
We thank all the reviewers for their comments and suggestions.1

Reviewers #1 & #4:2

"More details regarding the implications for real-world data would be beneficial."3

Due to space constraints we omitted a discussion about the “breakdown point” which may have practical implications.4

The “asymptotic breakdown point” is the maximum asymptotic proportion ε of outlier samples such that the estimator5

still converges at the uncontaminated optimal rate; i.e., the proportion of corruption the estimator can tolerate before6

performance degrades.7

Figure 1: Asymptotic breakdown point when p′d =∞ and σ′g = σg −D/pg .

Figure 1 illustrates the asymp-8

totic breakdown point for the case9

p′d =∞ as a function of σd; this10

includes as special cases the L∞11

loss and Kolmogorov-Smirnov12

metric.13

In Figure 2 we pick σ′g = D = 5 for the above setting to show how the breakdown point increases as a function of σd14

(smoothness of functions that define the IPM; larger smoothness implies weaker loss). So, estimation under a weaker15

loss may be more robust to contamination. We will add more discussion about how understanding breakdown points16

could be useful in the context of real-world data.17
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Figure 2: Exponent of n in
breakdown point as a function
of σd.

"A test on synthetic data for different contaminations would be ideal."18

We felt it would be difficult for experiments on synthetic data to elucidate our results,19

due to their asymptotic nature. However, if the reviewers feel this would help clarify20

the significance of the paper we will add it for the camera ready version.21

"It is not clear where the claim that a GAN with ‘ReLu activations can learn the22

distribution of the ...’ is shown."23

In corollary 6 we extend the result of Uppal et. al. [2019] to show that a perfectly24

optimized GAN estimate (of the form of eq. (7)) with large enough fully-connected25

ReLU generator and discriminator networks converges (under Besov IPMs) to the true26

Besov distribution at the minimax optimal rate, both adaptively and in the presence of27

contamination. We will clarify this in the paper.28

“Line 305 : “estimator of 4.2”, what is 4.2 referring to?”29

We meant to refer to the wavelet thresholding estimator defined in section 4.30

Reviewer #2:31

"line 102, could the authors check the definition of the Haar wavelets scaled from the mother wavelet? There is32

no λ in the definition."33

In dimension D there are 2D − 1 mother wavelets ψε indexed by ε ∈ {0, 1}D \ (0, . . . , 0). For each of these mother34

wavelets, daughter wavelets 2Dj/2ψε(2Djx− k) are constructed by translation (by integers k) and scaling (by 2−Dj35

horizontally and 2Dj/2 vertically). At resolution j, such wavelets can be indexed by λ = 2−jk + 2−j−1ε, as any such36

value of λ uniquely defines k and ε. For example, in dimension D = 1, λ = 1.5 implies that j = 0 and k = 1. We will37

clarify this re-indexing in the paper.38

Reviewer #3:39

"This rate, interestingly, is better than the rate achieved for density estimation at a point"40

The rates differ primarily in the ε term i.e. ε−
σ0

2σ0+1 vs ε−
σ0

2σ0+1/2 (section 3.2) which is obtained when the misspecifica-41

tion error dominates the variance. The misspecification error εdFd(Eg[p̂n]) (eq. (19)) is the error due to contamination.42

The point-wise misspecification error scales as the L∞ error or ε2Dj with resolution j which is larger than the Lp′d error43

which scales as ε2Dj/pd . Intuitively, this reflects the fact that while under both losses the “worst-case” contamination44

densities are “spikes” concentrated around single points (rather than, say, uniform over the domain), the L∞ loss, as45

well as estimation at a point, are more sensitive to such contamination than, e.g., L2 loss. We will try to clarify this in46

the paper.47

"the description of the wavelet estimator (in particular how it differed from that of Donoho)"48

The wavelet estimator that we have used is similar to that of Donoho et. al. [1996]. We merely chose to estimate the linear49

terms (up to resolution j0) with basis (∪k
(
φ0k ∪

⋃
0≤j≤j0 ψjk

)
) as opposed to ∪kφjk. These bases are equivalent.50

However, no prior work has studied the robustness properties of this estimator in the presence of contamination. As the51

reviewer suggested, we will add discussion of the novel aspects of the proofs to the main paper.52


