
Policy Improvement via Imitation of Multiple Oracles

Ching-An Cheng
Microsoft Research

Redmond, WA 98052
chinganc@microsoft.com

Andrey Kolobov
Microsoft Research

Redmond, WA 98052
akolobov@microsoft.com

Alekh Agarwal
Microsoft Research

Redmond, WA 98052
alekha@microsoft.com

Abstract

Despite its promise, reinforcement learning’s real-world adoption has been ham-
pered by the need for costly exploration to learn a good policy. Imitation learning
(IL) mitigates this shortcoming by using an oracle policy during training as a boot-
strap to accelerate the learning process. However, in many practical situations, the
learner has access to multiple suboptimal oracles, which may provide conflicting
advice in a state. The existing IL literature provides a limited treatment of such sce-
narios. Whereas in the single-oracle case, the return of the oracle’s policy provides
an obvious benchmark for the learner to compete against, neither such a benchmark
nor principled ways of outperforming it are known for the multi-oracle setting. In
this paper, we propose the state-wise maximum of the oracle policies’ values as a
natural baseline to resolve conflicting advice from multiple oracles. Using a reduc-
tion of policy optimization to online learning, we introduce a novel IL algorithm
MAMBA, which can provably learn a policy competitive with this benchmark. In
particular, MAMBA optimizes policies by using a gradient estimator in the style
of generalized advantage estimation (GAE). Our theoretical analysis shows that
this design makes MAMBA robust and enables it to outperform the oracle policies
by a larger margin than the IL state of the art, even in the single-oracle case. In
an evaluation against standard policy gradient with GAE and AggreVaTe(D), we
showcase MAMBA’s ability to leverage demonstrations both from a single and
from multiple weak oracles, and significantly speed up policy optimization.

1 Introduction

Reinforcement learning (RL) promises to bring self-improving decision-making capability to many
applications, including robotics [1], computer systems [2], recommender systems [3] and user
interfaces [4]. However, deploying RL in any of these domains is fraught with numerous difficulties,
as vanilla RL agents need to do a large amount of trial-and-error exploration before discovering good
decision policies [5]. This inefficiency has motivated investigations into training RL agents with
domain knowledge, an example of which is having access to oracle policies in the training phase.

The broad class of approaches that attempt to mimic or improve upon an available oracle policy
is known as imitation learning (IL) [6]. Generally, IL algorithms work by invoking oracle policy
demonstrations to guide an RL agent towards promising states and actions. As a result, oracle-level
performance can be achieved without global exploration, thus avoiding RL’s main source of high
sample complexity. For IL with a single oracle policy, the oracle policy’s return provides a natural
benchmark for the agent to match or outperform. Most existing IL techniques assume this single-
oracle setting, with a good but possibly suboptimal oracle policy. Behavior cloning [7] learns a policy
from a fixed batch of trajectories in a supervised way by treating oracle actions as labels. Inverse
reinforcement learning uses recorded oracle trajectories to infer the oracle’s reward function [8–11].
Interactive IL [12, 13] assumes the learner can actively ask an oracle policy for a demonstration

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

0 20 40 60 80
Iteration

200

400

600

800

1000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(a) CartPole (8 oracles)

0 50 100 150
Iteration

2000

4000

6000

8000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(b) DIP (4 oracles)

0 200 400 600 800
Iteration

0

1000

2000

3000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

MAMBA-0.9
AggreVaTeD
PG-GAE-0.9
Best Oracle

(c) Halfcheetah (2 oracles)

0 100 200 300
Iteration

0

500

1000

1500

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(d) Ant (2 oracles)

Figure 1: Performance of the best policies returned by an RL algorithm (GAE policy gradient [17]), the
single-oracle IL algorithm (AggreVaTeD [14]), and our multi-oracle IL algorithm MAMBA. All oracle polices
here are suboptimal and AggreVaTeD imitates the best one. In Halfcheetah and Ant, policies of IL algorihtms are
initialized by behavior cloning with the best oracle policy. A curve shows an algorithm’s median performance
across 8 random seeds. Please see Section 5 for details.

starting at the learner’s current state. When reward information of the original RL problem is available,
IL algorithms can outperform the oracle policy [14–16].

In this paper, we ask the question: how should an RL agent leverage domain knowledge encoded in
more than one (potentially suboptimal) oracle policies? We study this question in the aforementioned
interactive IL setting. Having multiple oracle policies is quite common in practice. For instance,
consider the problem of minimizing task processing delays via load-balancing a network of compute
nodes. Existing systems and their simulators have a number of human-designed heuristic policies
for load balancing that can serve as oracles [18]. Likewise, in autonomous driving, available oracles
can range from PID controllers to human drivers [19]. In these examples, each oracle has its own
strengths and can provide desirable behaviors for different situations.

Intuitively, because more oracle policies can provide more information about the problem domain,
an RL agent should be able to learn a good policy faster than using a single oracle. However, in
reality, the agent does not know the properties of each oracle. What it sees instead are conflicting
demonstrations from the oracle policies. Resolving this disagreement can be non-trivial, because there
may not be a single oracle comprehensively outperforming the rest, and the quality of each oracle
policy is unknown. Recently, several IL and RL works have started to study this practically important
class of scenarios. InfoGAIL [20] conditions the learned policy on latent factors that motivate
demonstrations of different oracles. AC-Teach [21] models each oracle with a set of attributes and
relies on a Bayesian approach to decide which action to take based on their demonstrations. OIL [19]
tries to identify and follow the best oracle in a given situation. However, all existing approaches to IL
from multiple oracles sidestep two fundamental questions: (a) What is a reasonable benchmark for
policy performance is these settings, analogous to the single-oracle policy quality in conventional IL?
(b) Is there a systematic way to stitch together several suboptimal oracles into a stronger baseline that
we can further improve upon?

We provide answers to these questions, making the following contributions:

1. We identify the state-wise maximum of oracle policies’ values as a natural benchmark for learning
from multiple oracles. We call it the max-aggregated baseline and propose policy improvement
from it as a natural strategy to combine these oracles together, creating a new policy that is
uniformly better than all the oracles in every state. These insights establish the missing theoretical
foundation for designing algorithms for IL with multiple oracles.

2. We propose a novel IL algorithm called MAMBA (Max-aggregation of Multiple Baselines) to
learn a policy that is competitive with the max-aggregated baseline by a reduction of policy
optimization to online learning [13, 22]. MAMBA is a first-order algorithm based on a new IL
gradient estimator designed in the spirit of generalized advantage estimation (GAE) [17] from the
RL literature. Like some prior works in IL, MAMBA interacts with the oracle in a roll-in/roll-out
fashion [13, 15] and does not assume access to oracle actions.

3. We provide regret-based performance guarantees for MAMBA. In short, MAMBA generalizes a
popular single-oracle IL algorithm AggreVaTe(D) [13, 14] to learn from multiple oracles and to
achieve larger improvements from suboptimal oracles. Empirically, we evaluate MAMBA against
the IL baseline (AggreVaTeD [14]) and direct RL (GAE policy gradient [17]). Fig. 1 highlights
the experimental results, where MAMBA demonstrates the capability to bootstrap demonstrations
from multiple weak oracles to significantly speed up policy optimization.

2

2 Background: Episodic Interactive Imitation Learning

Markov decision processes (MDPs) We consider finite-horizon MDPs with state space S and
action space A. Let T , d0(s), P(s′|s, a), and r : S × A → [0, 1] denote the problem horizon, the
initial state distribution, the transition dynamics, and the reward function, respectively. We assume
that d0, P , and r are fixed but unknown. Given a class of state-dependent policies Π, our goal is to
find a policy π ∈ Π that maximizes the T -step return with respect to the initial state distribution d0:

V π(d0) := Es0∼d0Eξ0∼ρπ|s0
[∑T−1

t=0 r(st, at)
]
, (1)

where ρπ(ξt|st) denotes the distribution over trajectory ξt = st, at, . . . , sT−1, aT−1 generated by
running policy π starting from the state st at time t to the problem horizon. To compactly write down
non-stationary processes, we structure the state space S as S = S̄ × {0, T − 1}, where S̄ is some
basic state space; thus, P and r can be non-stationary in S̄ . We allow S̄ and A to be either discrete or
continuous. We use the subscript of t to emphasize the time index. When writing st we assume it is
at time t, and every transition from s to s′ via P(s′|s, a) increments the time index by 1.

State distributions and value functions We let dπt stand for the state distribution at time t induced
by running policy π starting from d0 (i.e. dπ0 = d0 for any π), and define the average state distribution
as dπ := 1

T

∑T−1
t=0 dπt . Sampling from dπ returns st, where t is uniformly distributed. Therefore,

we can re-cast a policy’s T -step return in (1) as V π(d0) = TEs∼dπEa∼π|s[r(s, a)]. With a slight
abuse of notation, we denote by V π : S → R as the value function of policy π, which satisfies
V π(d0) = Es∼d0 [V π(s)]. Given a function f : S → R such that f(sT) = 0, we define the
Q-function w.r.t. f as Qf (s, a) := r(s, a) + Es′∼P|s,a[f(s′)] and the advantage function w.r.t. f as

Af (s, a) := Qf (s, a)− f(s) = r(s, a) + Es′∼P|s,a[f(s′)]− f(s) (2)

When f = V π, we also write AV
π

=: Aπ and QV
π

=: Qπ, which are the standard advantage
and Q-functions of a policy π. We write f ’s advantage function under a policy π as Af (s, π) :=
Ea∼π|s[Af (s, a)] and similarly Qf (s, π) and f(d) := Es∼d[f(s)] given a state distribution d. We
refer to functions f that index Q or A functions as baseline value functions, because we aim to
improve upon the value they provide in each state.

Definition 1. We say a baseline value function f is improvable w.r.t π if Af (s, π) ≥ 0, ∀s ∈ S.

Policy optimization with multiple oracle policies The setup above describes a generic episodic
RL problem, where the agent faces the need to perform strategic exploration and long-term credit
assignment. A common approach to circumvent the exploration challenge in practice is by leveraging
an oracle policy. In this paper, we assume access to multiple (potentially suboptimal) oracle policies
during training, and leverage episodic interactive IL to improve upon them. We suppose that the
learner (i.e. the agent) has access to a set of oracle policies Πe = {πk}k∈[K]. During training, the
learner can interact with the oracles in a roll-in-roll-out (RIRO) paradigm to collect demonstrations.
In each episode, the learner starts from an initial state sampled from d0 and runs its policy π ∈ Π up
to a switching time te ∈ [0, T − 1]; then the learner asks an oracle policy πe ∈ Πe to take over and
finish the trajectory. At the end, the learner records the entire trajectory, including reward information.
Note that we do not assume that oracle actions are observed. In addition, as sampled rewards are
available here, the learner can potentially improve upon the oracle policies.

3 A Conceptual Framework for Learning from Multiple Oracles

In this paper, we focus on the scenario where the set Πe = {πk}k∈[K] contains more than one oracle
policy. Having multiple oracle policies offers an opportunity to gain more information about the
problem domain. Each oracle may be good in different situations, so the learner can query suitable
oracles at different states for guidance. But how exactly can we leverage the information from
multiple oracles to learn more efficiently than from any single one of them?

Some natural baselines One approach for leveraging multiple oracles is to combine them into a
single oracle, such as by using a fixed weighted mixture [23], or multiplying their action probabilities

3

in each state [24].1 But the former can be quite bad even if only one oracle is bad, and the latter
fails to combine two deterministic oracles. Another alternative is to evaluate each oracle and run a
single-oracle IL algorithm with the one with the highest return. However, in Appendix A we show an
example where two oracles have identical suboptimal returns, but switching between them results in
the optimal behavior.

We ask, is there a general principle for combining multiple oracles? If we seek to switch among
multiple oracles, how should switching points be chosen? Can we learn a rule for doing so reliably?
In this section, we show that the issues mentioned above can be addressed by performing policy
improvement upon the state-wise maximum over the oracles’ values, i.e. the max-aggregated baseline.
We describe two conceptual algorithms: one is based on the perfect knowledge of the MDP and the
oracles’ value functions, while the other builds on the first one using online learning to handle an
unknown MDP and oracle values in the interactive IL setup. The insights gained from these two
conceptual algorithms will be used to design their practical variation, MAMBA, in Section 4.

3.1 Max-aggregation with Policy Improvement

To illustrate the key idea, first let us suppose for a moment that perfect knowledge of the MDP and
the oracles’ value functions is available. In this idealized setting, the IL problem can be rephrased
as follows: find a policy that is at least as good as all the oracle policies, and do so in a way whose
computational complexity is independent of the problem horizon. The restriction on the complexity
is important; otherwise we can just use the MDP knowledge to solve for the optimal policy.

How do we solve this idealized IL problem? When Πe contains only a single oracle, which we denote
as πe, a natural solution is the policy given by one-step policy improvement from πe, i.e. the policy
πe

+ that acts according to arg maxa∈A r(s, a) + Es′∼P|s,a[V π
e
(s′)]. It is well known that this policy

πe
+ is uniformly better than πe for all the states, i.e. V π

e
+(s) ≥ V π

e

(s) (cf. [25] and Corollary 1
below). However, this basic approach no longer applies when Πe contains multiple oracles, and
natural attempts to invoke a single-oracle algorithm do not work in general as discussed earlier.

A max following approach A simple way to remedy the failure mode of uniformly mixing the
oracle policies is to take a non-uniform mixture that is aware of the quality of each oracle. If we have
the value function of each oracle, we have a natural measure of their quality. With this intuition, for
the k-th oracle policy πk ∈ Πe, let us write V k := V π

k

. A natural candidate policy based on this
idea is the greedy policy that follows the best oracle in any given state:

π•(a|s) := πks(a|s), where ks := arg maxk∈[K] V
k(s) (3)

Imitating a benchmark similar to π• was recently proposed as a heuristic for IL with multiple oracles
in [19]. Our first contribution is a theoretical result showing that the intuition behind this heuristic
holds mathematically: π• indeed satisfies V π

•
(s) ≥ maxk∈[K] V

k(s). To show this, we construct a
helper corollary based on the useful Performance Difference Lemma (Lemma 1)2.
Lemma 1. [26, 27] Let f : S → R be such that f(sT) = 0. For any MDP and policy π,

V π(d0)− f(d0) = TEs∼dπ [Af (s, π)]. (4)

Corollary 1. If f is improvable w.r.t. π , then V π(s) ≥ f(s), ∀s ∈ S.

Corollary 1 implies that a policy π has a better performance than all the oracles in Πe if there is a
baseline value function f that is improvable w.r.t. π (i.e. Af (s, π) ≥ 0) and dominates the value
functions of all oracle policies everywhere (i.e. f(s) ≥ V k(s), ∀k ∈ [K], s ∈ S).

This observation suggests a natural value baseline for studying IL with multiple oracles:
fmax(s) := maxk∈[K] V

k(s). (5)

Below we prove that this max-aggregated baseline fmax in (5) is improvable with respect to π•.
Together with Corollary 1, this result implies that π• is a valid solution to the idealized IL problem
with multiple oracles. We write the advantage Af

max

with respect to fmax in short as Amax.
Proposition 1. fmax in (5) is improvable with respect to π•, i.e. Amax(s, π•) ≥ 0.

1These approaches are proposed for supervised learning and not specifically IL.
2Lemma 1 is an adaptation of the standard Performance Difference Lemma to using f that is not necessarily

the value function of any policy. We provide proofs of Lemma 1 and Corollary 1 in Appendix C for completeness.

4

Degeneracy of max-following The policy π• above, however, suffers from a degenerate case:
when there is one oracle in Πe that is uniformly better than all the other oracles (say πe), we have
π• = πe, whereas we know already πe

+ is a uniformly better policy that we can construct using the
same information. In this extreme case, in the standard IL setting with one oracle, π• would simply
return the suboptimal oracle.

A max-aggregation approach Having noticed the failure mode of π•, we obtain a natural fix by
combining the same value baseline (5) with the standard policy improvement operator. We define

πmax(a|s) := δa=as , where as := arg maxa∈AA
max(s, a), (6)

and δ denotes the delta distribution. In contrast to π•, πmax looks one step ahead and takes the
action with the largest advantage under fmax. Note that this is not necessarily the same as following
highest-value oracle in the current state. Since πmax satisfies Amax(s, πmax) ≥ Amax(s, π•) ≥ 0,
by Corollary 1, πmax is also a valid solution to the idealized IL problem with multiple oracles. The
use of πmax is novel in IL to our knowledge, although πmax is called Multiple Path Construction
Algorithm in controls [28, Chapter 6.4.2]. Corollary 1 provides a simple proof of why πmax works.

In general, V π
max

(s) and V π
•
(s) are not comparable. But, crucially, in the degenerate case above

we see that πmax reduces to πe
+ and therefore would perform better than π•, although in Appendix A

we also show an MDP where π• is better. Intuitively, this happens as fmax implicitly assumes using
a single oracle for the remaining steps, but both π• and πmax re-optimize their oracle choice at every
step, so their relative quality can be arbitrary. While both π• and πmax improve upon all the oracles,
in this paper, we choose πmax as our imitation benchmark, because it is consistent with prior works
in the single-oracle case and does not require observing the oracles’ actions in IL, unlike π•.

Finally, we remark that Barreto et al. [29] recently proposed a generalized policy improvement
operator, arg maxa∈Amaxk∈[K]Q

πk(s, a), for multi-task RL problems. It yields a policy that is
similar to πmax in (6) and is uniformly better than all the oracles. However, despite similarities, these
two policies are overall different. In particular, maxk∈[K]Q

πk(s, a)− fmax(s) ≤ Amax(s, a), so (6)
aims to improve upon a stronger baseline. And, as we will see in the next section, (6) allows for a
geometric weighted generalization, which can lead to an even larger policy improvement.

3.2 Max-aggregation with Online Learning

The previous section shows that improving from the max-aggregated baseline fmax in (5) is a key to
reconciling the conflicts between oracle policies. However doing so requires the knowledge of the
MDP and the oracles’ value functions, which are unavailable in the episodic interactive IL setting.

To compete with fmax without the above assumption, we design an IL algorithm via a reduction to
online learning [30], a technique used in many prior works in the single-oracle setting [12–16, 31].
To highlight the main idea, at first we still assume that the oracles’ value functions are given, but only
the MDP is unknown. Then we show how to handle unknown value functions. For clarity, we use
the subscript in πn to index the learner’s policy in Π generated in the n-th round of online learning,
while using the superscript in πk to index the oracle policy in Πe.

Ideal setting with known values If the MDP dynamics and rewards are unknown, we can treat
dπn as the adversary in online learning and define the online loss in the n-th round as

`n(π) := −TEs∼dπn [Amax(s, π)] . (7)

By Lemma 1, making `n(πn) small ensures that V πn(d0) is not much worse than fmax(d0). Formally,
averaging this argument over N rounds of online learning, we obtain

1
N

∑
n∈[N] V

πn(d0) = fmax(d0) + ∆N − εN (Π)− RegretN
N , (8)

where we define RegretN :=
∑N
n=1 `n(πn)−minπ∈Π

∑N
n=1 `n(π),

∆N := −1
N

∑N
n=1 `n(πmax), and εN (Π) := minπ∈Π

1
N

(∑N
n=1 `n(π)−

∑N
n=1 `n(πmax)

)
. (9)

In (8), the regret characterizes the learning speed of an online algorithm, while εN (Π) captures
the quality of the policy class. If πmax ∈ Π, then εN (Π) = 0; otherwise, εN (Π) ≥ 0. Fur-
thermore, we have ∆N ≥ 0, because we showed Amax(s, πmax) ≥ 0 in Section 3.1. Thus,

5

Algorithm 1 MAMBA for IL with multiple oracles

Input: Initial learner policy π1, oracle polices {πk}k∈[K], function approximators {V̂ k}k∈[K].
Output: The best policy in {π1, . . . , πN}.
1: for n = 1 . . . N − 1 do
2: Uniformly sample te ∈ [T − 1] and k ∈ [K].
3: Roll-in πn up to te and switch to πk to complete the remaining trajectory to collect data Dn.
4: Update V̂ k using Dn (e.g. using Monte-Carlo estimates).
5: Roll-in πn for the full T -horizon to collect data D′n.
6: Compute the sample estimate gn of∇̂̀n(π;λ) (17) using D′n and f̂max(s) = maxk∈[K] V̂

k(s).
7: Update πn to πn+1 by giving gn to a first-order online learning algorithm (e.g. mirror descent).
8: end for

when πmax ∈ Π, running a no-regret algorithm (i.e. an algorithm such that RegretN = o(N))
to solve this online learning problem will guarantee producing a policy whose performance at least
Es∼d0 [maxk∈[K] V

k(s)] + ∆N + o(1) after N rounds.

The above reduction in (7) generalizes AggreVaTE [13] from using f = V π
e

in Af for define the
online loss for the single oracle case to using f = fmax instead, which is also applicable to multiple
oracles. When an oracle in Πe dominates the others for all the states, (7) is the same as the online
loss in AggreVaTE.

Effect of approximate oracle values Recall that for the above derivation we assumed oracle policy
values (and hence fmax) are given. In practice, fmax is unavailable and needs to be approximated by
some f̂max. Let Â denote the shorthand of Af̂

max

. We can treat the approximation error as bias and
variance in the feedback signal, such as the sample estimate of the gradient below:

∇̂̀n(πn) = −TEs∼dπnEa∼π|s
[
∇ log π(a|s)Â(s, a)

]
|π=πn , (10)

where ∇ is with respect to the policy. We summarize the approximation effects as a meta theorem,
where generally β and ν increase as the problem horizon increases.

Theorem 1. Suppose a first-order online algorithm that satisfies E[RegretN] ≤ O(βN +
√
νN) is

adopted, where β and ν are the bias and the variance of the gradient estimates, respectively. Then

E[max
n∈[N]

V πn(d0)] ≥ Es∼d0 [max
k∈[K]

V k(s)] + E[∆N − εN (Π)]−O(β +
√
νN−1/2) (11)

where the expectation is over the randomness in feedback and the online algorithm.

Theorem 1 describes considerations of using f̂max in place of fmax. For the single-oracle case,
f̂max can be an unbiased Monte-Carlo estimate (i.e. ∇̂̀n = ∇`n); but a sample estimate of such
∇̂̀n(πn) suffers from a variance that is T -times larger than the Monte-Carlo estimate of policy
gradient due to the restriction of RIRO data collection protocol3. Alternatively, one can use function
approximators [14] as f̂max to shift the variance from the gradient estimate to learning f̂max. In
this case, (10) becomes akin to the actor-critic policy gradient. But when the accuracy of the value
estimate f̂max is bad, the bias in (10) can also compromise the policy learning.

For the multi-oracle case, unbiased Monte-Carlo estimates of fmax are infeasible, because fmax(s) =

V ks(s) and πks is unknown (i.e. we do not know the best oracle policy at state s). Therefore, f̂max in
(10) must be a function approximator. But, due to the max operator in fmax, learning f̂max becomes
challenging as all the oracles’ value functions need to ba approximated uniformly well.

4 MAMBA: Multi-Step Policy Improvement upon Multiple Oracles

We propose MAMBA as a practical realization of the first-order reduction idea in Theorem 1 (shown in
Algorithm 1). As discussed, obtaining a good sample estimate of (10) is nontrivial. As a workaround,

3As V ks is not the value of πn but πks , computing an unbiased estimate of ∇`n(πn) requires uniformly
selecting the switching time te ∈ {0, . . . , T − 1} in the RIRO setting, which amplifies the variance by O(T).

6

we will design MAMBA based on an alternate online loss `n(π;λ) that shares the same property as
`n(π) in (7) but has a gradient expression with tunable bias-variance trade-off. More importantly, we
prove that adapting λ leads to a continuous transition from one-step policy improvement to solving a
full-scale RL problem. Consequently, fine-tuning this λ “knob" can additionally trade off the limited
performance gain of performing one-step policy improvement and the sample inefficiency of solving
a full-scale RL problem in order to obtain the best finite-sample policy performance in learning.

4.1 Trade-off between One-Step Policy Improvement and Full RL

The alternate online loss `n(π;λ) is based on the geoemtric weighting technique commonly used in
RL algorithms (such as TD-λ [32]). Specifically, for λ ∈ [0, 1], we propose to define the new online
loss in the n-th round as

`n(π;λ) := −(1− λ)TEs∼dπn [Amax,π
λ (s, π)]− λEs∼d0 [Amax,π

λ (s, π)] (12)

where we define a λ-weighted advantage

Amax,π
λ (s, a) := (1− λ)

∑∞
i=0 λ

iAmax,π
(i) (s, a) (13)

by combining various i-step advantages:

Amax,π
(i) (st, at) := Eξt∼ρπ|st [r(st, at) + · · ·+ r(st+i, at+i) + fmax(st+i+1)]− fmax(st).

The hyperparameter λ in (12) controls the attainable policy performance and the sample complexity
of learning with (12). To examine this, let us first note some identities due to the geometric weighting:
Amax,π

0 = Amax,π
(0) = Amax and Amax,π

1 = Amax,π
(∞) = Qπ − fmax. Therefore, when λ = 1,

the online loss in (12) becomes the original RL objective for every round (one can show that
`n(π; 1) = fmax(d0)− V π(d0) for all n), where policy learning aims to discover the optimal policy
but is sample inefficient. On the other hand, when λ = 0 (we define 00 = 1), (12) reduces back
to (7) (i.e., `n(π; 0) = `n(π)), where policy learning is about one-step policy improvement from
the max-aggregated baseline (namely IL). Although doing so does not necessarily yield the optimal
policy, it can be done in a sample-efficient manner. By tuning λ we can trade off performance bias
and sample complexity to achieve the best performance given a finite number of samples.

We can make a connection of (12) to the IL literature. When there is a single oracle (i.e. fmax = V π
e
),

we can interpret the online loss (12) in terms of known IL objectives. In (12), the first term is the
λ-weighted version of the AggreVaTe loss [13], and the second term is the λ-weighted version of the
THOR loss [33]. But none of these prior IL algorithms makes use of the λ-weighted advantages.

Lastly, let us formally establish the relationship between (12) and the RL objective by a generalization
of the Performance Difference Lemma (Lemma 1) to take into account geometric weighting.
Lemma 2. For any policy π, any λ ∈ [0, 1], and any baseline value function f : S → R,

V π(d0)− f(d0) = (1− λ)TEs∼dπ
[
Af,πλ (s, π)

]
+ λEs∼d0

[
Af,πλ (s, π)

]
, (14)

where Af,πλ is defined like Amax,π
λ but with a general f instead of fmax.

In other words, the new online loss function `n(π;λ) satisfies an equality similar to Lemma 1,
which `n(π) relies on to establish the reduction in (8). Now, with the proper generalization given by
Lemma 2, we can formally justify learning with `n(πn;λ).
Theorem 2. Performing no-regret online learning w.r.t. (12) has the guarantee in Theorem 1, except
now εN (Π) can be negative when λ > 0.

Theorem 2 shows that learning with `n(π;λ) has a similar performance guarantee to using `n(π) in
Theorem 1, but with one important exception: now εN (Π) can be negative (which is in our favor),
because πmax may not be the best policy for the multi-step advantage in `n(π;λ) when λ > 0. This
again can be seen from the fact that optimizing `n(π; 1) is equivalent to direct RL. As a result, when
using larger λ in MAMBA, larger improvements can be made from the oracle polices as we move
from one-step policy improvement toward full-fledged RL. However, looking multiple steps ahead
with high λ would also increase the feedback variance ν in Theorem 1, which results in a slower
convergence rate. In practice, λ needs to be tuned to achieve the best finite-sample performance.

7

4.2 Simple Gradient Estimation
While the online loss `n(π;λ) in (12) appears complicated, interestingly, its gradient ∇`n(π;λ) has
a very clean expression, as we prove below.
Lemma 3. For any λ ∈ [0, 1], any baseline value function f : S → R, and any policy π, the
following holds:

h(π;λ) := (1− λ)TEs∼dµ
[
Af,πλ (s, π)

]
+ λEs∼d0

[
Af,πλ (s, π)

]
(15)

∇h(π;λ)|µ=π = TEs∼dπEa∼π|s[∇ log π(a|s)Af,πλ (s, a)], (16)

where dµ denotes the average state distribution of a policy µ.

Using Lemma 3, we design a gradient estimator for `n(π;λ) by approximating fmax in ∇`n(π;λ)

with a function approximator f̂max:

∇̂̀n(πn;λ) = −TEs∼dπnEa∼π|s[∇ log π(a|s)Âπλ(s, a)]|π=πn , (17)

where Âλ is defined by replacing fmax in (13) with f̂max. Implementation-wise, the infinite sum in
Âλ can be computed by standard dynamic programming.

Lemma 4. Define Â(s, a) := r(s, a) + Es′|s,a[f̂max(s′)]− f̂max(s). It holds that for all λ ∈ [0, 1],

Âπλ(st, at) = Eξt∼ρπ|st
[∑T−1

τ=t λ
τ−tÂ(aτ , sτ)

]
(18)

Therefore, given f̂max as a function approximator, an unbiased estimate of (17) can be obtained by
sampling trajectories from π directly, without any RIRO interleaving with the oracles. This gradient
estimator is reminiscent of GAE for policy gradient [17], but translated to IL.

The gradient expression in (17) reveals that λ also plays a role in terms of bias-variance trade-off, in
addition to the transition from one-step improvement to full-scale RL discussed above. Comparing
(10) and (17), we see that ∇̂̀n(π;λ) in (17) replaces Â in ∇̂̀n(π) in (10) with the λ-weighted
version Âπλ. Controlling λ regulates the effects of the approximation error f̂max − fmax on the
difference Âπλ −A

max,π
λ , which in turn determines the gradient bias∇̂̀n(π;λ)−∇`n(π;λ) (namely

β in Theorem 1). This mechanism is similar to the properties of the GAE policy gradient [17]. We
recover the gradient in (10) when λ = 0 and the policy gradient when λ = 1.

Finally, we emphasize that ∇̂̀n(π;λ) in (17) is not an approximation of ∇̂̀n(π) in (10), because
generally ∇`n(πn;λ) 6= ∇`n(πn) even when f̂max = fmax, except for fmax = V πn (in this case,
for all λ ∈ [0, 1], ∇`n(πn;λ) = ∇`n(πn) = −∇V πn(d0), which is the negative policy gradient).
Therefore, while the GAE policy gradient [17] is an approximation of the policy gradient,∇̂̀n(π)

and ∇̂̀n(π;λ) are gradient approximations of different online loss functions in (7) and (12).

5 Experiments and Discussion

0 20 40 60 80
Iteration

200

400

600

800

1000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

MAMBA-0.9
MAMBA-0.5
MAMBA-0.1
AggreVaTeD
PG-GAE-0.9
Best Oracle

Figure 2: MAMBA with differ-
ent λ values in a single-oracle
setup in CartPole. A curve
shows an algorithm’s median per-
formance across 8 random seeds.

We corroborate our theoretical discoveries with simulations of IL
from multiple oracles. We compare MAMBA with two representa-
tive algorithms: GAE Policy Gradient [17] (PG-GAE with λ = 0.9)
for direct RL and AggreVaTeD [14] for IL with a single oracle. Be-
cause we can view these algorithms as different first-order feedback
for policy optimization, comparing their performance allows us to
study two important questions: 1) whether the proposed GAE-style
gradient in (17) is an effective update direction for IL and 2) whether
using multiple oracles helps the agent learn faster.

Four continuous Gym [34] environments are used: CartPole and
DoubleInvertedPendulum (DIP) based on DART physics engine [35],
and Halfcheetah and Ant based on Mujoco physics engine [36]. To
facilitate a meaningful comparison, we let these three algorithms use
the same first-order optimizer4, train the same initial neural network policies, and share the same

4ADAM [37] for CartPole, and Natural Gradient Descent [38] for DIP, Halfcheetah, and Ant

8

0 50 100 150
Iteration

2000

4000

6000

8000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(a) DIP

0 200 400 600 800
Iteration

0

1000

2000

3000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(b) Halfcheetah

0 100 200 300
Iteration

0

500

1000

1500

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

(c) Ant

Figure 3: Comparison of MAMBA with different number of oracles (λ = 0.9). A curve shows an algorithm’s
median performance across 8 random seeds.

random seeds. In each training iteration, an algorithm would perform H rollouts following the RIRO
paradigm (see also Algorithm 1), where H = 8 for CartPole and DIP and H = 256 for Halfcheetah
and Ant. Each oracle policy here is a partially trained, suboptimal neural network5, and its value
function approximator used in MAMBA is trained online along policy optimization, by Monte-Carlo
estimates obtained from the RIRO data collection. Please see Appendix D for implementation details.
The codes are provided at https://github.com/microsoft/MAMBA.

Effects of λ-weighting First we consider in Fig. 2 the single-oracle IL setting with the oracle
that has the highest return in the CartPole environment. We see that with the help of the oracle
policy, AggreVaTeD (which is MAMBA with λ = 0) improves faster than PG-GAE. However, while
AggreVaTeD learns to significantly outperform the oracle, it does not reach the optimal performance,
like PG-GAE. To improve the learner performance, we use MAMBA with λ > 0 to learn from the
same suboptimal oracle. As shown in Theorem 2 using a positive λ can increase the amount of
improvement that can be made from the oracle compared with λ = 0. The trend in Fig. 2 supports this
insight, where high λ = 0.9 allows the learner to reach higher return. We found that using the middle
λ = 0.5 gives the worst performance, likely because it settles badly in the trade-off of properties. In
the following experiments, we will use λ = 0.9 for MAMBA as it performs the best here.

Effects of multiple oracles We show the effects of using multiple oracles in Fig. 3 for the remaining
three environments (the results of CartPole can be found in Fig. 1 and Appendix D). Here we run
MAMBA with λ = 0.9 with 1, 2, 4, or 8 oracles. We index these oracles in a descending order of
their performances with respect to the initial state distribution; e.g., MAMBA-0.9-1 uses the best
oracle and MAMBA-0.9-2 uses the top two. Interestingly, by including more but strictly weaker
oracles, MAMBA starts to improve the performance of policy optimization. Overall MAMBA
greatly outperforms PG-GAE and AggreVaTeD across all the environments, even when just using
a single oracle.6 The benefit of using more oracles becomes smaller, however, as we move to the
right of Fig. 3 into higher dimensional problems. Although using more oracles can potentially yield
higher performance, the learner also needs to spend more time to learn the oracles’ value functions.
Therefore, under the same interaction budget, the value approximation quality worsens when there
are more oracles. This phenomenon manifests particularly in our direct implementation, which
trains each value function estimator independently with Monte-Carlo samples. We believe that the
scalability for dimensionality can be improved by using off-policy techniques and sharing parameters
across different networks. We leave this as an important future direction.

Summary We conclude this paper by revisiting Fig. 1, which showcases the best multi-oracle
settings in Fig. 3. Overall these results support the benefits of IL from multiple oracles and the new
GAE-style IL gradient in (17). In conclusion, we propose a novel theoretical foundation and algorithm
MAMBA for IL with multiple oracle policies. We study how the conflicts between different oracles
can be resolved through the max-aggregated baseline and propose a new GAE-style gradient for the
IL setting, which can also be used to improve the robustness and performance of existing single-oracle
IL algorithms. We provide regret-based theoretical guarantees on MAMBA and demonstrate its
properties empirically. The experimental results show that MAMBA is able to improve upon multiple,
very suboptimal oracle policies to achieve the optimal performance, faster than both the pure RL
method (PG-GAE [17]) and the single-oracle IL algorithm (AggreVaTeD [14]).

5The best and the worst oracles in scores of 87 and 9 in CartPole, 4244 and 2440 in DIP, 1726 and 1395 in
Halfcheetah, and 1051 and 776 in Ant.

6The bad performance of PG-GAE in Ant is due to that all learners can only collect a fixed number of
trajectories in each iteration, as opposed to a fixed number of samples used in usual RL benchmarks. This setting
is a harder RL problem and better resembles real-world data collection where reset is expensive.

9

Broader Impact

This paper is theoretical in nature, and so we expect the ethical and societal consequences of our
specific results to be minimal. More broadly, we do expect that reinforcement learning will have
significant impact on society. There is much potential for benefits to humanity in the often-referenced
application domains of precision medicine, personalized education, and elsewhere. There is also
much potential for harms, both malicious and unintentional. To this end, we hope that research into
the foundations of reinforcement learning can help enable these applications and mitigate harms
through the development of algorithms that are efficient, robust, and safe.

References
[1] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.

The International Journal of Robotics Research, 2013.

[2] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang, Ying-Chang
Liang, and Dong In Kim. Applications of deep reinforcement learning in communications and
networking: A survey. IEEE Communications Surveys & Tutorials, 21, 2019.

[3] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford,
Damien Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. In Advances
in Neural Information Processing Systems, 2017.

[4] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

[5] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In Advances in Neural Information Processing
Systems, pages 1800–1809, 2018.

[6] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan
Peters. An algorithmic perspective on imitation learning. Foundations and Trends in Robotics,
7(1-2):1–179, 2018. ISSN 1935-8261.

[7] Dean Pomerleau. ALVINN: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, 1989.

[8] Peter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning, 2004.

[9] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Conference on Artificial Intelligence, 2008.

[10] Chelsea Finn and Sergey Levine. Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning, 2016.

[11] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems, pages 4565–4573, 2016.

[12] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In International Conference on Artificial
Intelligence and Statistics, 2011.

[13] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive
no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

[14] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In International Confer-
ence on Machine Learning, pages 3309–3318. JMLR. org, 2017.

[15] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Hal Daumé III.
Learning to search better than your teacher. In International Conference on Machine Learning,
2015.

10

[16] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning through
imitation and reinforcemen. In Conference on Uncertainty in Artificial Intelligence, 2018.

[17] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[18] Jung-Yeon Baek, Georges Kaddoum, Sahil Garg, Kuljeet Kaur, and Vivianne Gravel. Managing
fog networks using reinforcement learning based load balancing algorithm. In IEEE Wireless
Communications and Networking Conference, 2019.

[19] Guohao Li, Matthias Mueller, Vincent Casser, Neil Smith, Dominik L Michels, and Bernard
Ghanem. OIL: Observational imitation learning. In Robotics: Science and Systems, 2018.

[20] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from
visual demonstrations. In Advances in Neural Information Processing Systems, 2017.

[21] Andrey Kurenkov, Ajay Mandlekar, Roberto Martin-Martin, Silvio Savarese, and Animesh
Garg. AC-Teach: A Bayesian actor-critic method for policy learning with an ensemble of
suboptimal teachers. In Conference on Robot Learning, 2019.

[22] Ching-An Cheng and Byron Boots. Convergence of value aggregation for imitation learning. In
International Conference on Artificial Intelligence and Statistics, pages 1801–1809, 2018.

[23] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

[24] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

[25] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[26] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In International Conference on Machine
Learning, volume 99, pages 278–287, 1999.

[27] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning, volume 2, pages 267–274, 2002.

[28] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

[29] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences,
2020.

[30] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning, pages 928–936, 2003.

[31] Ching-An Cheng, Xinyan Yan, Evangelos Theodorou, and Byron Boots. Accelerating imitation
learning with predictive models. In International Conference on Artificial Intelligence and
Statistics, pages 3187–3196, 2019.

[32] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[33] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combin-
ing reinforcement learning & imitation learning. In International Conference on Learning
Representations, 2018.

[34] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

11

[35] Jeongseok Lee, Michael Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha
Srinivasa, Mike Stilman, and Chuanjian Liu. Dart: Dynamic animation and robotics toolkit.
Journal of Open Source Software, 3(22):500, 2018.

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[38] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, 1998.

[39] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems, pages 4565–4573, 2016.

[40] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph Lim. Multi-
modal imitation learning from unstructured demonstrations using generative adversarial nets. In
Advances in Neural Information Processing Systems, 2017.

[41] Aviv Tamar, Khashayar Rohanimanesh, Yinlam Chow, Chris Vigorito, Ben Goodrich, Michael
Kahane, and Derik Pridmore. Imitation learning from visual data with multiple intentions. In
International Conference on Representation Learning, 2018.

[42] Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Reinforcement learning with multiple ex-
perts: A Bayesian model combination approach. In Advances in Neural Information Processing
Systems, 2018.

[43] Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron Boots. Predictor-corrector policy
optimization. In International Conference on Machine Learning, pages 1151–1161, 2019.

12

	Introduction
	Background: Episodic Interactive Imitation Learning
	A Conceptual Framework for Learning from Multiple Oracles
	Max-aggregation with Policy Improvement
	Max-aggregation with Online Learning

	MAMBA: Multi-Step Policy Improvement upon Multiple Oracles
	Trade-off between One-Step Policy Improvement and Full RL
	Simple Gradient Estimation

	Experiments and Discussion

