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A Proof of Theorem 1

We first prove a slightly modified version of the Neyman-Pearson lemma.

Lemma 1 (Neyman & Pearson, 1933). Let X and Y be random variables in Rd with densities µX
and µY . Let h : Rd → (a, b) be a function. Then:

1. If S =
{
z ∈ Rd | µY (z)

µX(z) ≤ t
}

for some t > 0 and E[h(X)] ≥ (b− a)P(X ∈ S) + a, then

E[h(Y )] ≥ (b− a)P(Y ∈ S) + a.

2. If S =
{
z ∈ Rd | µY (z)

µX(z) ≥ t
}

for some t > 0 and E[h(X)] ≤ (b− a)P(X ∈ S) + a, then

E[h(Y )] ≤ (b− a)P(Y ∈ S) + a.

Proof. Let Sc be the complement set of S.

E[h(Y )]− (b− a)P(Y ∈ S)− a = E[h(Y )]− bP(Y ∈ S)− a(1− P(Y ∈ S))

= E[h(Y )]− bP(Y ∈ S)− aP(Y /∈ S)

=

∫
Rd

h(z)µY (z)dz − b
∫
S

µY (z)dz − a
∫
Sc

µY (z)dz

=

[∫
Sc

h(z)µY (z)dz +

∫
S

h(z)µY (z)dz

]
− b

∫
S

µY (z)dz − a
∫
Sc

µY (z)dz

=

∫
Sc

(h(z)− a)µY (z)dz −
∫
S

(b− h(z))µY (z)dz

≥ t
[∫

Sc

(h(z)− a)µX(z)dz −
∫
S

(b− h(z))µX(z)dz

]
(since a < h(z) < b)

= t

[∫
Rd

h(z)µX(z)dz − b
∫
S

µX(z)dz − a
∫
Sc

µX(z)dz

]
= t [E[h(X)]− bP(X ∈ S)− aP(X /∈ S)]

= t [E[h(X)]− bP(X ∈ S)− a(1− P(X ∈ S))]

= t [E[h(X)]− (b− a)P(X ∈ S)− a] ≥ 0

The second statement can be proven similarly by switching ≥ and ≤.
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In the first statement of the lemma, set h to fi, µX to N (x, σ2I) and µY to N (x′, σ2I), and find
a t, such that, P(X ∈ S) = pi(x). Now, since µX and µY are isometric Gaussians with the same
variance,

µY (z)

µX(z)
≤ t ⇐⇒ (x′ − x)T z ≤ β

for some β ∈ R. Therefore, the set S is a half-space defined by a hyper-plane orthogonal to the
perturbation x′ − x. So, if ‖x′ − x‖2 ≤ R, then P(Y ∈ S) ≥ Φσ(Φ−1

σ (pi(x))−R).

f̄i(x
′) = E[fi(Y )]

≥ (b− a)P(Y ∈ S) + a (from the above lemma)

≥ (b− a)Φσ(Φ−1
σ (pi(x))−R) + a

= bΦσ(Φ−1
σ (pi(x))−R) + a(1− Φσ(Φ−1

σ (pi(x))−R))

The upper bound on f̄i(x′) can be derived similarly by applying the second statement of the above
lemma.

A.1 Alternate proof

Theorem 1 can also be proved for σ = 1 using Lemma 2 from Salman et al. in [25]. This lemma states
that for any function g : Rd → (0, 1), Φ−1(ḡ) is 1-Lipschitz, where Φ−1 is the inverse CDF of the
standard Gaussian distribution. Set g(.) to be fi(.)−a

b−a for an arbitrary class i. Then, ḡ(x) = f̄i(x)−a
b−a

is upper and lower bounded by pi(x) and pi(x) respectively. Due to the Lipschitz condition, we have,

Φ−1(ḡ(x))− Φ−1(ḡ(x′)) ≤ ‖x− x′‖2 ≤ R
Φ−1(ḡ(x′)) ≥ Φ−1(ḡ(x′))−R ≥ Φ−1(pi(x))−R

ḡ(x′) ≥ Φ(Φ−1(pi(x))−R)

Substituting ḡ(x) = f̄i(x)−a
b−a and rearranging terms appropriately gives us the first bound in theorem 1.

The second bound can be derived similarly.

B Proof of Lemma 3

Let Sc be the complement set of S.

P(h(Y ) ≥ s)− P(Y ∈ S) =

∫
Rd

1{h(z) ≥ s}µY (z)dz −
∫
S

µY (z)dz

=

[∫
Sc

1{h(z) ≥ s}µY (z)dz +

∫
S

1{h(z) ≥ s}µY (z)dz

]
−
∫
S

µY (z)dz

=

∫
Sc

1{h(z) ≥ s}µY (z)dz −
∫
S

(1− 1{h(z) ≥ s})µY (z)dz

≥ t
[∫

Sc

1{h(z) ≥ s}µX(z)dz −
∫
S

(1− 1{h(z) ≥ s})µX(z)dz

]
(since 0 ≤ 1{h(z) ≥ s} ≤ 1)

= t

[∫
Rd

1{h(z) ≥ s}µX(z)dz −
∫
S

µX(z)dz

]
= t [P(h(X) ≥ s)− P(X ∈ S)] ≥ 0

The second statement of the lemma can be proven similarly by switching ≥ and ≤.

C Additional Experiments

In section 5.2, we compared the two methods, using Hoeffding’s inequality and Dvoret-
zky–Kiefer–Wolfowitz inequality to derive the required lower bounds, for the certificates. We
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(a) Average Prediction Score (CIFAR-10) (b) Margin (CIFAR-10)

(c) Average Prediction Score (ImageNet) (d) Margin (ImageNet)

Figure 1: Certified accuracy vs. radius (CIFAR-10 & ImageNet) at different cutoffs for average
confidence score with σ = 0.50. Solid and dashed lines represent certificates computed with and
without CDF bound respectively.

repeat the same experiments in figure 1 for σ = 0.50. Then, in figure 2, we show that the CDF-based
method (using the DKW inequality) outperforms the baseline approach regardless of how tight a
lower-bound for ei(x) is used in the baseline certificate (1). We replace ei(x) with the empirical
estimate of the expectation êi(x) =

∑m
j=1 fi(x + δj)/m, which is an upper bound on ei(x). And

since bound (1) is an increasing function of ei(x), any valid lower bound ei(x) on the expectation
cannot yield a certified accuracy better than that obtained using êi(x). We compare our certificate
with the best-possible baseline certificate for some of Cohen et al.’s ResNet-110 models trained on
the CIFAR-10 dataset using the same value of α as in section 5.2. The baseline mostly stays below
the CDF-based method for both types of confidence measures under the noise levels considered.
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(a) Average Prediction Score at σ = 0.25 (b) Margin at σ = 0.25

(c) Average Prediction Score at σ = 0.50 (d) Margin at σ = 0.50

Figure 2: Certified accuracy vs. radius (CIFAR-10 only) at different cutoffs for average confidence
score. Solid lines represent certificates computed with the CDF bound and dashed lines represent the
best-possible baseline certificate.
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