
A Pseudo-code of PC Algorithm394

For completeness, we provide the pseudo-code for the PC algorithm in Algorithm 3.395

Algorithm 3: PC Algorithm.
Input: V : vertex set, D: dataset, T : threshold

1 Function PC(V,D, T ):
2 G = complete graph on V, ord = 0
3 while ∃ vi s.t. |Adj(G, vi)− vj | ≥ ord do
4 while ∃ edge (vi, vj) s.t. |Adj(G, vi)− vj | ≥ ord that has not been tested do
5 select edge (vi, vj) in G s.t. |Adj(G, vi)− vj | ≥ ord
6 while ∃ S that has not been tested do
7 choose S ⊆ Adj(G, vi)− vj , |S| = ord
8 if indep test(ij|S) ≥ T then
9 remove (vi, vj) from G

10 break
11 ord = ord + 1
12 Output G

B Exponential Mechanism & Sparse Vector Technique396

For completeness, we provide detailed description of exponential mechanism and exponential mech-397

anism.398

Exponential Mechanism. Exponential mechanism is designed for differentially private selection399

from infinite output set. It computes an utility score for each candidate output and randomly selects400

from the output candidates based on probability derived from the utility score. The pseudo-code for401

exponential mechanism is shown in Algorithm 4.402

Algorithm 4: Exponential Mechanism
Input: D: dataset, O: output set, u: 1-sensitive utility function, ε: privacy parameters.

1 Function EM(D, O, u, ε):
2 Initiate U as an empty lists
3 for o ∈ O do
4 Append u(D, o) to U
5 Randomly select o from O according to probability exp(εuo/2)∑

ui∈U
exp(εui/2) .

Sparse Vector Technique. Sparse vector technique is a widely used differentially private mecha-403

nism. It can answer a large number of queries while only paying privacy cost for a small portion of404

them. The pseudo-code for sparse vector technique is shown in Algorithm 5.405

C Proof for Error Bound406

Theorem 4 (Type I error bound). Let Eα1 denotes the event that Algorithm 1 filters out f(D) ≥
T + α.

P[Eα1 ] ≤ exp(−ε
′(α+ t)

6∆
)− 1

4
exp(−ε

′(α+ t)

3∆
)

.407

Proof. We want to upper bound the probability of Eα1 . Equally, we lower bound the probability of
¬Eα1 by the probability that the noise on the threshold is smaller than 1

3 (t+ α) and the noise on the
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Algorithm 5: Sparse Vector Technique.
Input: D: dataset, {fi}: 1-sensitive queries, T : threshold,

c: quota of above-threshold queries, (ε, δ): privacy parameters.
1 Function SVT(D, {fi}, T, c, ε, δ):

2 if δ = 0 then Let σ = 2c
ε else Let σ =

√
32c log 1

δ

ε

3 Let count = 0, T̂count = T + Lap(σ)
4 for Each query i do
5 Let ν = Lap(2σ)

6 if fi(D) + νi ≥ T̂count then
7 Output ai = >
8 Let count = count + 1 Let T̂count = T + Lap(σ)
9 else Output ai = ⊥

10 if count ≥ q then Halt

query output is smaller than 2
3 (t + α). Because for Laplace noise, P[x ≥ w] = exp(−w/b), we

have

P[¬Eα1 ] ≥ (1− 1

2
exp(−ε

′(α+ t)

6∆
))2 = 1− exp(−ε

′(α+ t)

6∆
) +

1

4
exp(−ε

′(α+ t)

3∆
)

. Thus,

P[Eα1 ] ≤ 1− P[¬Eα1 ] ≤ exp(−ε
′(α+ t)

6∆
)− 1

4
exp(−ε

′(α+ t)

3∆
)

408

Theorem 5 (Type II error bound). Let Eα2 denotes the event that Algorithm 1 fails to filter out
f(D) ≤ T − α. If α ≥ t, then

P[Eα2 ] ≤ exp(−12εα+ ε′(α− t)
6∆

)− 1

4
exp(−6εα+ ε′(α− t)

3∆
)

.409

Proof. If f(D) is not filtered out, it needs to be missed by both sparse vector technique and the
Laplace mechanism. The probability bound for being missed by the sparse vector technique is

P[Eαsvt] ≤ exp(−ε
′(α− t)

6∆
)− 1

4
exp(−ε

′(α− t)
3∆

)

following similar proof path to theorem 4. The probability being missed by the Laplace mechanism
is bounded by

P[Eαlm] = exp(−2εα

∆
)

. Thus,410

P[Eα2 ] = P[Eαsvt] · P[Eαlm] ≤ (exp(−ε
′(α− t)

6∆
)− 1

4
exp(−ε

′(α− t)
3∆

)) · exp(−2εα

∆
)

= exp(−12εα+ ε′(α− t)
6∆

)− 1

4
exp(−6εα+ ε′(α− t)

3∆
)

411

D Sensitivity of Kendall’s τ412

In this section, we derive the sensitivity of Kendall’s τ and its conditional version. We first give the413

complete definition of Kendall’s τ and its conditional version.414
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Definition 5 (Kendall’s τ ). Let {(a1, b1), · · · , (an, bn)} denotes the observations. A pair of ob-
servation indices (i, j) are called concordant if ai > aj and bi > bj . Otherwise (i, j) is called
discordant. Kendall’s τ is defined as

τij :=
2|C −D|
n(n− 1)

where C is the number of concordant pairs and D is the number of discordant pairs.415

Kusner et al. [15] derive the sensitivity for unconditional Kendall’s τ when the neighboring relation416

between datasets are constrained to replacement. The first step towards complete sensitivity analysis417

for unconditional Kendall’s τ is to extend the neighboring relation to increment.418

Theorem 6. Kendall’s τ is 2
n−1 -sensitive.419

Proof. When the neighboring datasets are defined by replacement, the proof is done in [15]. Now420

we prove that the sensitivity bound generalizes to neighboring datasets defined by increment.421

If we increment a dataset by one row, |C −D| can increase by at most n.422

s(τij) ≤
|C −D|+ n

1
2n(n+ 1)

− |C −D|
1
2n(n− 1)

≤ |C −D|+ n
1
2n(n− 1)

− |C −D|
1
2n(n− 1)

≤ 2

n− 1

423

Theorem 7. If the conditional variables have k blocks, then conditional Kendall’s τ is cτ√
n−1

-424

sensitive, where cτ is an explicit constant typically close to 9
2 .425

Definition 6 (Conditional Kendall’s τ ). We omit the pair indices i, j and use τi to represent
Kendall’s τ in the ith block of the conditional variables. If there are k blocks in total, then con-
ditional Kendall’s τ is defined as

τ =

∑k
i=1 wiτi√∑k
j=1 wj

where wi = 9ni(ni−1)
2(2ni+5) is the inverse of τi’s variance.426

Proof. If the ith block contains ni observations, then s(τi) = 2
ni−1 .427

Then we need to bound wi√∑k
j=1 wj

and its sensitivity. Assuming ∀i ∈ [1, k], ni ≥ c1, then c2(ni −

1) ≤ wi ≤ 9(ni−1)
4 for some explicit constants c2 = 9c1

2(2c1+5) . Thus

wi√∑k
j=1 wj

≤ 9(ni − 1)

4
√
c2(n− k)

and

s(
wi√∑k
j=1 wj

) ≤ w′i√∑
j 6=i wj + w′i

− wi√∑k
j=1 wj

≤ w′i − wi√∑k
j=1 wj

≤ 9

4
√
c2(n− k)

. Thus the complete sensitivity is bounded as follow.

s(τ) ≤ (
wi√∑k
j=1 wj

+s(
wi√∑k
j=1 wj

))(τi+s(τi))−
wi√∑k
j=1 wj

τi ≤
27

4
√
c2(n− k)

+
9

2c1
√
c2(n− k)

428
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E Sensitivity of Spearman’s ρ429

In this section, we derive the sensitivity of Spearman’s ρ and its conditional version. We first give430

the complete definition of Spearman’s ρ and its conditional version.431

Definition 7 (Spearman’s ρ). Let {(a1, b1), · · · , (an, bn)} denotes the observations. If we indepen-
dently sort the observations {a1, · · · , an} and {b1, · · · , bn} in ascending order. Let di represent the
distance between the order of ai and bi. Spearman’s ρ is defined as

ρ = |1−
6
∑n
i=1 d

2
i

n(n−1)
|

.432

Kusner et al. [15] derive the sensitivity for unconditional Spearman’s ρ when the neighboring re-433

lation between datasets are constrained to replacement. The first step towards complete sensitivity434

analysis for unconditional Spearman’s ρ is to extend the neighboring relation to increment.435

Theorem 8. Spearman’s ρ is 30
n -sensitive.436

Proof. When the neighboring datasets are defined by replacement, the proof is done in [15]. Now
we prove that the sensitivity bound generalizes to neighboring datasets defined by increment. And
we denote the incremented observation with (an+1, bn+1). First, ∀i 6= n+ 1, di changes at most 2.
Thus d2

i − (di − 2)2 ≤ 4(di − 1) ≤ 4(m− 2), because di is smaller than m− 1. Besides, dn+1 is
at most m. Therefore, the sensitivity of ρ si bounded by

s(ρ) ≤ 30m(m− 1)

m(m2 − 1)
≤ 30

m

437

Definition 8 (Conditional Spearman’s ρ). We omit the pair indices i, j and use ρi to represent
Spearman’s ρ in the ith block of the conditional variables. If there are k blocks in total, then
conditional Spearman’s ρ is defined as

ρ =

∑k
i=1 wiρi√∑k
j=1 wj

where wi = ni − 1.438

Theorem 9. Conditional Spearman’s ρ is cρ
√
k√

n−k -sensitive, where cρ is an explicit constant typically439

close to 31.440

Proof. If the ith block contains ni observations, then s(ρi) = 30
ni

.441

Then we need to bound wi√∑k
j=1 wj

and its sensitivity.

wi√∑k
j=1 w

2
j

≤ ni − 1√
n− k

and

s(
wi√∑k
j=1 wj

) ≤ w′i√∑
j 6=i wj + w′i

− wi√∑k
j=1 wj

≤ w′i − wi√∑k
j=1 wj

≤ 1√
n− k

. Thus the complete sensitivity is bounded as follow.

s(ρ) ≤ (
wi√∑k
j=1 wj

+ s(
wi√∑k
j=1 wj

))(ρi + s(ρi))−
wi√∑k
j=1 wj

ρi ≤
31√
n− k

+
30

c1
√
n− k

442

14



F Reconcile Sensitive Independence Test443

As an attempt to reconcile independence tests with infinite sensitivity such as G-test or χ2-test in444

Priv-PC, we use subsample-and-aggregate and median aggregation with local sensitivity to stabilize445

these independence tests.446

Definition 9 (Subsample-and-aggregate [7]). Let f be the function of interest. In subsample-and-447

aggregate, the input database is randomly partitioned into m blocks and f is computed exactly on448

each block. The outcomes are then aggregated using a differentially private aggregation mechanism449

such as trimmed mean.450

In order to use subsample-and-aggregate, we clip the outcome of the independence test to a bounded451

range and estimate the median by adding noise calibrated to the smooth sensitivity [21].452

Definition 10 (Median Aggregation with Local Sensitivity [21]). Let Smed(x) represent the smooth
sensitivity of the median of a given input x. Smed(x) can be β upper bounded by the following
formula in O(n log(n)).

Smed(x) = max
k=0,··· ,n

(e−kε · max
t=0,··· ,k+1

(xm+t − xm+t−k−1))

where m is the median index. Let Z be a random value taken from an (α, β)-admissible noise453

probability density function, then med(x) + Smed(x)
α · Z is (ε, δ)-differentially private where ε and454

δ depends on α and β. For instance, the Laplace distribution p(z) = 1
2 · e

−|z| is (ε/2, ε ln(1/δ)/2)-455

admissible; the Gaussian distribution p(z) = 1
2π · e

−z2/2 is (ε/
√

ln(1/δ), ε/2 ln(1/δ))-admissible.456

Algorithm 6: Reconciled Independence Tests.
Input: D: dataset, m: number of blocks, f : independence test function, T : threshold, ε, δ:

privacy parameters, Z: (α, β)-admissible distribution.
1 Function ReconciledIDT(D, f, T, ε, δ, Z):
2 Partition the dataset in m blocks D1, · · · , Dm.
3 Compute f(D1), · · · , f(Dm).
4 Let z ← Z.
5 Output med(f(D1), · · · , f(Dm)) + Smed(f(D1),··· ,f(Dm))

α · z
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