k.params = f_q.params # initialize
g.requires_grad = False # g is not updated by gradient

for rgb, flow in loader: # load a minibatch of data with N samples
rgb_q, rgb_k = aug(rgb), aug(rgb) # two randomly augmented versions

z1_q, z1_k = f_q.forward(rgb_q), f_k.forward(rgb_k) # queries and keys: NxC
z1_k = z1_k.detach() # no gradient to keys

z2 = g.forward(flow) # feature for Flow: NxC

compute logits for rgb
l_current = torch.einsum(’nc,nc->n’, [z1_q, z1_k]).unsqueeze(-1)
l_history = torch.einsum(’nc,ck->nk’, [z1_q, queue_rgb])
logits = torch.cat([l_current, l_history], dim=1) # logits: Nx(1+K)
logits /= t # apply temperature

compute similarity matrix for flow, Eq(3)
flow_sim = torch.einsum(’nc,ck->nk’, [z2, queue_flow])
_, topkidx = torch.topk(flow_sim, topk, dim=1)
convert topk indexes to one-hot format
topk_onehot = torch.zeros_like(flow_sim)
topk_onehot.scatter_(1, topkidx, 1)
positive mask (boolean) for CoCLR: Nx(1+K)
pos_mask = torch.cat([torch.ones(N,1),
topk_onehot], dim=1)

Multi-Instance NCE Loss, Eq(2)
loss = - torch.log((F.softmax(logits, dim=1) * mask).sum(1))
loss = loss.mean()

optimizer update: query network
loss.backward()
update(f_q.params)
momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params

update dictionary for both RGB and Flow
enqueue(queue_rgb, z1_k) # enqueue the current minibatch
dequeue(queue_rgb) # dequeue the earliest minibatch
enqueue(queue_flow, z2) # enqueue the current minibatch
dequeue(queue_flow) # dequeue the earliest minibatch

2

3 Qualitative Results for Video Retrieval

Query Top3 nearest neighbours

Figure 1: Nearest neighbour retrieval results with CoCLR representations. The left side is the query video from
the UCF101 testing set, and the right side are the top 3 nearest neighbours from the UCF101 training set. CoCLR
is trained only on UCF101. The action label for each video is shown in the upper right corner.

References
[1] K. He, H. Fan, A. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation

learning. In Proc. CVPR, 2020.

3

	More Implementation Details
	Encoder Architecture
	Classifier Architecture
	Momentum-updated History Queue

	Example Code for CoCLR
	Qualitative Results for Video Retrieval

