Supplementary Material

Ablation Study

Table 1: Ablation Study. Bold marks results surpassing LWM from Tab. 2 of the manuscript. Experiments are performed with one seed.

	Feed-forward	Random Features
Freeway	33.0	30.4
Frostbite	6353	5178
Venture	1206	810
Gravitar	1094	1116
Solaris	715	903
Montezuma	397	0

Tab. 1 presents ablation experiments. First, we have replaced RNN with a feed-forward network, keeping the W-MSE representation. Next, we have replaced the W-MSE representation with Random Features, keeping the RNN model. For *Montezuma's Revenge*, in both cases and the final score does not exceed 400. We noticed that both components of LWM work collaboratively: while the representation is optimised to preserve temporal consistency, the sequential prediction approximates well the trajectory of the agent.

For the Partially Observable Labyrinth, we experimented with the popular theoretically justified method MBIE-EB [Strehl and Littman, 2008]. However, this method does not assume partial observability and is not applicable to this environment: we observed a degradation in performance $(-55.7 \text{ for size } 3 \times 3, -1000 \text{ for } 4 \times 4)$. Replacing the RNN world model with a feed-forward network produces an even more dramatic decline to -969 for size 3×3 . In this case, the irrelevant intrinsic reward completely obscures the target goal.

Noisy TV experiment

For an intuition about W-MSE representation and stochasticity, let's consider the noisy TV experiment: there is a TV in the environment, an agent can switch channels, but it always shows random images or noise. Observing it, most of the curiosity methods will produce an harmful high intrinsic reward, this effect being known as the "couch-potato" issue [Savinov et al., 2018]. In our case, the W-MSE loss pushes the representations of neighbour frames to be as similar as possible, thus the representations of random images of the TV will converge to the mean and will be easily predictable by the world model, avoiding the described issue.

Algorithms

Alg. 1 represents high-level training scheme, Alg. 2 represents the intrinsic reward computation scheme.

Hyperparameters

Tab. 2 represents the Convolutional Neural Network (CNN) architecture used for the encoder Φ and for DQN. Tab. 3 represents the details of Φ training. Tab. 4 lists pre-processing elements of Atari environments. Tab. 5 and Tab. 6 correspond to parameters of DQN and LWM. Recurrent Neural Networks (RNN) are GRU. FC denotes Fully Connected. Nonlinearities are ReLU. DQN target Q-network is updated every step with an exponentially moving average with a smoothing constant $\tau = 0.005$.

Parameters of Partially Observable Labyrinth experiments are presented in Tab. 7 and Tab. 8.

Training dynamics

Fig. 1 shows training dynamics. For *Montezuma's Revenge*, the 2500 score was reached first time at 24.5M, 43.2M, 33.6M, 28.2M, 41M frame for each seed respectively.

Algorithm 1: Training cycle

input : buffer; encoder Φ ; network LWM; network DQN $h \leftarrow 0;$ while training do Query two recent steps from buffer; Compute intrinsic reward r_{recent}^{in} for recent; $action, h \leftarrow \mathsf{DQN}(recent, r_{recent}^{in}, h);$ Step environment with action and receive output; Append *output* to buffer; if end of episode then $\downarrow h \leftarrow \hat{0};$ Sample *pairs* of observations from buffer; Update Φ with *pairs*; Sample unrolls from buffer; Compute intrinsic reward r^{in} for *unrolls*; Update LWM with unrolls; Update DQN with unrolls and r^{in} ;

/* DQN hidden state */

Algorithm 2: Computation of the intrinsic reward for unroll

 $\begin{array}{l} \mbox{input : unroll; } dist_{mean}, dist_{std}; \beta \\ \mbox{output : rewards } r_i^{in}, i \in [1, N-1] \\ b \leftarrow 0; \\ o \leftarrow \mbox{Observations}(unroll); \\ a \leftarrow \mbox{Actions}(unroll); \\ N \leftarrow \mbox{Length}(unroll); \\ \mbox{for } i \leftarrow 1 \mbox{ to } N \mbox{ do} \\ \hline \\ e_{i-1} \leftarrow \Phi(o_{i-1}); \\ e_i \leftarrow \Phi(o_i); \\ pred, b \leftarrow \mbox{LWM}(e_{i-1}, a_{i-1}, b); \\ dist \leftarrow \mbox{MeanSquaredError}(e_i, pred); \\ \mbox{Update running average } dist_{mean} \mbox{ and } dist_{std} \mbox{ with } dist; \\ r_i^{in} \leftarrow \frac{dist-dist_{mean}}{dist_{std}}; \\ r_i^{in} \leftarrow \min(\max(r_i^{in}, -10), 10); \\ r_i^{in} \leftarrow \beta \times r_i^{in}; \end{array}$

/* LWM hidden state */

Table 2: CNN architecture

Channels	1, 32, 64, 64
Kernels	8, 4, 3
Strides	4, 2, 1

Table 3: Φ training with W-MSE loss

Optimizer	Adam
Learning rate	$5 \cdot 10^{-4}$
Pretrain iterations	10000
Batch size	256 pairs
Input image size	$84 \times 84 \times 1$
Output embedding size	32
Max spatial shift	4
Max temporal shift L	2

Table 4: Atari pre-processing

Max episode length	10000 steps
Action repeats	4
Frames stack	1
End episode on life loss	True
Reward clipping	False
Random noops range	30
Sticky actions	False
Frames max pooled	3 and 4
Grayscaled	True
Observation scaling	84×84

Table 5: Atari DQN

Optimizer	Adam
Learning rate	10^{-4}
Adam epsilon	10^{-3}
Clip gradient norm	40
Actors	128
Unroll	80 steps
Burn-in	40 steps
Batch size	16 unrolls
N-step	5
Discount γ	0.99
Target Q-network τ	0.005
Replay buffer size	10^{6}
Replay warm-up	$4 \cdot 10^5$
Replay priority exponent	0.9
Importance sampling exponent	0.6
Total environment frames	$5 \cdot 10^{7}$
Training ϵ	$0.4^i, i \in [1, 8]$
Evaluation ϵ	0.001
CNN output size	512
RNN input size	512 + 1 + num. actions
RNN hidden size	512
Advantage FC layers	$512 \rightarrow 512, 512 \rightarrow$ num. actions
Value FC layers	$512 \rightarrow 512, 512 \rightarrow 1$

Table 6: Atari LWM

Optimizer	Adam
Learning rate	$5 \cdot 10^{-4}$
Pretrain iterations	5000
Mean and std momentum	0.999
FC layer before RNN	emb. size + num. actions $\rightarrow 128$
RNN input size	128
RNN hidden size	256
FC layers	$256 \rightarrow 256, 256 \rightarrow \text{emb. size}$

Table 7: POL DQN	
Optimizer	Adam
Learning rate	$5 \cdot 10^{-4}$
Adam epsilon	10^{-3}
Clip gradient norm	40
Actors	8
Unroll	32 steps
Burn-in	16 steps
Actors to learner iteration ratio	4
Batch size	32 unrolls
N-step	1
Discount γ	0.99
Target Q-network $ au$	0.05
Replay buffer size	10^{5}
Replay warm-up	10^{4}
Replay sampling	Uniform
Total environment frames	10^{6}
Max episode length	1000 steps
Training ϵ	0.01
Evaluation ϵ	0.01
FC layer before RNN	$4 + 4 + 1 \rightarrow 32$
RNN input size	32
RNN hidden size	128
Advantage FC layers	$128 \rightarrow 128, 128 \rightarrow 4$
Value FC layers	$128 \rightarrow 128, 128 \rightarrow 1$

Table 8: POL LWM

Table 8: POL LWM	
Optimizer	Adam
Learning rate	$5 \cdot 10^{-4}$
Pretrain iterations	1000
Mean and std momentum	0.99
FC layer before RNN	$4 + 4 \rightarrow 32$
RNN input size	32
RNN hidden size	128
FC layers	$128 \rightarrow 128, 128 \rightarrow 4$
Output nonlinearity	Sigmoid
Intrinsic reward scale β	1

Figure 1: Cumulative rewards of the last actor (with lowest ϵ) during the training for Atari environments. The line corresponds to the average over 5 seeds, the light-blue area corresponds to the minimum and maximum.

References

- Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability, 2018.
- Alexander L. Strehl and Michael L. Littman. An analysis of model-based interval estimation for markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309 1331, 2008. ISSN 0022-0000. Learning Theory 2005.