A Dual Entropic Regularized FS-WBP

In this section, we provide a complete derivation of the problem in Eq. (6).

By introducing the dual variables {1, as, ..., Qm, 81,82, .., Bm-1} C R"™, we define the La-
grangian function of the entropic regularized FS-WBP in Eq. (4) as follows:
ﬁ(Xlw"7Xm7a17'"aa’m7517"'7/8m71) (12)
m m m—1
= Y wik((Cr, Xi) = nH(Xy)) Zak (X5) = u") = D B (e(Xr) — (X)),
k=1 k=1

By the definition of H (X), the nonnegative constraint X > 0 can be neglected. In order to derive the
smooth dual objective function, we consider the following minimization problem:

min L(X1,...,. Xm,01,...,0m,B1,..., Bm_1)-
(X150, X))t | X i |1=1,YkE[M]} (X1 ! & Bm-1)

In the above problem, the objective function is strongly convex. Thus, the optimal solution is unique.
For the simplicity, we let & = (a1, a, ..., ap) € R™ and 8 = (B1, B2, ..., Bm_1) € RM=Dn
and assume the convention Sy = S, = 0,,. After the simple calculations, the optimal solution
X(a, B) = (X1(ar, B), ..., Xin(c, B)) has the following form:

67771(‘*);1(akri’ﬁk—l,j*ﬁkj)*(ck)ij)

Zl<i’j<n e M (wi H(ani+Be—1,;—Br;)—(Cr)ij)

(Xi(a,B))ij = forallk € [m],  (13)

Plugging Eq. (13) into Eq. (12) yields that the dual form is:

m

m
max _nzwklog Z el Ywp Narit+Br—1,;—Brj)—(Cr)is) +Zo‘kuk
ki

A1y, 815, Bm—1 1<i <n

In order to streamline our subsequent presentation, we perform a change of variables \;, =
(nwi) " tag and 7, = (nwi) " (Be—1 — Bx) for all k € [m]. Recall that By = B, = 0, we
have ZZ;I wi T, = 0,,. Putting these pieces together, we reformulate the problem as

m m

min (A7) Zwk log Z it =" (Ck)s Zwk/\ku s.t. Zwm‘k =0,.
k=1

A, TER™N —
1<i,j<n

To further simplify the above formulation, we use the notation By, (A, 7) € R"*" by (B (Mg, Tk))ij =
it —n " (CR)is) for all (i,7) € [n] x [n]. To this end, we obtain the dual entropic-regularized
FS-WBP problem defined by

A log(|| B (A -\ t. =0,.
Afeunenmn‘P( )T) = ;wk(og(ﬂ s ) [1) = ), s, ZWW

B Minimal-Cost Flow Problem

We specify the definition of the minimum-cost flow (MCF) problem.

Definition B.1. The MCF problem finds the cheapest possible way of sending a certain amount of
Sflow through a flow network. Formally,
min Z(u v)eEE f(u ’U) ( )
st f(u,v) >0, forall (u,v) € E,
flu,v) < c(u v) for all (u,v) €
f(u,v) = —f(v,u) forall (u,v) E E
Z(u,w)EE or (w,u)€EE f(u7 ) 0
Yowey f(s,w) =d and > . f(w,t) =d.
The flow network G = (V, E) is a directed graph G = (V, E) with a source vertex s € V and a
sink vertex t € V, where each edge (u,v) € E has capacity c(u,v) > 0, flow f(u,v) > 0 and cost
a(u, v), with most MCF algorithms supporting edges with negative costs. The cost of sending this
Slow along an edge (u,v) is f(u,v) - a(u,v). The problem requires an amount of flow d to be sent
from source s to sink t. Our goal is to minimize the total cost of the flow over all edges.

(14)
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C An Illustrative Example

We provide an illustrative counterexample for showing that the FS-WBP in Eq. (10) is not an MCF
problem when m = 3 and n = 3.

Example C.1. When m = 3 and n = 3, the constraint matrix is

~L;l; 039 0359
039 Ll 039

A= 039 039 —Dyolj
130 —1]®I;  0Osx9

O30 —13 0I5 13 ®I3

Setting the set I = {1,4,7,10,11,13,15} and letting e1, e and ez be the first, second and third
standard basis row vectors in R™, the resulting matrix with the rows in I is

—e1 ®1; 019 019
01x9 e @1, 0159
O O e ®I
R= 13 ® eq —1;@61 01><9
I3 @e;  —13 ®ex  Oixg
01x9 1] ®er I3 ®e
019 713 X es 1;@)63

Instead of considering all columns of R, it suffices to show that no partition of I guarantees for any
je{1,2,11,12,13,19,21} that

Z Rij - ZRU S {—1,0,1}.
i€l i€l

We write the submatrix of R with these columns as

I
_

-1 0 0
0

—_

no]]
I

comocoo
col coor
—
coocoro
_

0 0
0 0
0o -1 -
— 0
0 0
— 0
0 1

SO O~ OO

0
0
1
-1 0

First, we claim that rows 1, 2, 4, 5 and 7 are in the same set 1. Indeed, columns 1 and 2 imply that
rows 1, 4 and 5 are in the same set. Column 3 and 4 imply that rows 2, 5 and 7 are in the same set.
Putting these pieces together yields the desired claim. Then we consider the set that the row 6 belongs
to and claim a contradiction. Indeed, row 6 can not be in I since column 5 implies that rows 4 and 6
are not in the same set. However, row 6 must be in I since columns 6 and 7 imply that rows 3, 6 and
7 are in the same set. Putting these pieces yields the contradiction. Thus, by using Propositions 3.1
and 3.3, A is not TU and problem (10) is not a MCF problem when m = 3 and n = 3.

D Missing Proofs in Section 2 and 3

In this section, we present the missing proofs of Lemma 2.2, Lemma 2.5, Proposition 3.3, Theorem 3.4
and Theorem 3.5.

D.1 Proof of Lemma 2.2

First, we show that there exists m pairs of optimal solutions {(A?, 77)} ;¢[,] such that each of (M, 77)
satisfies that

7). > 0> min (77);, forall . 1
g@l(u)z_o_@l&(m)“ orall k # j (15)
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Fixing j € [m)], we let (X, 7) be an optimal solution of the dual entropic regularized FS-WBP in
Eq. (6). If T satisfies Eq. (15), the claim holds true for the fixed j € [m]. Otherwise, we define m — 1
shift terms given by

maxi<;<n(Tk)i + Mini<i<n (Tk)i

ARy =

e R forall k£ # j,

2
and let (M, 77) with
= — ATy, Ag Ak + AT, for all k # 7,
T =75 (T (AT Ly, X =X = (D (25) AT L,
Using this construction, we have ()\j) T]?)l/ = (M)i + (Fi)s forall i,i’ € [n] and all k € [m).

This implies that By (Ag, 7) = Bip(AF', 7k for all k € [m)]. Furthermore, we have
Z wkrlg = Z WE Tk, Z wk()\i)Tuk = Z wkxguk
k=1 k=1 k=1 k=1

Putting these pieces together yields (M, 77) = ¢(\, 7). Moreover, by the definition of (A7, 77) and
m — 1 shift terms, 77 satisfies Eq. (15). Therefore, we conclude that ()7, 77) is an optimal solution
that satisfies Eq. (15) for the fixed j € [m]. Since j € [m] is chosen arbitarily, we can find the desired
pairs of optimal solutions {(A, 77)} ;[ satisfying Eq. (15) by repeating the above argument m
times.

Furthermore, each of (A, 77) must satisfy the optimality condition for Eq. (6) for all k& € [m]. Fixing
j € [m], there exists z € R™ such that

m ) Bo(M Tln
szﬁi -0, and % —2=0, forallk € [m]. (16)
1B (X )

By the definition of B+, -), we have
7 =1log(2) + log(|| Bu(X, 77)[|1)1,, — log(e ™ Crdiag(e**)1,,) for all k € [m].
This together with the first equality in Eq. (16) yields that

T]z = Zwl log(e_nflcldiag(e’\{)ln) - log(e_"flc’“diag(e)‘i)ln) for all k € [m].

For each ¢ € [n] and [ € [m], by the nonnegativity of each entry of C;, we have
=0 Crlle +log(1 M) < [log(e™ “diag(eM)1,)]; < log(1eM).

Putting these pieces together yields

g@n(ﬁi)i - @ign(fi)i <0 Y|Chlloo + ;wm’lll(leloo forall k € [m]. (17)

Combining Eq. (15) and Eq. (17) yields that

I7llse < 0~ lICklloc + Y win™ | Cilloo for all k # j. (18)
=1
Since 37", wi T = 0,,, we have

m
17 lloe < @i 'Y wrllmilloo < (nwy) ™ Y~ willCrlloo + (mws) ™1 (1 = w;) Y wil| Cilloo-
k#j k#j =

Finally, we proceed to the key part and define the averaging iterate
:ij)\j, T*:Zwﬂ'j.
j=1 j=1
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Since ¢ is convex and (wi,ws, ..., wy) € A™, we have p(A*, 7%) < 37T wip(N,7/) and
S weTh = 0,,. Since (M, 77) are optimal solutions for all j € [m], we conclude that (A*, 7*) is
an optimal solution.

The remaining step is to show that || \}||c < R and |7} ||cc < R forall k € [m]. More specifically,
we have

Illoe < Y willilloo = wrllmlloo + D willilloo
=1 i#k
< Y willCillee + 171 = wr) D willCillos + 77 (1 = wk)([Crlloe + D willCilloo)
1k =1 =1
< 0 HChllse 4307 willCilloe

=1
< 4n~'C =R,.

Since (A\*, 7*) is an optimal solution, it satisfies the optimality condition for Eq. (6). Formally, we
have

Bk(/\zﬂ'l:)ln k
o w B ¥ =0, forallk € [m]. (19)
1B (N, 7)1
By the definition of Bg(+, -), we have
r= log(uk) + log(|| Bx (A%, T2 ) |l1)1n — log(e*"_lc’“diag(e“:)ln) forall k € [m)].

This implies that

max (A)i < 0 Crlloo + log(n) + |17 oo + log (1B (A, 7)),
min (Ap)i = log(u) —log(n) — |7 lleo +log (Il Br(Ae: i) [[1)-

Therefore, we conclude that
A illse <0 M ICkllso + log(n) — log(@) + |75 |so-
This completes the proof.

D.2 Proof of Lemma 2.5

The first statement directly follows from the definition of ¢ in Eq. (6). For the second statement, we
provide the explicit form of the gradient of ¢y, as follows,

Bl ok
1) B,(A,m1,
V(A7) = < " Jsi(x,l)Tln ) :
1T B, (A7),
Now we construct the following entropic regularized OT problem,

N ‘&i”n 1<Ck,X> —nH(X), stX1,=(1/n)l,, X1, = (1/n)1,.

Since the function — H (X)) is strongly convex with respect to the ¢;-norm on the probability simplex
Q C R”z, the above entropic regularized OT problem is a special case of the following linearly
constrained convex optimization problem:

i LAz =10
min f(x), st Az =0,

where f is strongly convex with respect to the ¢1-norm on the set (). We use the /5-norm for the dual
space of the Lagrange multipliers. By Nesterov [40, Theorem 1] and the fact that || A||; o = 2, the
dual objective function ¢y, satisfies the following inequality:

IVu(a8) - V(e )l < H (g) - (gi) H .
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Recall that the function ¢y, is given by

) n (CRij—ei—Bj
Pl B)=nlog [ > e 7 M| —{a,u) = (B,v) +

ij=1
This together with the definition of By (-, -) implies that

Bi(n ta—(1/21,n  B—(1/2)1)1,

5 _ | LB~ ta=(1/2)1n 0~ 18— (1/2)1)1,
Vér(a, B) = Bi(n 'a—(1/2)1,n 1 f—(1/2)1,) 1,
1, Be(nta—(1/2)1n,n~ 1 6—(1/2)11)1n

—v

Performing the change of variable A\ = n~'a — (1/2)1,, and 7 = =18 — (1/2)1,, (resp. \’ and 7),
we have

IVor (A, 7) = Vor(X, 7|
IV@R(m(A + (1/2)15), 0(r + (1/2)1)) = VEr(n(A + (1/2)1n),n(7" + (1/2)15)) |

1=

This completes the proof.

IN

D.3 Proof of Proposition 3.3
The standard LP representation of the MCF problem is

min ¢'z, stAr=0b 1<z <u.
z€RIE|
where € RI”| with z; being the flow through arc j, b € RIV! with b; being external supply at node
iand 17b = 0, ¢; is unit cost of flow through arc j, I; and u; are lower and upper bounds on flow
through arc j and A € RIVI*IZl is the arc-node incidence matrix with entries

1 if arc j ends at node ¢

—1 if arc j starts at node ¢
Aij = .
0 otherwise

Since each arc has two endpoints, the constraint matrix A is a {—1,0, 1}-valued matrix in which
each column contains two nonzero entries 1 and —1. Using Proposition 3.2, we obtain that A is TU
and the rows of A are categorized into a single set.

D.4 Proof of Theorem 3.4

When n = 2, the constraint matrix A has £ = I, ® 12T and G = 12T ® I,. The matrix A €
RAM=2)x4m j5 3 { 1,0, 1}-valued matrix with several redundant rows and each column has at most
three nonzero entries in {—1,0,1}. Now we simplify the matrix A by removing a specific set of
redundant rows. In particular, we observe that

Z aij =0, Vj € [4m],
i€{1,2,3,4,2m+1,2m+2}

which implies that the (2m + 2)th row is redundant. Similarly, we have

Z a;; =0, Vj € [4m],

1€{3,4,5,6,2m+3,2m+4}

which implies that the (2m + 3)th row is redundant. Using this argument, we remove m — 1 rows
from the last 2m — 2 rows. The resulting matrix A € R(™~1)X4™ hag very nice structure such that

18



each column has only two nonzero entries 1 and —1; see the following matrix when m is odd:
—-F
E

BN

—1;@@2 1;@62

(_1)m1;r ® es (_1)m+11; ® e

where e; and e, are respectively the first and second standard basis (row) vectors in R2. Furthermore,
the rows of A are categorized into a single set so that the criterion in Proposition 3.2 holds true
(the dashed line in the formulation of A serves as a partition of this single set into two sets). Using
Proposition 3.2, we conclude that A is TU.

D.5 Proof of Theorem 3.4

We use the proof by contradiction. In particular, assume that problem (10) is a MCF problem
when m > 3 and n > 3, Proposition 3.3 implies that the constraint matrix A is TU. Since A is a
{-1,0, 1}-valued matrix, Proposition 3.1 further implies that for each set I C [2mn — n] there is a
partition I, I5 of I such that

Say =Y ay €{-1,0,1}, Vje [mn?. (20)
i€l i€ls

In what follows, for any given m > 3 and n > 3, we construct a set of rows [ such that no
partition of I guarantees that Eq. (20) holds true. For the ease of presentation, we rewrite the matrix

A € R@mn—n)xmn® o follows,

(-1)™) o5, ()™ eI,

Setting the set I = {1,n+ 1,2n 4+ 1,3n+ 1,3n + 2,4n + 1,4n + 3} and letting e, e5 and e3 be
the first, second and third standard basis row vectors in R, the resulting matrix with the rows in [ is

—e1®1,  Opxpe 0ixnz  Oixnz -+ Opype

0ixnz €1 @10 012 Oy o Oy
Oz O e @1, Oz oo g2
R=[1T®es —1T®er  01gnz 01y 0,2
1) ®es  —1) @ey 01 2 01 2 01 2

01 2 *II ®eq 1;[ ®@e1r  Opxn2 01 2

0isn2  —1, ®es 1) @ez  0pype 052



Instead of considering all columns of R, it suffices to show that no partition of I guarantees
i€l icls

forall j € {1,2,n2 4+ 2,n% + 3,n% + n + 1,2n% + 1, 2n? + 3}. We write the submatrix of R with
these columns as

-1 -1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0o -1 -1
R=|1 0 0 0 -1 0 0
0 1 -1 0 0 0 0
0 0 0 0 -1 1 0
0 0 0 -1 0 0 1

Applying the same argument used in Example C.1, we obtain from Propositions 3.1 and 3.3 that A is
not TU when m > 3 and n > 3, which is a contradiction. As a consequence, the conclusion of the
theorem follows.

E Technical Lemmas and Missing Proofs in Section 4

We present several technical lemmas which are important to analyzing the FASTIBP algorithm. The
first lemma provides the inductive formula and the upper bound for 6,.

Lemma E.1. Let {0,},>¢ be the iterates generated by the FASTIBP algorithm. Then we have
0<0; <2/(t+2)and 0;% = (1 — 0441)0; 7 forallt > 0.

The second lemma shows that all the iterates generated by the FASTIBP algorithm are feasible to the
dual entropic regularized FS-WBP for all ¢ > 1.

Lemma E.2. Ler {(A,7")};50, {(A%,7)}is0, {(N,79) >0 {(Xt,?t)}tzo, {(A*, 7)) }1>0, and
{(\', %) }+>0 be the iterates generated by the FASTIBP algorithm. Then, we have

m m m m m m m
Zwkﬁi = Zwkﬁi = Zwkﬂi = Zwlfﬁ = ZwkT';i = Zw;ﬁ‘,ﬁ = Zwkr,ﬁ =0, forallt>0.
k=1 k=1 k=1 k=1 k=1 k=1 k=1

The third lemma shows that the iterates {7*};>0 generated by the FASTIBP algorithm satisfies the
bounded difference property: maxi<;<n(7f); — mini<;<n(77); < R, /2.

Lemma E.3. Ler {(\',7%)}1>0 be the iterates generated by the FASTIBP algorithm. Then the
following statement holds true:

t P 3 <
ax (7); — min (i) < R:/2,

where R, > 0 is defined in Lemma 2.2.

The final lemma presents a key descent inequality for the FASTIBP algorithm.

Lemma E.4. Let {(\',7)};>0 be the iterates generated by the FASTIBP algorithm and let (\*, 7*)
be an optimal solution in Lemma 2.2. Then the following statement holds true:
)\t-l—l
|G =3

QAL AN —(1-0,) (A, 7)) —0,0(N*, 7) < 29? ( (H( )
T — Tk

Then we proceed to the proofs of these technical lemmas, Theorem 4.2 and Theorem 4.3.

)

E.1 Proof of Lemma E.1

By the definition of 6;, we have
Or 11 2 2 0,
t
(9:) _—4(\/92—&—4—&) _1+<0t \/9?—1-4) =101,
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which implies the desired inductive formula and 6, > 0 for all ¢ > 0. Then we proceed to prove that
0 < 0 <2/(t+ 2) forall ¢ > 0 using the induction. Indeed, the claim trivially holds when ¢ = 0 as
6o = 1. Assume that the hypothesis holds for ¢t < ¢, i.e., 6, < 2/(to + 2), we have

2 2

Oto+1 = < .
’ 1+ /1+% to+3
0

This completes the proof of the lemma.

E.2 Proof of Lemma E.2

We first verify Lemma E.2 when ¢t = 0. Indeed,

m m
E w;ﬁ‘,g = E wki',? =0,.
k=1 k=1

By the definition, 7° is a convex combination of 7 and 7° and 7° is a linear combination of 7°, 7
and 7°. Thus, we have

0 1

m m

E w;ﬁ‘,?: E wk?,gzon.
k=1 k

=1

This also implies that >, wy, 7Y = 0,,. Using the update formula for 9, 70 and 7!, we have

m m m
E Wity = g WeTP = E Wt = 0,.
k=1 k=1 k=1

Besides that, the update formula for 7! implies >~ , w7} = 0,,. Repeating this argument, we
obtain the desired equality in the conclusion of Lemma E.2 for all £ > 0.

E.3 Proof of Lemma E.3
We observe that 7/ = #{ for all k € [m]. By the update formula for #}, we have
=1 +Z w; log(c;)—log(ck) = Z wi log(e_”flcf’diag(e;‘z 1) —log(e_"flc’“diag(ej‘z 1,).
i=1 i=1
After the simple calculation, we have
=0 |Clloe + 1% < log(e™ " Pdiag(e)1,)]; < 176

Therefore, the following inequality holds true for all & € [m],

1Clloo)-

X
1<i<n 1<k<m

max (7i)i = min (7¢)i <77 Crlloo + 07" (2 wiICzlloo> = 277" ( ma
This together with the definition of R yields the desired inequality.

E.4 Proof of Lemma E.4

Using Lemma 2.5 with (X, 7/) = (A\*F1, 71+1) and (A, 7) = (M, 7), we have
~ ~ N T m

N A~ N — At-‘rl - )\t N —
@(AtJrlthJrl) S @()‘t77-t) + et (%tJrl _ 7~_t> v@(/\t77-t) + 29752 <Z Wk
k=1

Si+1l st
T — Ty

)

After some simple calculations, we find that

e T = (1= 0)p(\, 7" + Oip(N', 7),
AL e\ T o A\ - NHL 3 -
(7::54-1 o 7~_t) VoA, 7") = - Ft_ ozt Vo(\', 7 )+ FtH1 ot V(N7 )
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Putting these pieces together yields that

o T
~ _ t _ ¢ _
PRLF) < @ aphrt) -0 (N N) velitr e

T

_ Tt+1 e\ | _ m
+6; ‘P()‘tﬁ't) + (;t+1 . )\t) V‘P()‘tﬁ't) + 20, ;wk

5\t+1 . j\t 2
(-2)
For the term I in equation (21), we derive from the definition of (A, 7*) that

o (N ) =0 () ra-a (0)- (3) —a-e (R2)).

Using this equality and the convexity of ¢, we have

St 3\ | _ 5
[=(1-6,) (w(ktw% (it :ﬁ) Vso(Aﬂﬂ) < (1= 0)p(\, 7). (22)

I

For the term II in equation (21), the definition of (A\'*!, 7¢+1) implies that
wi (AT = M)
t+1 - Nz B Y
<i B ;\t+1) V(X 71 + 46, wm(/}m Am) >0, forall(\, 7)€ R™ x P.

wi (FH = 7)

Win (T o 7~—vtn)

Letting (A, 7) = (A\*, 7*) and rearranging the resulting inequality yields that

~ — T m
>\t+1 _ )\t - >\t+1 )\t
(7~_t+1 B Tt) V(A7) + 26, (; Wk <~t+1 ~]€
PR W - A= AP s — ALt
- (o8 e (E0 (D I8

k=1
A — M _ N Tt -
(5- ) V(7)< oA, 7) — p(X, 7).

Putting these pieces together yields that

~ 2 ~

VEDY =M

oty ean (S (|G -G
k

2
)) e
Plugging Eq. (22) and Eq. (23) into Eq. (21) yields that

. 5 2 * i+l
PO ) < (10N, ) 40001 7 4267 D < (H( 3| - Ciz i)
=T " — T,

Since (At+1, 7+1) is obtained by an exact coordinate update from (\!, %), we have (!, 7t) >
@A+, #1). Using the similar argument, we have (A", #') > (A, 7') > (X!, 7'). By the

definition of (A, 7!), we have p(A, 7) > (X!, 7). Putting these pieces together yields the desired
inequality.

))

Using the convexity of ¢ again, we have

)
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E.5 Proof of Theorem 4.2
First, let 6, = (A, 71) — (\*, 7*), we show that

2 2
5, < 8n(R5 + R2)

TS @9

))

AL =X
T,: - ?,?

Indeed, by Lemma E.1 and E.4, we have

1_9t+1 1_915 m _5\t+1
—— ) 1 — 0y <2 k
(o= ()= (o (|53 53

By unrolling the recurrence and using #; = 1 and Ao = 7o = Oy, We have

—0 5\ |I? —0
( 02 t>5t+2<Zwk <i\_§_;é€> ) ( 92 0>50+2<Zwk
k=1 ko k k=1
X 2 Corollary 2.4
<2 (Z W ( k) ) < (R + RY).
Tk

For ¢t > 1, Lemma E.1 implies that 0;_1 =(1-06,)6,; 2 Therefore, we conclude that

?T‘

IA

5 <207 n(R3 + R?).
This together with the fact that 0 < ;1 < 2/(t + 1) yields the desired inequality.
Furthermore, we show that

E2
0 — 0 > = 25
T (25)
Indeed, by the definition of A;, we have
6t - 6t+1 = @(Xtv%t) - 90(;\t+1v7v—t+1) > @()‘t?Tt) - @(Xt—i_l)%“_l)'

By the definition of ¢, we have
P71 = (AT ) = 3w (log (|| Be (AL, i) 1) — log (1B 7 1),
k=1
Since r(By (AL, 7)) = u* € A, forall k € [m], we have || By (AL, 7})||1 = 1. This together with
the update formula of (A**+1, 74+1) yields that
OOV, 7h) — (A #HH) — _log (1;162:;1 wi 1og(c<Bk(Az,r;;>>>) ,
Recall that log(1 + x) < z for all x € R, we have
w()\t’ Tt) - So(j\t-&-l’ 7v_t+1) >1— 1Ze22”=1 Wi log(c(Bk(AZ,T,:))).
Since 7”(Bk(/\]C 1)) = uF € A, forall k € [m], we have 1, ¢(B(\;,7%)) = 1. In addition,

(w1, ws, .. m) € A™. Thus, we have

gD(At,Tt) _ w(}\t-i-lﬂv_t-i-l) > II (Z wkc(Bk()\};;T]z)) ekl Wk 10g(C(Bk(>\ZvT;§)))> )
k=1

Combining ¢(By (AL, 7)) € A™ with the arguments in Kroshnin et al. [32, Lemma 6] yields

. 1 &
(p()‘t77—t)_(p()‘t+177v-t+1 TZUJ]CH Bk )‘vak sz za z )Hl
k=1

Using the Cauchy-Schwarz inequality together with Y ;" | wj, = 1, we have

E} < Zwkll (Br(Mes 7)) sz (i, )T
k=1
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Putting these pieces together yields the desired inequality.
Finally, we derive from Eq. (24) and (25) and the non-negativeness of ¢, that

2 2
ZEQ <11 <Z(5z - 5¢+1)> <114, < 88n(F) + Rr)

— (t+1)2

Let T > 0 satisfy Er < ¢, we have E; > ¢ for all t € [T']. Without loss of generality, we assume T
is even. Then the following statement holds true:
2 < 704n(R3 + R%)
ST 7
Rearranging the above inequality yields the desired inequality.

E.6 Proof of Theorem 4.3

Consider the iterate ()?1,)?2,... X ) be generated by the FASTIBP algorithm (cf. Algo-
rithm l) the roundmg scheme (cf. Kroshnin et al. [32 Algorithm 4]) returns the feasible solution

(Xl,XQ,...,X ) to the FS-WBP in Eq. (3)andc(Xk)arethesameforallk6[ ].

To show thatw = ;" , wkc(X k) is an e-approximate barycenter (cf. Definition 2.2), it suffices to
show that

m

Zwk Cr, Xi) <) wi(Cr, X) + (26)
k=1 k=1
where (X7, X3, ..., X},) is a set of optimal transportation plan between m measures {u*} ;¢ [,,,) and

the barycenter of the FS-WBP.

First, we derive from the scheme of Kroshnin et al. [32, Algorithm 4] that the following inequality
holds for all k& € [m),

1X5 = Xilh < lle(X5) sz i)l

This together with the Holder’s inequality implies that

> G T - %) < (max 10 (;wk|c(xk ZM ||1>. @)

k=1
Furthermore, we have

m m m

Y own(Cr X = X)) = Y wk((Cr, Xi) = nH (X)) — Y wr((Cr, Xf) = nH (X))
k=1 k=1 k=1
+> wenH (Xy) = Y wienH(X;).
k=1 k=1

Since 0 < H(X) < 2log(n) for any X € R’*" satisfying that || X ||; = 1[17] and >~ wy = 1,
we have

wa C, X — Xj) < 2nlog(n +Zwk (Cry Xi) = H (Xy)) =Y wr((Ch, Xi) —nH (X})).
k=1 k=1 k=1

Let (X7, X, ..., X") be a set of optimal transportation plans to the entropic regularized FS-WBP
in Eq. (4), we have
Zwk (Cr, X{) —nH (X)) Z ((Cr, X)) = nH(X}))-
By the optimality of (X, XJ,..., X" ), we have
Cr, X)) —nH(X])) = i A > —ne(\, 7).
> n(Co )~ nH (X)) = = (,_pmin (7)) = ol 7

k=1
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Since (X1, Xo, ..., X,n) is generated by the FASTIBP algorithm, we have Xj, = By (\t, 7¢) for all
g y g ko Tk

k € [m] where (A\!, 7") are the dual iterates. Then

> wn((Cr, Xi) = nH(Xk)) = Y wi((Cr BNy 78)) — nH(Br(My, 1))
k=1 k=1

- (Zwk B T L, — (M) o) ) +772Wk ) e(Br (AL, 7))

—n(A +n<2wk (4) < (BN, 1) sz AL 7t )))

Putting these pieces together yields that

Zwk Ch, X1 — X7) < 2nlog(n +77<Zwk () < (Br(\L,mH)) Zwl Morh )))

k=1
Since 1, ¢(By(\., 7)) = 1 for all k € [m], we have
( ( (Bk )‘vak Zwic 17 7 )))
m . T
_ maxi<i<n ()i + mini<i<n(74)i
= <Z — k 2 — k ln (Bk Ak,Tk Zw7

St maxi<;<n(7h); + ming<;<n(71)
ko 2

IN

(ZWkH Xk Zwic(f(i)1> .

Using Lemma E.3, we have

¢ maxicicn(Th)i + mini<icn (70
-
2

1,

<
-2

o

Putting these pieces together yields that

Zwkck,Xk—Xk><2nlog +<Zwk|| (Xr) ch ||1>. (28)

k=1

Recall that B; = 37" wille(Xg) — 32, wie(Xi) |1 and Ry = 47! (max)<g<m [|Ck [l ). Then
Eq. (27) and Eq. (28) together imply that

> (Co T = X7) < 2tog(n) +3 (a1l ) B
k=1

This together with F; < £/2 and the choice of 7 and & implies Eq. (26) as desired.

Complexity bound estimation. We first bound the number of iterations required by the FASTIBP
algorithm (cf. Algorithm 1) to reach E; < £/2. Indeed, Theorem 4.2 implies that

2 2\\ 1/3 2/3
t§1+20(W) <20f(R“LR> .
3

For the simplicity, we let C' = maxi<k<m ||Ck|| . Using the definition of Ry and R, in Lemma 2.2,

the construction of {#* }ke[m) and the choice of 7 and &, we have

. - - 2/3
1+ 20¢/n (460 (36 loi(n)C + log(n) — log (16?C)>)

_ 4/3
ol vm (C'\/lsg(n)>

-
IN
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Recall that each iteration of the FASTIBP algorithm requires O(mn?) arithmetic operations, the
total arithmetic operations required by the FASTIBP algorithm as the subroutine in Algorithm 2 is

bounded by
_ 4/3
0 (2 (Cwogw )
3

Computing a collection of vectors {@" } ye(,,,) needs O(mn) arithmetic operations while the rounding
scheme in Kroshnin et al. [32, Algorithm 4] requires O(mn?) arithmetic operations. Putting these
pieces together yields that the desired complexity bound of Algorithm 2.

F Implementation Details

All the experiments are conducted in MATLAB R2020a on a workstation with an Intel Core 15-9400F
(6 cores and 6 threads) and 32GB memory, equipped with Ubuntu 18.04. For a fair comparison, we
do not implement convolutional technique [50] and its stabilized version [49, Section 4.1.2], which
can be used to substantially improve IBP with small 7.

For the FASTIBP algorithm, the regularization parameter 7 is chosen from {0.01,0.001} in our
experiments. We follow Benamou et al. [4, Remark 3] to implement the algorithm and terminate it
when

21 Wrlle(Br (Mg, 7)) = 2070 wic(Bi(AL 7))

T Sl B O+ | Sy BOL T = 0
Dy wllr(Be (Mg, 7)) — u¥ || - ol

L+ 2k 1Wkllr<Bk<Amz>>||+ZL” R [
120, wie(Bi(A, 7)) = 37 wie(BiA L i D)l < Tol

L4+ |20 wie(BiALTH)| + | 20 wie(B ()\t 1 t 1))” = fibp
ST ol B ) — Bt e < Tolg

14+ 300wl Be(AL Tl e + 25 1wk||Bk()\t D = e
iy ekl = Ny 1” < Toly

L+ 307 wel AL+ o0, k”/\);;_l” = fibp s

INSEAL St < Toljipp.

1+ 320 wrll il + 325y wrllm I

These inequalities guarantee that (i) the infeasibility violations for marginal constraints, (ii) the
iterative gap between approximate barycenters, and (iii) the iterative gap between dual variables are
relatively small. Computing all the above residuals is expensive. Thus, in our implementations, we
only compute them and check the termination criteria at every 20 iterations when 1 = 0.01 and every
200 iteration when 7 = 0.001. We set Tolfjpp = 1076 and Maxlterfipp = 10000 on synthetic data and
Tolfipp = 107! on MNIST images.

For IBP and BADMM, we use the Matlab code® implemented by Ye et al. [57] and terminate them
with the refined stopping criterion provided by [56]. The regularization parameter 7 for the IBP
algorithm is still chosen from {0.01,0.001}. For synthetic data, we set Tolpagmm = 10> and
Tolipp = 1076 with MaxIterpagmm = 5000 and Maxlterjpp = 10000. For MNIST images, we set
TOlibp =101,

For the linear programming algorithm, we apply Gurobi 9.0.2 (Gurobi Optimization, 2019) (with an
academic license) to solve the FS-WBP in Eq. (3). Since Gurobi can provide high quality solutions
when the problem of medium size, we use the solution obtained by Gurobi as a benchmark to evaluate
the qualities of solution obtained by different algorithms on synthetic data. In our experiments, we
force Gurobi to only run the dual simplex algorithm and use other parameters in the default settings.

2 Available in https://github.com/bobye/WBC_Matlab
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For the evaluation metrics, “normalized obj" stands for the normalized objective value which is
defined by

m X N m Xg
normalized obj := | 2k @r{C Xi) = Dy W {C, X ,

| >y wi{Cr, X7
where ()? Tyeons )/(\'m) is the solution obtained by each algorithm and (X7, ..., X7,) denotes the
solution obtained by Gurobi. “feasibility" denotes the the deviation of the terminating solution from
the feasible set’; see Yang et al. [56, Section 5.1]. “iteration” denotes the number of iterations. “time
(in seconds)" denotes the computational time.

G Experimental Setup and Additional Results

Generating synthetic data. We generate a set of discrete probability distributions {p, }77, with
e = {(uf,x;) € Ry x R? |4 € [n]}and Y., uF = 1. The fixed-support Wasserstein barycenter
i={(u;,x;) € Ry x R?|i € [n]} where (x1,Xa,...,X,) are known. In our experiment, we set
d = 3 and choose different values of (m, n). Then, given each tuple (m, n), we randomly generate a
trial as follows.

First, we generate the support points (x5, x5, ... x*) whose entries are drawn from a Gaussian

mixture distribution via the Matlab commands provided by Yang et al. [56]:

gm_num = 5; gm_mean = [-20; -10; 0; 10; 20];

sigma = zeros(1, 1, gm_num); sigma(1, 1, :) = 5*ones(gm_num, 1);

gm_weights = rand(gm_num, 1); gm_weights =
gm_weights/sum(gm_weights);

distrib = gmdistribution(gm_mean, sigma, gm_weights);
For each k € [m), we generate the weight vector (u¥, u%, ... u¥) whose entries are drawn from the
uniform distribution on the interval (0, 1), and normalize it such that Y7, u¥ = 1. After generating
all {px}7%,, we use the k-means* method to choose n points from {x¥ | i € [n],k € [m]} to be
the support points of the barycenter. Finally, we generate the weight vector (w1, wa, . . . , Wy, ) whose
entries are drawn from the uniform distribution on the interval (0, 1), and normalize by Y ;" | wj, = 1.

Processing MNIST images. To better visualize the quality of approximate barycenters obtained by
each algorithm, we follow Cuturi and Doucet [19] on the MNIST? dataset [35]. We randomly select
50 images for each digit (1~9) and resize each image to ( times of its original size of 28 x 28, where
¢ is drawn uniformly at random from [0.5, 2]. We randomly put each resized image in a larger 56 x
56 blank image and normalize the resulting image so that all pixel values add up to 1. Each image
can be viewed as a discrete distribution supported on grids. Additionally, we set the weight vector
(w1,wa, . .., wp,) such that w,, = 1/m for all k € [m]. The size of barycenter is set to 56 x 56.

Additional results on synthetic data. To facilitate the readers, we present the averaged results
from 10 independent trials with FASTIBP, IBP, BADMM algorithms, and Gurobi in Table 2.
Note that we implement the rounding scheme after each algorithm (except Gurobi) so the terms in
“feasibility' are zero up to numerical errors for most of medium-size problems.

3Since we do not put the iterative gap between dual variables in “feasibility" and the FS-WBP is relatively
easier than general WBP, our results for BADMM and IBP are consistently smaller than that presented by [57,
56, 26].

*In our experiments, we call the Matlab function kmeans, which is built in machine learning toolbox.

> Available in http://yann.lecun.com/exdb/mnist/
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Table 2: Numerical results on synthetic data where each distribution has different dense weights but
same support size. The support points of the barycenter is fixed.

m n g il i2 f1 2
normalized obj
20 50 - 5.9e-01£1.2e-01 2.0e-01£8.0e-02 2.1e-01£1.1e-01 5.7e-02+1.1e-02 1.7e-03+9.7e-04
20 100 - 6.7e-01+8.2e-02 3.2e-01+5.5¢-02 3.6e-011+9.5¢-02 6.7e-02+8.0e-03 2.1e-03+8.2e-04
20 200 - 7.8e-01+£7.4e-02  4.8e-0145.9¢-02 6.0e-01£7.6e-02 6.3e-02+4.7e-03 2.9e-03+3.8e-04
50 50 - 4.5¢-0144.3e-02 1.7e-0143.7¢-02 1.6e-0114.9¢-02 6.8e-02+1.0e-02 2.2e-03+8.3e-04
50 100 - 6.4e-01£1.0e-01 3.7e-01+£6.8¢-02  4.3e-01+6.4e-02 7.6e-02+8.3e-03 3.0e-03+6.1e-04
50 200 - 8.2e-01+7.8e-02 5.9e-01£5.7e-02 6.7e-01+8.5¢-02 6.2e-0246.9¢-03 4.0e-03+6.4e-04
100 50 - 3.1e-01+£3.0e-02 1.1e-01£2.9¢e-02 7.2e-02+2.8e-02 6.7e-02+1.4e-02 3.9e-03+2.3e-03
100 100 - 6.1e-01£9.3e-02 3.8¢-01£6.0e-02  4.6e-01+7.2e-02 7.7e-0246.0e-03 3.6e-03+7.0e-04
100 200 - 8.3e-01+£5.0e-02 6.1e-01£4.0e-02 7.5e-01£4.2e-02 5.6e-02+4.7e-03 4.3e-03£6.9¢-04
200 50 - 2.8e-01+4.2e-02 1.1e-014+3.9¢-02 6.0e-02+3.8e-02 6.9e-02+1.4e-02 3.2e-03+1.8e-03
200 100 - 4.4e-0144.6e-02 2.8e-01£3.0e-02 3.7e-01+£5.8e-02 7.9e-02+3.1e-03 3.7e-03+3.3e-04
200 200 - 8.0e-01+8.7e-02 6.0e-01+6.8e-02 7.2e-01+4.6e-02 5.7e-02+4.5¢-03 5.2e-03+4.7e-04
feasibility
20 50 | 4.9e-07+0.0e+00  1.9e-07£0.0e+00  9.0e-0740.0e+00  9.6e-07+0.0e+00  1.8e-14£0.0e+00  3.6e-0940.0e+00
20 100 | 0.0e+0040.0e+00  0.0e+0010.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
20 200 | 0.0e+0040.0e+00  0.0e+0010.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
50 50 | 0.0e+00+0.0e+00  0.0e+0040.0e+00  0.0e+001+0.0e+00  0.0e+00+0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
50 100 | 0.0e+0040.0e+00  0.0e+0010.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
50 200 | 0.0e+0040.0e+00  0.0e+0010.0e+00  0.0e+00+0.0e+00  0.0e+00+0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
100 50 | 0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
100 100 | 0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
100 200 | 0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00
200 50 | 0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00
200 100 | 0.0e+00+£0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00  0.0e+00+0.0e+00  0.0e+00£0.0e+00  0.0e+0040.0e+00
200 200 | 2.7e-07+1.9e-07 2.2e-07+2.3e-08 6.2e-07+1.5¢-07 9.2e-07+3.9¢-08 7.5e-14+1.9¢e-13 1.0e-07+1.6e-07
iteration

20 50 3115+532 5000+0 440+158 7140+£3912 200+0 2760+£1560
20 100 64154999 3400+94 400+0 866015464 200+0 2860+1678

20 200 1243042339 3580+175 400+0 552042368 20010 1240+497

50 50 1013941192 5000+0 3604227 732046351 200+0 3560+1786

50 100 2169744377 3480+103 580163 9920+5351 20010 1540+1116

50 200 3956446916 3740+97 580+63 6800+£2512 220+63 12404833
100 50 2672942731 45804887 3804274 5180+£1901 240+84 594042406
100 100 5279949610 3560+84 700+287 10020+3400 200+0 1360+815
100 200 97357410615 3780+114 920+103 9720+3737 20010 440+280
200 50 5584146359 428041038 3004141 11140+4724 200+0 8000+3749
200 100 149230418051 3600+0 980+537 1284043650 20010 1880+634
200 200 258059+62104 3800+94 14404158 12160+2609 200+0 3404165

time (in seconds)

20 50 3.6e-01£1.1e-01  9.4e+0043.6e+00  2.5e-01+1.1e-01  4.1e+00£2.2e+00  3.1e-014+5.7¢-02  5.2e+00+2.4e+00
20 100 | 1.9e+0041.2e+00 2.4e+014+3.9e+00 1.2e+00+6.2e-01  2.5e+0141.5e+01  1.6e+00+9.0e-01  2.1e+01+1.3e+01
20 200 | 6.2e+00%1.7e+00 1.2e+02+5.1e+00  4.0e+00£5.6e-01  5.9e+0142.7e+01  5.9¢+00+7.5e-01  3.9e+01+£1.5e+01
50 50 | 3.1e+00+£1.3e+00 2.3e+014+4.8e+00  5.4e-014+3.8¢-01  1.2e+01+£1.1e+01  1.1e+00+6.0e-01  1.8e+01+9.2e+00
50 100 | 1.1e+0142.1e+00  6.9e+0145.0e+00  3.7e+00+7.1e-01  7.2e+0144.1e+01  3.5¢+00+5.3e-01  3.0e+01+£2.2e+01
50 200 | 2.7e+0145.8e+00 3.2e+02+1.4e+01  1.7e+01+£5.2e+00  2.0e+0247.5e+01  1.5e+01+4.5¢+00 8.8e+01+£5.5e+01
100 50 | 1.3e+01£4.3e+00 4.3e+0147.8e+00  1.1e+00+9.0e-01  1.7e+01£7.0e+00 2.7e+00+1.2e+00  6.1e+0142.7e+01
100 100 | 3.6e+01+£1.1e+01 1.4e+0243.9e+00 7.9e+00+3.5¢+00 1.4e+02+4.9e+01  7.2e+0041.0e+00 5.2e+0143.0e+01
100 200 | 1.0e+02+2.1e+01  6.6e+0242.7e+01  5.1e+01+6.0e+00 5.7e+02+2.3e+02 2.7e+0143.8e+00  6.6e+01+4.1e+01
200 50 | 5.4e+01+£1.2e+01 9.3e+0142.5e+01  2.0e+00+8.9¢-01  9.0e+01+4.2e+01  4.8e+00£2.9e+00  1.8e+02+41.0e+02
200 100 | 2.8e+02+6.7e+01  3.2e+0242.7e+01  3.0e+011+1.9e+01  4.0e+02+1.3e+02  1.5e+0144.5e+00 1.5e+02+5.1e+01
200 200 | 4.9e+02+2.0e+02  1.9e+0349.5e+01  2.8e+02+3.2e+01  2.5e+03+5.6e+02 1.1e+02+8.1e+00  1.9e+02+49.5e+01
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