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Abstract

The task of vision-and-language navigation (VLN) requires an agent to follow text
instructions to find its way through simulated household environments. A promi-
nent challenge is to train an agent capable of generalising to new environments
at test time, rather than one that simply memorises trajectories and visual details
observed during training. We propose a new learning strategy that learns both
from observations and generated counterfactual environments. We describe an
effective algorithm to generate counterfactual observations on the fly for VLN, as
linear combinations of existing environments. Simultaneously, we encourage the
agent’s actions to remain stable between original and counterfactual environments
through our novel training objective – effectively removing spurious features that
would otherwise bias the agent. Our experiments show that this technique provides
significant improvements in generalisation on benchmarks for Room-to-Room
navigation and Embodied Question Answering.

1 Introduction

Deep learning has generated significant advances in computer vision and natural language processing.
The most striking successes are witnessed on perceptual tasks that essentially amount to pattern
matching. A strength of deep learning is its ability to pick up statistical patterns in large labeled
datasets. As a flip side, this capacity leads to models that indiscriminately rely on dataset biases and
spurious correlations as much as task-relevant features. This limits the generalisation capabilities of
learned models and restrict their applicability on complex tasks (e.g. [1, 2] with images and [3, 4, 5, 6]
in multimodal tasks). Most successful applications of deep learning rely on settings where the seen
training data and the unseen test data are statistically similar. Yet we argue that better generalisation
could be achieved with new training strategies. This is particularly relevant to multimodal, high-level
tasks where training examples can only cover a tiny part of the input space.

In this paper, we propose to consider the unseen to learn representations that lead to better gen-
eralisation. The method is applied to the task of vision-and-language navigation (VLN, [7, 8, 9])
which requires relating complex inputs with observations of unseen environments. In VLN, an agent
receives instructions in natural language and it must decide on a sequence of actions (e.g. turn left,
move forward, ...) to reach a target location while observing 2D images of its environment. The task is
extremely ambitious: the agent must learn to ground language with visual observations, to understand
sequences of instructions and high-level actions (e.g. wait by the door), to generate navigation plans,
etc. The standard approach is to train an agent with a combination of reinforcement learning [10, 11]
and imitation learning with human-generated examples of instructions and trajectories. These agents
can memorise successful sequences of actions and grounding associations but they often fail to apply
their capabilities to unseen environments at test time [11]. Our intuition is that a mechanism to reason
about alternative observations and trajectories during training could help learning robust navigation
strategies. We would like to consider, for example, what would happen if a desk were observed
instead of a chair ?
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Figure 1: We seek to improve a VLN agent’s capability to generalise to unseen environments at test time.
Agents are typically trained by reinforcement and imitation learning, using ground-truth pairs of instruc-
tions/trajectories (“factual observations”, left). We propose to generate alternative, counterfactual training
observations with combinations of existing environments. We determine the minimum intervention on the factual
data that causes the current model to produce different outputs. We then formulate our novel training objective
to best exploit these additional examples and improve its generalisation capabilities (right). The generation
process is formalised with a causal model of the data, in which we introduce the interpolation coefficients as an
exogenous variable u, effectively modelling an intervention on the environment.

Various methods have been proposed to improve generalisation in VLN, such as feature and en-
vironment dropout [11], fine-tuning based on the exploration of unseen environments [10, 12] or
using beam search [12, 13]. The method we propose is inspired by the framework of counterfactual
reasoning [14]. Counterfactuals serve to reason about unobserved scenarios and to estimate the
effect of an intervention not represented in the data. In the context of VLN, we essentially want to
consider during training what if we observed a different environment. Throughout this paper, we call
counterfactuals training environment examples that we could have observed. We consider the causal
model underlying the training environments and introduce an exogenous variable that governs their
visual features yet is unobserved. We utilise this variable in generating counterfactuals. Intuitively,
this exogenous variable captures variations in visual features in the environments that are rather
insignificant for the decision making of the agent and can be ignored. At each training iteration, we
generate counterfactuals that represent the minimum edit of an existing training data that causes the
model to change its action. Thereafter, we formulate a novel objective that encourages the agent to
learn from both observed training data and their counterfactuals by explicitly removing the effects of
intervention in the agent’s policy (see Fig. 1). By introducing additional variations in the observations
during training, we encourages the model to rely less on idiosyncrasies of a given environment, and
rather learn a policy that better generalises to unseen environments at test time.

The contributions of this paper are summarized as follows.
• We propose a novel training strategy for VLN that generates counterfactuals on the fly to account

for unseen scenarios. Using both training data and their counterfactuals, we improve agent’s
capabilities to generalise to new environments at test time.

• We formalise the new procedure with a causal generative view of the data, in which we introduce
an exogenous variable representing interpolation coefficients between original training examples.
We derive an efficient algorithm to generate counterfactual instances that represent minimum
interventions over original examples that cause the model to change its output.

• We implement the technique on top of a VLN agent for both reinforcement and imitation learning.
Experiments on benchmarks for Room-to-Room (R2R) navigation [8] and Embodied Question
Answering [9] show significant improvements. We reduce the success rate gap between seen and
unseen environments in R2R from about 8% to less than 2.5%.

2 Related Work

Vision and Language Navigation (VLN) has gained popularity in various forms (instruction fol-
lowing [8, 15], object or room probing [16, 17], embodied question answering [9, 18], vision and
language dialogue [7, 19]). Generalisation to unseen environments remains an unsolved challenge,
despite techniques like enhanced features and beam search, panorama view [12], attention mech-
anisms [13], and other heuristics [10, 20, 21]. Environment Dropout [11] randomly drops visual
features to simulate variations in environments. Our approach does not require access to held-out
trajectories, which may not be available in other tasks (rather than R2R). Our method can be used in
a variety of tasks, as demonstrated with EQA in the experiments.
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Principles of counterfactual reasoning [14, 22] have been applied beyond standard causal inference
to augment training in bandit settings [23], and in recommendation [24] and explanation systems [25].
Kaushik et al. [26] proposed a human-in-loop process to augment datasets with counterfactual
instances. In reinforcement learning [27, 28], counterfactuals are used in off-policy settings to
improve sample efficiency. Our technique is also related to adversarial training [29, 30, 31, 32] in
that we generate variations of training examples that cause the current model to switch its predictions.
The major difference is that our approach provides alteration to the input, or rather its representations,
by a variable that is conditioned on the real training data rather than a simple perturbation.

Using counterfactuals for VLN was explored in [33] in which adversarial paths that are hard for the
policy to navigate are generated. Our approach differs from their adversarial augmentation method
in that intervene in visual features rather than focusing on difficult trajectories. Our method, while
being simpler, outperforms theirs with almost 10% in success rate.

The closest work to this one is [34]. The authors generate counterfactual data using interpolations
for vision-and-language tasks, including visual question answering. The differences with this work
are that (1) we only intervene on visual features, (2) we backpropagate the loss in counterfactual
environments instead of using it as a change ratio for factual loss calculation, and (3) we explicitly
focus on removing the effects of intervention. Our work also extensively focuses on VLN.

In comparison to standard data augmentation, our counterfactual instances do not rely on hand-
crafted or domain-specific rules, and they are generated on the fly. MixUp [35, 36] performs data
augmentation with interpolations and label smoothing. Mixup is not directly applicable to VLN since
(1) VLN is sequential in nature, (2) an interpolation of state-action from one trajectory to another
may lead to catastrophic difference in the objective. Our approach intervenes in the visual features to
simulate the agent’s behaviour in a counterfactual environment, where the agent still has to follow the
same instruction and sequence of actions

3 Methodology
3.1 Problem Definition
Our task is to train an agent capable of grounding a command, in the form of natural language, to the
current visual view and taking suitable actions that lead to the target location. Formally, the agent
is given natural language instructions or commands as a sequence of words c = [w1, w2, .., wL] to
be executed in the environment E . We consider all the instructions to be in a set C. The process
can be viewed as a Partially Observable Markov Decision Process (POMDP) where a trajectory
is a sequence of length T of observation ot, state st and action at for each time step t i.e. τ =
{o1, s1, a1, . . . ,oT , sT , aT }. The probability of each trajectory given the instruction is1

πθ(τ | c) =

T∏
t=1

p(at | st) p(st | st−1, zt, c) p(zt |ot) . (1)

Here, πθ is the agent’s policy (Unless explicitly mentioned otherwise, θ represents all parameters
which is omitted from the right-hand side probabilities for brevity). In the visual navigation scenario
we consider, ot as the visual observation of the scene in which the agent is, st as a representation of
the trajectory history2 and at as the chosen action at time t (e.g. turn left or stop for when the
trajectory is finished). By convention, s0 is a sample from the state prior (e.g. uniform). We denote a
latent representation of the visual scene by z and assume it is obtained using a function z = fo(o),
e.g. a pretrained CNN for the visual inputs, thus p(zt |ot) = δ(z− fo(o)) where δ is the Dirac delta.

Training with imitation learning and reinforcement learning. The common practice in visual
navigation is to use a training set D = {(τi, ci)}ni=1 containing human-provided trajectories and
instructions. This training set is used in supervised learning to bootstrap the agent’ behaviour through
cloning human’s actions. In addition, reinforcement learning is used so that the agent learns from the
environment’s feedback. The training procedure optimises the following objective [11]:

max
θ

E(τ,c)∼D
[
log πθ(τ | c)

]︸ ︷︷ ︸
GIL(θ)

+ λ Ec∼C
[
Eτ∼πθ(τ | c)[R(τ)]

]︸ ︷︷ ︸
GRL(θ)

. (2)

The first term GIL(θ) is a simple log-likelihood of human-provided examples using Eq. (1) (imitation
learning). The second term GRL(θ) corresponds to the execution of the policy in the environment

1We model πθ as a recurrent model. For the language command, we use a separate recurrent model.
2We consider the hidden state of the agent’s policy as st.
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and receiving a reward R(τ). The hyperparameter λ serves to balance the importance of imitation
learning versus reinforcement learning. The reward captures the agent’s success in navigating the
environment. In a Room-to-Room navigation task, the reward is a combination of a large positive
number for reaching the target location at the end of each episode, and a small positive/negative
number for reducing/increasing the distance to that location at each step. To update the parameters of
the policy during RL, we employ an on-policy algorithm such as actor-critic [37].

3.2 Counterfactual Formulation in VLN
The state variable s ideally is the representation of the history of observations and actions. The final
decision of the agent is taken conditioned on this variable and as such is of great importance. However,
as is common with other multi-modal problems (e.g. VQA [6, 4]) this variable captures particular
biases and regularities in the input and may even ignore important patterns which significantly limits
the generalisation ability of the agent. To remedy the situation, we consider an exogenous variable
that intervenes the observations. By introducing and reasoning about this variable, the agent is
encouraged to consider alternative observations and representations. In addition, the agent obtains
the capacity to reason about “what if” the observations were different.

To that end, we consider the counterfactual distribution of the trajectory where each observation is
replaced by its intervened alternative z̃ut :

π̃θ(τ̃ | c, u) =
T∏
t=1

p(at | s̃t) p(s̃t | s̃t−1, z̃
u
t , c). (3)

In this distribution, the conditional dependence on the scene observations ot is suppressed because
of the intervention. We denote with τ̃ the trajectories obtained by replacing a given embedding of
the visual scene zt with its counterfactual z̃ut based on the influence of u. Imagine that the agent
observes a chair that represents an obstacle to be avoided. A counterfactual situation would ask, for
example “what if the agent observed a table?”. The exogenous variable is conditioned on the factual
trajectories observed in the training set. The expectation with respect to the exogenous variable serves
to consider a whole range of possible alternatives. The expected reward for counterfactual trajectories
G̃RL(θ) (to be compared with GRL(θ) of Eq. (2)), is obtained from the states intervened based on the
exogenous variable u:

G̃RL(θ) := E(τ,c)∼D

[
Eu∼p(u | τ, c)

[
Eτ̃∼π̃θ(τ̃ | c,u)[R(τ̃)]

] ]
(4)

G̃IL(θ) := E(τ, c)∼D

[
Eu∼p(u | τ, c)

[
log π̃θ(τ̃ | c, u)

] ]
We detail p(u | τ, c) and how to generate counterfactuals using π̃θ(τ̃ | c, u) in Section 3.3.

The differences between GRL(θ) and G̃RL(θ) as well as between GIL(θ) and G̃IL(θ) correspond to the
Conditional Average Treatment Effect (CATE) [23]. These differences reflect how the intervention
influences the reward and log-likelihood. They are defined as

∆d = GIL(θ)− G̃IL(θ) and ∆τ = GRL(θ)− G̃RL(θ) . (5)
We want to optimise our agent such that, after learning from the training set, performs similarly when
faced with unobserved alternative scenarios. In other words, we want ∆τ and ∆d to be small. This
effectively reduces the influence of interventions and as such discourages bias to spurious features.
We add, to the objective of Eq. (2), constraints on the magnitude of ∆d and ∆τ :

max
θ

GIL(θ) + λGRL(θ) s.t. ∆τ ≤ ετ and ∆d ≤ εd , (6)

with εd and ετ small constants. Introducing the Lagrange multipliers α and β, we have

max
θ

(1− α) GIL(θ) + α G̃IL(θ) + (λ− β) GRL(θ) + β G̃RL(θ) . (7)

We assume β = αλ and (1− α) > 0 for simplicity, which gives the final objective:

max
θ

(
GIL(θ) + λGRL(θ)

)
︸ ︷︷ ︸

Original navigation

+ α
(1−α)

(
G̃IL(θ) + λ G̃RL(θ)

)
︸ ︷︷ ︸

Counterfactual navigation

. (8)

Technically, when increasing α/(1− α), we choose to give more weight to what could have been
seen (variations in the environment) rather than maximising the gain. Therefore, when the trajectories
are longer we need smaller α/(1− α) which intuitively allows the model to focus on correct actions
at each state rather than variations that could have been observed. Note, learning longer trajectories
are generally harder and a small mistake has more significant impact. This novel objective is used
with the counterfactuals, of which we next discuss the generation.
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3.3 Counterfactual Distribution Learning and Generation
Computing Eq. (4) hinders on: (1) the distribution of the counterfactual trajectories given the
intervention by exogenous variable π̃θ(τ |u, c), (2) the conditional of the exogenous p(u|τ, c) given
the observed trajectory-instruction pair from data, and (3) combining (1) and (2) to have the probability
of the counterfactual trajectory as π̃θ(τ | c) = Ep(u | τ, c)[π̃θ(τ | c, u)]. Here, u is marginalised out
to remove the impact of the intervention or spurious features.
1. Sampling from π̃θ(τ |c,u): To sample a counterfactual trajectory, we first sample a pair of

real trajectories from the observations such that at least one has the language instruction, i.e.
{(τ, c), (τ ′, c′)} ∼ D. Subsequently, we choose the counterfactual visual features to be a linear
interpolation. Given a sample u ∈ [0, 1]d (d being the dimensionality of z) with slight abuse of
notation, we have:

τ̃ = {z̃u0 , s̃0, a0, . . . , z̃
u
T , s̃T , aT } ∼ π̃θ(τ |u, c), z̃ut = u � zt + (1− u) � z′t , (9)

with zt = fo(ot) , z
′
t = fo(o′t), ot ∈ τ , o′t ∈ τ ′ .

We use � to represent an element-wise product. When the length of the second trajectory τ ′ is
shorter, we choose to repeat its final visual features for interpolation. Alternative approaches such
as generative adversarial networks [38] could be employed, albeit our simple option presents a
clear advantage in computational efficiency.

2. Exogenous variable’s distribution p(u | τ, c): Given the prior p(u), we have p(u | τ, c) ∝
p(u)π̃θ(τ | c,u) as the posterior. It is easy to see that with our definition in Eq. (9), when u = 1
we uncover πθ(τ | c) in Eq. (1). In other words, u = 1 provides the max-likelihood since that
gives rise to an observed trajectory. We consider a Beta distribution for the prior.

3. Finding minimum interventions that change the agent’s decision: Having (1) and (2) we can
sample a counterfactual trajectory π̃θ(τ | c) (with u marginalised out). One can resort to MCMC
or a variational lower bound to sample the most likely counterfactual. However, in the interest
of efficiency and simplicity, we choose the exogenous variable with the highest likelihood that
produces the most likely counterfactual. In other words, we seek the minimum intervention (i.e.
minimum edit) that changes the agent’s decision (remember, we want our counterfactuals to be
very different from observations). Since changing the agent’s decision may lead to a different
route in the environment, we additionally constrain the counterfactual trajectory to have the
same instructions. Given a training example (c, τ), the following optimisation identifies such an
intervention parametrised by u (note τ̃ is the counterfactual of τ ):

max
u∈ [0,1]d

p(u | τ, c) + log p(c | τ̃ ,φ) (10)

s.t. a′t 6= at ∀ t with a′t = argmax
at

p(at | s̃t) p(s̃t | s̃t−1, z̃
u
t , c) .

The second term in Eq. (10) measures how likely an instruction is for a trajectory for which we
utilise the speaker model of [12] with parameters φ. The optimisation of Eq. (10) is too expensive
to perform for every training trajectory. We note that the first term is maximised when u is close
to one, as such a relaxed version by turning the constraint into an extra term in the objective is
devised:

max
u∈ [0,1]d

‖u‖ + log p(c | τ̃ ,φ)− γ

T∑
t=1

(
log p(at | s̃t) + log p(s̃t | s̃t−1, z̃

u
t , c)

)
, (11)

where γ is a hyper-parameter. The first two terms in this equation ensure the intervention is
minimal and the counterfactual trajectory is most likely to follow the same instructions. The
constraint, on the other hand, finds the counterfactual trajectory by fooling the current policy.

A summary of the whole training algorithm is provided in Algorithm 1.

4 Experiments
To show the effectiveness of our counterfactual contemplation approach we applied it to both Room-
to-Room (R2R) navigation and Embodied Question Answering (EQA). In all of our experiments, we
only intervene in the visual features as discussed in Sec. 3.3. We set the prior p(u) to Beta(0.75, 0.75),
and use 5 interactions to optimise Eq. (11) with the learning rate set to 0.1. Using grid search, we
concluded γ = 0.1 provides best results. We closely follow Algorithm 1 to learn the parameters,
more details are provided in the supplement.
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Algorithm 1: Training of a VLN agent through IL and RL, with factual data (original training
set) and counterfactual observations (generated instances).

Inputs: dataset D, initial policy parameters θ0, learning rate ξu, ξθ
for i = 1 to max_iterations do

Pick a sample from the dataset (τ, c) ∼ D
Generate exogenous variable from the prior: u0 ∼ p(u)
Pick another sample from the dataset (τ ′, c′) ∼ D
// use Eq. (11) to get the counterfactual trajectory
for j to N do

τ̃ = {z̃u0 , s̃0, a0, . . . , z̃
u
T , s̃T , aT }, z̃ut = u � zt + (1− u) � z′t // Eq. (9)

uj+1 = uj + ξu∇u

(
‖u‖+ log p(c|τ̃ ,φ)−γ

∑T
t=1

(
log p(at|s̃t) + log p(s̃t|s̃t−1, z̃

u
t , c)

))
end
gIL = log πθ(τ | c) + α

1−α log π̃θ(τ̃ | c) // imitation learning gain

Given the instruction c, rollout trajectories τrl and τ̃rl from the current navigation policy
without and with interventions respectively
gRL = Eτrl∼πθ(τrl | c)[R(τrl)] + α

1−αEτ̃rl∼π̃θ(τ̃rl | c)[R(τ̃rl)] // RL gain

θi = θi−1 + ξθ∇θ

(
gIL + λgRL

)
// update based on Eq. (8)

end

4.1 Room-to-Room Navigation
Dataset: Room-to-Room (R2R) [8] is a dataset of natural language instructions for indoor navigation
collected using Amazon Mechanical Turk (AMT) and employing a simulator based on Matterport3D
environments [39]. The training is based on 14, 025 pairs of instruction-visual path in 61 environments.
The validation is done in two settings: (1) seen where the environment is from the training set but the
instructions are not and (2) unseen where both the instructions and the visual observations are never
seen by the agent.
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Figure 2: The effect of α on the
results inside unseen environments.
α

(1−α) = 0 means no counterfactual
is used (conventional training).

Implementation details: We closely follow the experiment setup
of [11] where the visual observations consists of the features ex-
tracted using the pretrained ResNet-152 [40] from the egocentric
panoramic view of the agent. Similarly, the policy is an attention
encoder-decoder network that chooses an action from a set of direc-
tions at each time-step. Following the approach proposed in [12],
our speaker is a sequence-to-sequence model which evaluates the
likelihood of an instruction for a trajectory. We optimise our mod-
els using RMSprop with a learning rate of 1× 10−4 and batch
size of 64 for 80, 000 iterations in all of our experiments, except
when indicated. Further details are provided in the supplements.

We set α ≈ 0.83 (i.e. α
(1−α) = 5) by grid search in behavioural

cloning setting (without counterfactual learning) for all the exper-
iments. Value of α balances the factual and counterfactual and as
shown in Fig. 2 increasing it (more weights for counterfactuals)
improves the performance in the unseen environments to a point. Increasing it further reduces the
generalisation since the agent forgets the factual observations.

Baselines: To evaluate our approach, we conduct extensive experiments in different learning settings
similar to that of [11, 8] for fair comparison: imitation learning (IL; λ = 0), with additional
reinforcement learning (IL+RL), and with additional data augmentation (IL+RL+Aug). We employ
behaviour cloning and advantage actor-critic (A2C) algorithm [37] when IL and RL are needed
respectively. The reward is calculated based on the agent’s progress toward the target and its final
success/failure similar to the baselines (details in the suppl.). In addition, in the augmented setting,
similar to [11], we fine-tune our trained model from IL+RL for the maximum of 200, 000 iterations
with additional samples obtained from instructions sampled from the speaker.

Evaluation metrics: Similar to [8, 11, 20, 12], we employ both the Navigation Error (NE), the
difference as measured in meters between the agent’s final position and the target location, and the
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Success Rate (SR), the the portion of traversed trajectories at which the NE is less than 3 meters,
to evaluate the performance of a navigating agent. However, Success weighted by Path Length
(SPL) [41] better represents the efficiency by taking into account the inverse ratio of the agent’s
Trajectory Length (TL)–the distance the agent travelled– to the ground-truth. We demonstrate all of
these metrics for both seen and unseen environments.

Validation-Seen Validation-Unseen
Model NL↓ NE↓ SR↑ SPL↑ NL↓ NE↓ SR↑ SPL↑
Seq-to-Seq [8] 11.3 6.01 38.6 - 8.4 7.81 21.8 -
Speaker-Follower [12] - 4.86 52.1 - - 7.07 31.2 -
Co-Grounding [13] - 3.65 65.0 0.56 - 6.07 42.0 0.28

IL* [11] 9.9 5.34 50.2 0.48 9.5 6.10 42.6 0.40
IL+Prior 9.9 5.17 50.5 0.48 9.2 5.89 45.5 0.43
IL+Counterfactuals 9.8 5.37 48.9 0.47 9.1 5.75 46.4 0.44

IL+RL* [11] 10.3 4.65 55.8 0.53 9.7 5.73 44.9 0.41
IL+RL+Prior 11.2 4.78 54.0 0.51 14.9 5.52 48.5 0.44
IL+RL+Counterfactuals 10.7 4.75 53.6 0.51 11.8 5.42 49.4 0.46

IL+RL+Aug* [11] 10.3 4.01 62.5 0.60 9.7 5.48 50.3 0.47
IL+RL+Aug+Prior 11.0 3.65 64.4 0.61 13.5 5.13 52.4 0.48
IL+RL+Aug+Counterfactuals 10.8 3.65 68.2 0.64 12.4 4.95 53.5 0.49

Table 1: Evaluation metrics for R2R Navigation. Navigation Length (NL) and
Navigation Error (NE) values are represented in meters, while Success Rate
(SR) values are percentage.
↑ indicates higher is better, while ↓ shows lower is better.
* Results are as reported in the official implementation: https://github.
com/airsplay/R2R-EnvDrop.

Results: We report the
evaluation performance
of the proposed approach
in Table 1. We indicate
the use of counterfactual
objective in Eq. (8) by
+Counterfactuals. We
consider reporting the per-
formance of our approach
by simply conditioning
the interventions on the
prior distribution of the
exogenous variable indi-
cated by +Pior. Using
the prior, compared to
the one optimised in
Eq. (11), evaluates the
value of estimating the
posterior. As shown,
by incorporating the
counterfactuals the nav-
igation performance of
the imitating agent, in particular for the unseen environments, improves significantly. We
particularly observe around 4% improvement in SR and SPL compared to the baseline.
More importantly, our method improves the generalisation by decreasing the SR gap between the
seen and unseen environments from around 8 to 2.5%–a significant improvement indeed.

Validation-Unseen Test-Unseen
Model NL↓ NE↓ SR↑ SPL↑ NL↓ NE↓ SR↑ SPL↑
Random [8] 9.8 9.23 16.3 - 9.9 9.79 13.2 0.12
Seq-to-Seq [8] 8.4 7.81 - 0.22 8.1 7.85 20.4 0.18
Speaker-Follower [12] - 6.62 35.5 - 14.8 - 35.0 0.28
Self-Monitoring [13] - 5.41 47.0 0.34 18.0 5.67 48.0 0.35
Reinforced Cross-Modal [10] 11.5 6.09 50.1 0.43 12.0 6.12 43.0 0.38
Tactical-Rewind [42] 21.2 4.97 56.0 0.43 22.1 5.14 54.0 0.41
Counterfactual VLN [33] - 5.40 47.7 0.43 - 5.80 45.1 0.41
Environment Dropout [11] 10.7 5.22 52.2 0.48 11.7 5.23 51.5 0.47

Ours 12.4 4.95 53.5 0.49 13.0 4.90 54.9 0.50
PRESS* [43] 10.4 5.28 49.0 0.45 10.8 5.49 49.0 0.45
PREVALENT* [44] 10.2 4.71 58.0 0.53 10.5 5.30 54.0 0.51

Table 2: The comparison of our results with others in unseen environments.
Test-unseen results are reported on the task’s leaderboard in single-run setting.
* The indicated methods are taking advantage of self-supervised pre-training.
Our method can be applied on top of these methods to result in a further
improvement.

Once the reinforcement sig-
nal is added (i.e. λ =
5), our proposed policy’s
performance improves fur-
ther by more than 3% for
SR compared to its IL
counterpart. Furthermore,
our method enjoys about
5% improvement in SR
and SPL in unseen envi-
ronments, and, more im-
portantly, an approximately
6.7% drop in the seen
versus unseen performance
gap. Further, using augmen-
tations, our model enjoys
another 4% boost in both
SR and SPL.

Finally, we submitted our
proposed model to the
leaderboard for the evaluation on the test set–a hold-out dataset of 18 environments for a fair
challenge3. Table 2 demonstrates the superior performance of our model in comparison to other
baselines. Interestingly, our model outperforms the EnvDrop model [11], the most similar model to
ours, by a significant margin of 3.4 percent in SR and 3 points in SPL. Besides, our agent surpasses

3Our evaluation on the test set is available at: https://evalai.cloudcv.org/web/challenges/
challenge-page/97/leaderboard/270
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self-supervised pre-training of [44], in terms of success rate and navigation error–a model that we
believe can further benefit from our approach.

4.2 Embodied Question Answering
Dataset: Embodied Question Answering (EQA) [9] is a challenging variant of Vision and Language
Navigation where in contrast to R2R task, the agent is given a general question about an object in the
environment, e.g. “what colour is the car?”. Spawning in a random location in an unseen environment
at test time, the agent must first navigate to the proximity of the desired object and subsequently
answer the given question. The dataset consists of 6, 912 tuples of route-question-answer in 645
distinct training environments and a collection of 898 tuples in 57 unseen environments for the test set.
At each step, the agent is provided with an egocentric RGB image based on which the agent should
choose the next action among a set of 4 discrete choices (forward, turn-left, turn-right
and stop). We treat the question as the instructions of the R2R dataset.

Implementation details: Our navigation policy is a simple 2-layer Gated Recursive Unit (GRU) and
visual features are obtained from a 4-layer CNN pre-trained using an auto-encoder from House3D
images [9] (details in Supplements). We train all of the models for 30 epochs (more than 10, 000
iterations) in a behavioural cloning setting with a batch size of 20 and learning rate set to 1× 10−3

using Adam optimiser. It should be noted that since there is no instructions to be followed (just the
question here) we disregard the second term in Eq. (11) for this task.

Evaluation metrics: For the evaluation, we spawn the agent in 10, 30, or 50 steps away from the
target location in terms of the shortest path (similar to [9]). The main metric for the evaluation is the
distance (in meters) between the location where the agent stops and the ground-truth target denoted
by dT . Additionally, we consider d∆ = dT − d0 as another critical metric measuring the overall
progress of the agent from its initial position d0 towards the target. In contrast to dT , higher values of
d∆ show better performance. The agent is constrained to a maximum of 100 steps at each episode.

dT ↓ d∆↑
Model T−10 T−30 T−50 T−10 T−30 T−50

PACMAN [9] 1.39 4.98 9.33 -0.45 0.49 1.66
Neural Modular Control [45] 0.85 4.32 9.29 0.09 1.15 1.70

GRU 0.74 3.99 8.73 0.20 1.48 2.26
GRU+Prior 0.73 3.95 8.50 0.21 1.52 2.49
GRU+Counterfactuals 0.71 3.88 8.46 0.23 1.59 2.53

Table 3: Evaluation metrics for EQA navigation.

Results: As shown in Table 3,
almost 10% increase in general-
isation to unseen environments is
achieved by letting the agent con-
template the unseen. Finally, not
only our approach improves the
performance of the agent in reach-
ing short-term goals (T−10), but it
also enhances its accuracy in find-
ing distant objects (T−50).

EQA is more complex than R2R (long trajectories and high-level language instructions) for which the
scores are generally low and the agent learns trivial actions, e.g. going through the door. We found
correspondingly using grid search, the best performance is when α ≈ 0.29 (i.e. α

(1−α) = 0.4)–a
considerably smaller value to that of R2R. This supports our hypothesis for using longer trajectories
in Eq. (8) in which, when the gain is low, the agent must primarily focus on maximising gain (even if
that leads to trivial actions) rather than variations. Nevertheless, using counterfactuals even for such a
difficult task improves performance of our agent to achieve state-of-the-art results.

5 Conclusions
Generalisation ability is paramount for developing a practical VLN in robots that can operate in
the wild, yet many overfit the instructions to the visual stimuli in the training. More importantly,
current approaches fail to incorporate any mechanism for reasoning about the likelihood of alternative
trajectories – a crucial skill for the task. To remedy the issue, we turned to the counterfactuals
as a principled approach for reasoning about unobserved scenarios for estimating the effect of an
intervention that is not directly represented in the data. We formulated the new learning objective to
incorporate both the real data as well as the counterfactuals obtained conditioned on the exogenous
variable. This implicitly forces the navigation policy and the internal state representation to learn
semantics and high-level relations rather than relying on statistical regularities specific to either
visual observations or instructions. The effectiveness of our approach has been illustrated in two
challenging VLN tasks. Crucially, our method is a general model that can be implemented not only
in any VLN task but also in complex multi-modal problems where high-level reasoning is required
and generalisation is paramount; thus, we consider exploring this avenue further in future.
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Broader Impact

Vision-and-language navigation is a significant step in realising practical robots that can interact
and follow instructions. These robots have applications in a wide range of problems including but
not limited to (1) the need for tools that can operate in risky environments that human presence is
dangerous is more than ever (e.g. with the recent pandemic in the health centres); (2) assistant to
individuals in need, e.g. blind and disabled; (3) agriculture and manufacturing where the labour-
intensive jobs require instruction following robots; etc.

Beyond the application of this paper to VLN, better generalisation in machine learning using a
small training set is desired for improved performance and usability. This requires machine learning
approaches that can anticipate what they might encounter when deployed. We believe counterfactuals
provide a means for better utilisation of the training data, improved generalisation and even explain-
ability. Counterfactuals, as were used in the paper, can provide more robust models that are safer to
deploy since the sources of spurious bias are reduced. Moreover, these models are less prone to be
affected by the bias (e.g. social) in the human-generated training data. This paper provides an early
step in this direction by formalising the problem in a practical setting.
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