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Abstract

We study minimax convergence rates of nonparametric density estimation under
the Huber contamination model, in which a proportion of the data comes from
an unknown outlier distribution. We provide the first results for this problem
under a large family of losses, called Besov integral probability metrics (IPMs),
that include the £P, Wasserstein, Kolmogorov-Smirnov, Cramer-von Mises, and
other commonly used metrics. Under a range of smoothness assumptions on
the population and outlier distributions, we show that a re-scaled thresholding
wavelet estimator converges at minimax optimal rates under a wide variety of
losses and also exhibits optimal dependence on the contamination proportion. We
also provide a purely data-dependent extension of the estimator that adapts to both
an unknown contamination proportion and the unknown smoothness of the true
density. Finally, based on connections recently shown between density estimation
under IPM losses and generative adversarial networks (GANs), we show that
certain GAN architectures are robustly minimax optimal.

1 Introduction

In many settings, observed data contains not only samples from the distribution of interest, but also
a small proportion of outlier samples. Because these outliers can exhibit arbitrary, unpredictable
behavior, they can be difficult to detect or to explicitly account for. This has inspired a large body of
work on robust statistics, which seeks statistical methods for which the error introduced by a small
proportion of arbitrary outlier samples can be controlled.

The majority of work in robust statistics has focused on providing guarantees under the Huber
e-contamination model [Huber, [1965]]. Under this model, data is assumed to be observed from a
mixture distribution (1 — €) P + €@, where P is an unknown population distribution of interest, G is
an unknown outlier distribution, and € € [0, 1) is the “contamination proportion” of outlier samples.
Equivalently, this models the misspecified case in which data are drawn from a small perturbation
by €(G — P) of the target distribution P of interest. The goal is then to develop methods whose
performance degrades as little as possible when € is non-negligible.

The present paper studies nonparametric density estimation under this model. Specifically, given
independent and identically distributed samples from the mixture (1 — €) P + G, we characterize
minimax optimal convergence rates for estimating P. Prior work on this problem has assumed P
has a Holder continuous density p and has provided minimax rates under total variation loss [Chen
et al., 2018]] or for estimating p(x) at a point  [Liu and Gao, 2017]. In the present paper, in addition
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to considering a much wider range of smoothness conditions (characterized by p lying in a Besov
space), we provide results under a large family of losses called integral probability metrics (IPMs);

dr(P,Q)=sup | E f(X)— E [f(X)|, (1)
feF | X~P X~Q

where P and () are probability distributions and F is a “discriminator class” of bounded Borel
functions. As shown in several recent papers [Liu et al., 2017, |Liang| [2018}, Singh et al., 2018, [Uppal
et al.| [2019], IPMs play a central role not only in nonparametric statistical theory and empirical
process theory, but also in the theory of generative adversarial networks (GANs). Hence, this work
advances not only basic statistical theory but also our understanding of the robustness properties of
GAN:S.

In this paper, we specifically discuss the case of Besov IPMs, in which F is a Besov space (see
Section[2.T). In classical statistical problems, Besov IPMs provide a unified formulation of a wide
variety of distances, including £P [Wasserman, 2006, Tsybakovl |2009]], Sobolev [Mroueh et al.,
2017, [Leoni, [2017]], maximum mean discrepancy (MMD; [Tolstikhin et al.,|[2017]))/energy [Székely:
et al., 2007, Ramdas et al., [2017]], Wasserstein/Kantorovich-Rubinstein [[Kantorovich and Rubinstein),
1958, |Villani, 2008]], Kolmogorov-Smirnov [Kolmogorov, |1933, |Smirnov, |1948]], and Dudley metrics
[Dudleyl 1972, |/Abbasnejad et al., [2018]]. Hence, as we detail in Section@ our bounds for robust
nonparametric density estimation apply under many of these losses. More recently, it has been shown
that generative adversarial networks (GANS) can be cast in terms of IPMs, such that convergence rates
for density estimation under IPM losses imply convergence rates for certain GAN architectures [Liang|
2018 |Singh et al., [2018] [Uppal et al., 2019]. Thus, as we show in SectionE], our results imply the
first robustness results for GANs in the Huber model.

In addition to showing rates in the classical Huber model, which avoids assumptions on the outlier
distribution GG, we consider how rates change under additional assumptions on G. Specifically, we
show faster convergence rates are possible under the assumption that G has a bounded density g, but
that these rates are not further improved by additional smoothness assumptions on g.

Finally, we overcome a technical limitation of recent work studying density estimation under Besov
IPMs losses. Namely, the estimators used in past work rely on the unrealistic assumption that the
practitioner knows the Besov space in which the true density lies. This paper provides the first
convergence rates for a purely data-dependent density estimator under Besov IPMs, as well as the
first nonparametric convergence guarantees for a fully data-dependent GAN architecture.

1.1 Paper Organization

The rest of this paper is organized as follows. Section 2] formally states the problem we study and
defines essential notation. Section [3] discusses related work in nonparametric density estimation.
Section . T| contains minimax rates under the classical “unstructured” Huber contamination model,
while Section {.2] studies how these rates change when additional assumptions are made on the
contamination distribution. Section[4.3]develops our general results from Sections {.T|and [4.2]into
concrete minimax convergence rates for important special cases. Finally, Section [5] applies our
theoretical results to bound the error of perfectly optimized GANSs in the presence of contaminated
data. All theoretical results are proven in the Appendix.

2 Formal Problem Statement

We now formally state the problems studied in this paper. Let p be a density of interest and g be
the contamination density such that X1,..., X,, ~ (1 — €)p + €g are n IID samples. We wish to
use these samples to estimate p. We consider two qualitatively different types of contamination, as
follows.

In the “unstructured” or Huber contamination setting, we assume that p lies in some regularity class
Fg, but g may be any compactly supported density. In particular, we assume that the data is generated
from a density living in the set M(e, Fy) = {(1 — €)p + €g : p € Fy, g has compact support}. We
then wish to bound the minimax risk of estimating p under an IPM loss d £, ; i.e., the quantity

R(n,e,Fg, Fg) =inf sup  El[dr,(p,Dn)] 2)
Pn feM(e,Fy) [
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Figure 1: Father, Mother, and first few Daughter elements of the Haar Wavelet Basis.
where the infimum is taken over all estimators p,,.

In the “structured” contamination setting, we additionally assume that the contamination density g
lives in a smoothness class F.. The data is generated by a density in M (e, Fy, Fc) = {(1—€)p+eg :
p € Fgq,9 € F.} and we seek to bound the minimax risk
R(n, 6,.7:9, Fe, ]:d) = illf sup E [d]-'d (ﬁnap)] . 3)
P feM(e,Fy,Fe) f
In the following section, we provide notation to formalize the spaces F, F. and F  that we consider.

2.1 Set up and Notation

For non-negative real sequences {an }nen, {0n tnen, an < by, indicates limsup,, , o Z—TLL < 00, and
an < by, indicates a, < b, < ay. Forg € [1,00], ¢/ := % denotes the Holder conjugate of ¢

~

(with 1/ = 00, 00’ = 1). LI(RP) (resp. 19) denotes the set of functions f (resp. sequences a) with
1/ 1/
1£1l, = (J 1f(@)]9 da) " < oo (resp. [lally = (3,en lan]?) ™" < 00).

We now define the family of Besov spaces studied in this paper. Besov spaces generalize Holder and
Sobolev spaces and are defined using wavelet bases. As opposed to the Fourier basis, wavelet bases
provide a localization in space as well as frequency which helps express spatially inhomogeneous
smoothness.

A wavelet basis is formally defined by the mother (¢ (x)) and father(¢(z)) wavelets. The basis
consists of two parts; first, the set of translations of the father and mother wavelets i.e.

®={p(x—k):kecz (4)
U= {¢p(x—k): keZeec{0,1}P}, (5)

second, the set of daughter wavelets, i.e.,
;= {2092 (2P0 — k) 1 k € 2%, e € {0,1}P}. (6)

Then the union ® U W U ({J;,()¥; is an orthonormal basis for £*(R").

We defer the technical assumptions on the mother and father wavelet to the appendix. Instead for
intuition, we illustrate in Figure the few terms of the best-known wavelet basis of £2(IR), the Haar
wavelet basis.

In higher dimensions, the wavelet basis is defined using the tensor product of wavelets in dimension
1. For details, see, Hardle et al.|[2012] and Meyer [[1992].

To effectively express smooth functions we will require r-regular (r-regularity is precisely defined
in the appendix) wavelets. We assume throughout our work that ¢ and 1) are compactly supported
r-regular wavelets. We now formally define a Besov space.

Definition 1 (Besov Space). Given an r-regular wavelet basis of L>(RP), let 0 < o < r, and
p,q € [1,00]. Then the Besov space Bg’q(RD) is defined as the set of functions f : RP — R that
satisfy

I£1g, = lall, + |{2es201m gy, ) < oo )

JEN]|1q

where « is the set of vectors {ag}pea where oy = [op f(x)(x)dx and B; is the set of vectors

{By }yew,, where By = [op f(2)¢(x)dz.



The quantity || f| 5 , is called the Besov norm of f. Forany L > 0, we write By (L) to denote the
closed Besov ball B" L) ={f€ By, |fllsg, <L} When the constant L i is unimportant (e.g.,
for rates of convergence) By, denotes a ball Brr o ,(L) of finite but arbitrary radius L. We provide
well-known examples from the rich class of resultlng spaces in Section[4.3]

We now define “linear (distribution) estimators”, a commonly used sub-class of distribution estimators:
Definition 2 (Linear Estimator). Let (2, F, P) be a probability space. An estimate p of P is
said to be linear if there exist functions T;(X;,-) : F — R such that for all measurable A € F,
P(A) =320, Ti(Xi, A).

Common examples of linear estimators are the empirical distribution, the kernel density estimator
and the linear wavelet series estimator considered in this paper.

3 Related Work

This paper extends recent results in both non-parametric density estimation and robust estimation.
We now summarize the results of the most relevant papers, namely those of [Uppal et al|[2019], /Chen
et al.|[2016]], and [Liu and Gao|[2017]).

3.1 Nonparametric Density Estimation under Besov IPM Losses

Uppal et al{[2019] studied the estimation of a density lying in a Besov space By ? J q, under Besov IPM
loss dpga ~with uncontaminated data. As shorthand, we will write R(n, Fg, ]-'d) R(n,0,Fy, Fa)

and R(n }'g, Fe,Fa) = R(n,0,F,, Fe,Fq) to denote the corresponding uncontaminated rates
derived by Uppal et al.| [2019]. They used the wavelet thresholding estimator, proposed in|Donoho
et al.|[1996]], to derive a minimax convergence rate of the form

ogtay og+oq—D/pg+D/p)

R (n, Fgy Fa) =n~ Y2 4072670 4 2004P0=2/0g) (®)

(omitting polylog factors in n). Extending a classical result of[Donoho et al.| [1996], they also showed
that, if the estimator is restricted to be linear (in the sense of Def. [2), then the minimax rate slows to

ocgtag ogtog— D/Pg+D/Pd
R (n, fg7fd)_n 1/2 4 p " 20gFD 4 2egtDO-2/pgt2/l) 9)

The first two terms in (B) & (9) are identical and the third term in (9) is slower. In particular, when
pl; > pg and o4 < D/2, linear estimators are strictly sub-optimal, while the wavelet thresholding
estimator converges at the optimal rate. The present paper extends this work in two directions.

First, we study how the minimax risk of estimating the data density p changes when the observed data
are contaminated by a proportion € of outliers from a (potentially adversarially chosen) contamination
distribution g. We show that, in most cases, wavelet thresholding estimators remain minimax optimal
under both structured and unstructured contamination settings. Moreover, for p/; < p, linear wavelet
estimators are minimax optimal under the structured contamination setting and the unstructured
contamination setting if the IPM is generated by a smooth enough class of functions (o4 > D/pg).

Second, noting that the estimators of [Uppal et al.| [2019] rely on knowledge of the smoothness
parameter o, of the true density, we consider the more realistic case where o, is unknown. We
develop a fully data-dependent variant of the wavelet thresholding estimator from |Uppal et al.|[2019]
that is minimax optimal for all o, under structured contamination.

Finally, [Uppal et al.|[2019] also applied their results to bound the risk of a particular generative
adversarial network (GAN) architecture. They show that the GAN is able to learn Besov densities at
the minimax optimal rate. In this paper, we show that the same GAN architecture continues to be
minimax optimal in the presence of outliers, and that, with minor modifications, it can do so without
knowledge of the smoothness o, of the true density.

3.2 Nonparametric Density Estimation with Huber Contamination

Chen et al.| [2016] give a unified study of a large class of robust nonparametric estimation problems
under the total variation loss. In the particular case of estimating a o,-Holder continuous density,
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their results imply a minimax convergence rate of n~ 29 %1 + ¢, matching our results (theorem i for
total variation loss. The results of |Chen et al.|[2016] are quite specific to total variation loss, whereas,
we provide results for a range of loss functions as well as densities of varying smoothness. Moreover,
the estimator studied by (Chen et al.|[2016]] is not computable in practice. It involves solving a testing
problem between all pairs of points in a total variation cover of the hypothesis class in which the true
density is assumed to lie. In contrast, our upper bounds rely on a simple thresholded wavelet series
estimator, which can be computed in linear time (in the sample size n) with a fast wavelet transform.

Liu and Gao|[2017] studied 1-dimensional density estimation at a point z (i.e., estimating p(x) instead
of the entire density p) for Holder smoothness densities under the Huber e-contamination model. In
the case of unstructured contamination (arbitrary ), Liu and Gao|[2017]] derived a minimax rate of

n” 0 4 7001 (10)

in root-mean-squared error. With the caveats that we study estimation of the entire density p rather
than a single point p(z) and assume that G has a density g, this corresponds to our setting when
Dy = qg = 00, and D = 1. Our results (equation imply an upper bound on the rate of

__90 )
n 200+l 4 goot—-1/p) (]])

under the £P loss. Interestingly, this suggests that estimating a density at a point under RMSE is
harder than estimating an entire density under L2 loss, and is, in fact, as hard as estimation under
L (sup-norm) loss. While initially perhaps surprising, this makes sense if one thinks of rates under
L% loss as being the rate of estimating the density at the worst-case point over the sample space,
which may be the point  at which [Liu and Gao|[2017] estimate p(z); under minimax analysis, these
become similar.

We generalize these rates to (a) dimension D > 1, (b) densities p lying in Besov spaces Bp? ;. , and

(c) a wide variety of losses parametrized by Besov IPMs (By¢ ).

Liu and Gao|[2017] also study the case of structured contamination, in which g is assumed to be
o.-Holder continuous. Because they study estimation at a point, their results depend on an additional
parameter, denoted m, which bounds the value of the contamination density g at the target point (i.e.,
g(z) < m). They derive a minimax rate of

__%9 . __%  _ _%9c
n” 270+ 4 emin{l,m} +n" ZeFle oI, (12)

This rate contains a term depending only on n that is identical to the minimax rate in the uncon-
taminated case, a term depending only on €, and a third “mixed” term. Notably, one can show that

this mixed term n~ 7T e Zoc 7T is always dominated by n Ty +D + €, and so, unless m — 0 as
n — oo, the mixed term is negligible. In this paper, because we study estimation of the entire density
p, the role of the parameter m is played by M := ||g||oo- Since g is assumed to be a density with
bounded support, we cannot have M — 0; thus, in our results, the mixed term does not appear. Aside
from this distinction, our results (TheoremE]) again generalize the results of [Liu and Gao|[2017]] to
higher dimensions, other Besov classes of densities, and new IPM losses.

Finally, we mention two early papers on robust nonparametric density estimation by |Kim and
Scott|[2012] and [Vandermeulen and Scott|[2013]]. These papers introduced variants of kernel density
estimation based on M -estimation, for which they demonstrated robustness to arbitrary contamination
using influence functions. These estimators are more complex than the scaled series estimates we
consider, in that they non-uniformly weight the kernels centered at different sample points. While
they also showed L' consistency of these estimators, they did not provide rates of convergence, and
so it is not clear when these estimators are minimax optimal.

4 Minimax Rates
Here we give our main minimax bounds. First, we state the estimators used for the upper bounds.

Estimators: To illustrate the upper bounds we consider two estimators that have been widely
studied in the uncontaminated setting (see |Donoho et al.| [1996], Uppal et al.| [2019]) namely the
wavelet thresholding estimator and the linear wavelet estimator. All bounds provided here are tight
up to polylog factors of n and 1/e.



For any j; > jp > 0 the wavelet thresholding estimator is defined as

Jo J1 _
Po=D pd+> > B+ > Y Byt (13)

ped J=0 e, =0 PEV;

where @y = L 31" | ¢(X;) and By = Ly 1 %(X;) and coefficients of some of the wavelets with
higher resolution (i.e., j € [jo, j1]) are hard-thresholded: 5, = Bw 13,5 for threshold t = ¢+/j/n,
where c is a constant.

The linear wavelet estimator is simply p,, with only linear terms (i.e., jo = j1). Here jo, j1 correspond
to smoothing parameters which we carefully choose to provide upper bounds on the risk. In the
sequel, let Fy = Bp! 4, (Lg) and F4 = Bg? . (Lq) be Besov spaces.

4.1 Unstructured Contamination

In this section we consider the density estimation problem under Huber’s e contamination model; i.e.

. - 11D
we have no structural assumptions on the contamination. Let X1, ..., X,, "~ (1 — ¢)p + €g, where

p is the true density and g is any compactly supported probability density. We provide bounds on the
minimax risk of estimating the density p. We let

M(e, Fg) = {(1 —€)p +€g : p € Fg4, g has compact support} (14)
and bound the minimax risk

R(n767fg;fd) = H}\f sup ]Ed]:d (ﬁvp) (15)
P feMe,F,) f

where the infimum is taken over all estimators p,, constructed from the n IID samples.

We first present our results for what [Uppal et al.| [2019]] called the “Sparse” regime p/; > pg, in
which the worst-case error is caused by large “spikes” in small regions of the sample space. Within
this “Sparse” regime, we are able to derive minimax convergence rates for all Besov spaces F, =
By?q,(Ly) and F4 = By . (Lg). Surprisingly, we find that linear and nonlinear estimators have
identical, rate-optimal dependence on the contamination proportion e in this setting. Consequently, if
e is sufficiently large, then the difference in asymptotic rate between linear and nonlinear estimators
vanishes. We first show the minimax rate in this setting that is achieved by a scaled version wavelet
thresholding estimator i.e. ﬁ Dn- The proof is provided in section B.1 of the appendix.

Theorem 3. (Minimax Rate, Sparse Case) Let r > o, > D /p, and pl; > pg. Then,

og+o4+D/plj—D/pg

R(n,e,B"q Bg )NR(n,B"g B )+e+ew (16)

Pg:dg’ " Pd:qd Pg,dg’ " Pd>qd

On the other hand linear estimators are only able to achieve the following asymptotic rate. The proof
is provided in section B.2 of the appendix.

Theorem 4. (Linear Minimax Rate, Sparse Case) Let r > o, > D /py and pl; > pg. Then,

Ug+”d+D/Pii*D/pg

Re, (ny6 Bgs gy Byig,) ~ Re (n, Bgsy, Bitg, ) +e+e oo (17)

Pgsdg’ Pgy4g’ "~ Pd-qd

As is expected, the sub-optimality of linear estimators referred to in section [3] extends to the
contaminated setting when contamination € is small. However, if the contamination e is large the

distinction between linear and non-linear estimators disappears. More specifically, if ¢ is large enough
og+o4+D/plj—D/pg
then both estimators converge at the same rate of € + ¢  “9—DP/Pg+D

Bounds for the regime p/, < pg:  We note that the lower bounds that constitute the minimax rates
above hold for all values of pg, p/, > 1. Furthermore, the linear wavelet estimator implies an upper
bound (shown in section B.3 of the appendix) on the risk in the dense regime. Together, this gives,
forallr > 0, > D/p, and p/; < py,

og+oq+D/py—D/pg og+ta

297%dT /g /P9 _997%
A(n)+ete 7P <R (ne By, Bi,,) <A+t P (8)



where A(n) = R (n, Bpl.q,, B34 ,.).

Pd,qad

One can check that, when the discriminator is sufficiently smooth (specifically, o4 > D/py), the
og+o
term ef’giD/zd on the right-hand side of Eq. (I8) is dominated by ¢; hence, the lower and upper
bounds in Eq. match and the thresholding wavelet estimator is minimax rate-optimal. When
o4 < D/pg, a gap remains between our lower and upper bounds, and we do not know whether the
thresholding wavelet estimator is optimal. The sample mean is generally well-known to be sensitive
to outliers in the data, and a large amount of recent work [Lugosi and Mendelson, 2016, |Lerasle et al.}
2018, Minsker et al.|[2019} |Diakonikolas et al.l 2019] has proposed estimators that might be better
predictors of the mean in the case of contamination by outliers. Since the linear and thresholding
wavelet estimators are both functions of the empirical means /3, of the wavelet basis functions, we
conjecture that a density estimator based on a better estimate of the wavelet mean Bi might be able

to converge at a faster rate as ¢ — 0. We leave this investigation for future work.

4.2 Structured Contamination

In the previous section, we analyzed minimax rates without any assumptions on the outlier distribution.
In certain settings, this may be an overly pessimistic contamination model, and the outlier distribution
may in fact be somewhat well-behaved. In this section, we study the effects of assuming the
contamination distribution G has a density ¢ that is either bounded or smooth. Our results show that
assuming boundedness of g improves the dependence of the minimax rate on € to order < ¢, but
assuming additional smoothness of g does not further improve rates.

As described in Section 2] in this setting we consider a more general form of the minimax risk:

R(n, e, Fy, Fe, Fq) = inf sup  E[drz,(p,p)] (19)
P feM(e,Fy,Fe) f

The additional parameter F. denotes the class of allowed contamination distributions.

We provide the following asymptotic rate for the above minimax risk that is achieved by an adaptive

wavelet thresholding estimator with 290 = n7775 and 271 = (n/logn)'/P. Recall here that r is the
regularity of the wavelets. Thus, for any o, < r, this estimator does not require the knowledge of o,.

Theorem 5 (Minimax Rate under Structured Contamination). Let o4 > D/pg, 0. > D/p. and
€ < 1/2. Then, up to poly logarithmic factors of n,
R (n,e,B% Bo  BY ) =R (n,e,B% , L, B ) =R (n,B% B ) te

Pg:dg’ "~ Pcyqc’ T Pd»qd Pg,9g Pd;qd Pg,4g Pd»qd
(20)

The right-most term is simply € plus the rate in the absence of contamination. The left two terms
are the rates when the contamination density lies, respectively, in the Besov space Bye , and the
space £ of essentially bounded densities. In particular, these rates are identical when o. > D/p..
One can check (see Lemma 10 in the Appendix) that, if 0. > D/p,, then Bgf,qc C L°°. Hence,
Theorem [5] shows that assuming boundedness of the contamination density improves the dependence
on € (compared to unstructured rates from the previous section), but that additional smoothness

assumptions do not help.

In section B.1 of the appendix we first provided a proof of the upper bound using the classical wavelet
thresholding estimator and then show the optimality of the adaptive version in section B.4.

4.3 Examples

Here, we summarize the implications of our main results for robust density estimation in a few
specific examples, allowing us to directly compare with previous results.

The case pg = qq = o0, includes, as examples, the total variation loss d B, ., (o4 = 0,]Rudin|[2006])
and the Wasserstein (a.k.a., Kantorovich-Rubinstein or earthmover) loss d B, . (oq = 1 [Villani,

2008]). Under these losses, the wavelet thresholding estimator is robustly minimax optimal, in both
the arbitrary and structured contamination settings (note that here o4 > D/pg = 0). In particular,
in the case of unstructured contamination, this generalizes the results of (Chen et al.|[2016]] for total
variation loss to a range of other losses and smoothness assumptions on p.
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Figure 2: Asymptotic breakdown point as a function of o, in the case p; = 1; this includes as special
cases the £>° and Kolmogorov-Smirnov losses.

Analogously, in the case p, = g4 = oo, the data distribution is itself o,-Ho6lder continuous, since
the Besov space By, J ¢, = C79 is equivalent to the space of o,-Holder continuous functions. In this
setting, the linear wavelet estimator is robustly minimax optimal under any Besov IPM loss when
contamination is structured, or under sufficiently smooth Besov IPM losses (with o4 > D/pg) when

the contamination is unstructured.

One can also use our results to calculate the sensitivity of a given estimator to the proportion €
of outlier samples. In the terminology of robust statistics, this is quantified by the “asymptotic
breakdown point” (i.e., the maximum proportion e of outlier samples such that the estimator can still
converge at the uncontaminated optimal rate). Figure 2]illustrates the asymptotic breakdown point, in
the case pg = 1, as a function of the discriminator smoothness ¢,4. For sufficiently smooth losses
(large o4, the estimator can tolerate a large number (O(+/n)) of arbitrary outliers before performance
begins to degrade, whereas, for stronger losses (smaller ), the estimator becomes more sensitive to
outliers.

5 Robustness of Generative Adversarial Networks

Singh et al.|[2018]] showed (in their Theorem 9) that the problems of generating novel samples from
a training density (also called “implicit generative modeling” [Mohamed and Lakshminarayanan,
2016|) and of estimating the training density are equivalent in terms of statistical minimax rates.
Based on this result, and an oracle inequality of [Liang| [2018]], several recent works [Liu et al.| 2017,
Liang| 2018} Singh et al., 2018, |Uppal et al.,|2019] have studied a statistical formulation of GANs
as a distribution estimate based on empirical risk minimization (ERM) under an IPM loss. This
formulation is as follows. Given a GAN with a discriminator neural network N, encoding functions
in F and a generator neural network N, encoding distributions in P, the GAN generator can be

viewed as the distribution P satisfying:

P = inf d=(P, P, 21
Jnf dz (P, P) 2D

While P, can be taken to be the empirical distribution % Zz;l dx,, these theoretical works have
shown that convergence rates can be improved by applying regularization (e.g., in the form of
smoothing the empirical distribution), consistent with the “instance noise trick” [Sgnderby et al.,
2016]], a technique that is popular in practical GAN training and is mathematically equivalent to
kernel smoothing. Here, we extend these results to the contamination setting and show that the
wavelet thresholding estimator can be used to construct a GAN estimate that is robustly minimax

optimal.

Suzuki| [2018]] (in section 3) showed that there is a fully connected ReLLU network with depth at most
logarithmic in 1/ and other size parameters at most polynomial in 1/4 that can d-approximate any
sufficiently smooth Besov function class (e.g. Bg_ 94, With oy > D/pg). This was used in [Uppal
et al.|[2019] to show that, for large enough network sizes, the perfectly optimized GAN estimate (of
the form of Eq. (ZI))) converges at the same rate as the estimator p used to generate it. So if we let
the approximation error of the generator and discriminator network be at most the convergence rate
(from Theorem 3] or Theorem [3) of the wavelet thresholding estimator then there is a GAN estimate

P that converges at the same rate and is therefore robustly minimax optimal. In particular, we have
the following corollary:



Corollary 6. Given a Besov density class By, J.qy With og > D [p, and discriminator class BJ?

with o4 > D /pg, there is a GAN estimate P with discriminator and generator networks of depth at
most logarithmic in n, or 1/ and other size parameters at most polynomial in n or 1/6 such that

sup B |dpgs (p)] S04+ R (n. By, B, ) +e (22)
pEM(e qu qq) ’

Since Besov spaces of compactly supported densities are nested (B . C B" for all ¢’ < o), to
approximate By for any o > ry it is sufficient to approximate B;°,. We can use this approximation
network along with the adaptive wavelet thresholding estimator to construct a GAN estimate of the
form of Eq. (21). Then under structured contamination this GAN estimate is minimax optimal for
any density of smoothness o, € [ro, ] and does not require explicit knowledge of o,. Thus, it is
adaptive.

6 Conclusion

In this paper, we studied a variant of nonparametric density estimation in which a proportion of the
data are contaminated by random outliers. For this problem, we provided bounds on the risks of both
linear and nonlinear wavelet estimators, as well as general minimax rates. The main conclusions of
our study are as follows:

1. The classical wavelet thresholding estimator originally proposed by [Donoho et al.|[1996], which
is widely known to be optimal for uncontaminated nonparametric density estimation, continues to be,
in many settings, minimax optimal in the presence of contamination.

2. Imposing a simple structural assumption, such as bounded contamination, can significantly alter
how contamination affects estimation risk. At the same time, additional smoothness assumptions
have no effect. This contrasts from the case of estimating a density at a point, as studied by |Liu and
Gaol[2017] where the minimax rates get better with smoothness of the contamination density.

3. Linear estimators, exhibit optimal dependence on the contamination proportion, despite having
sub-optimal risk with respect to the sample size. Hence, the difference between linear and nonlinear
models diminishes in the presence of significant contamination.

4. For sufficiently smooth density and discriminator class, a fully-connected GAN architecture with
ReLU activations can learn the distribution of the training data at the optimal rate, both (a) in the
presence of contamination and (b) when the true smoothness of the density is not known.

Our results both extend recent results on nonparametric density estimation under IPM losses [Liang,
2018}, [Singh et al., 2018} |Uppal et al., 2019] to the contaminated and adaptive settings and expand
the study of nonparametric density estimation under contamination [Chen et al., 2016, |Liu and Gaol
2017]] to Besov densities and IPM losses.

Broader Impact

Since this work is of a theoretical nature, it is unlikely to disadvantage anyone or otherwise have
significant negative consequences. One of the main contributions of this paper is to quantify the
potential effects of misspecification biases on density estimation. Hence, the results in this paper may
help researchers understand the potential effects of misspecification biases that can arise when invalid
assumptions are made about the nature of the data generating process.
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