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Abstract

Excitation-inhibition balance is ubiquitously observed in the cortex. Recent studies
suggest an intriguing link between balance on fast timescales, tight balance, and
efficient information coding with spikes. We further this connection by taking a
principled approach to optimal balanced networks of excitatory (E) and inhibitory
(I) neurons. By deriving E-I spiking neural networks from greedy spike-based
optimizations of constrained minimax objectives, we show that tight balance arises
from correcting for deviations from the minimax optima. We predict specific neuron
firing rates in the networks by solving minimax problems, going beyond statistical
theories of balanced networks. We design minimax objectives for reconstruction
of an input signal, associative memory, and storage of manifold attractors, and
derive from them E-I networks that perform the computation. Overall, we present
a novel normative modeling approach for spiking E-I networks, going beyond the
widely-used energy-minimizing networks that violate Dale’s law. Our networks
can be used to model cortical circuits and computations.

1 Introduction

While spiking neural networks empower our brains, a thorough understanding of how spikes accu-
rately represent and transmit information is lacking. Any explanation should address a striking and
widely observed property of cortical spiking networks that excitatory (E) and inhibitory (I) currents
for individual neurons are balanced (detailed balance), and spikes are only generated during the brief
occasions when inhibition fails to track spontaneous fluctuations in excitation (tight balance) [1–8].
In this work, we show that tight and detailed balance could arise from correcting for deviations from a
minimax optimum that governs the dynamics of E-I balanced networks. Having access to an objective
allows us to design spiking E-I networks that perform various biologically relevant functions.

While the theory of balanced networks goes further back [9–11], the idea that tight and detailed
balance is related to the efficiency of spike coding was proposed in recent influential theoretical
work [6, 12, 13]. These results are typically limited to spiking dynamics performing a greedy-
minimization of a reconstruction error loss function without considering more diverse computations
carried out in the cortex. Moreover, minimizing an energy function leads to symmetric connection
weights [14] that violate, among other biological constraints, Dale’s law: a neuron’s influence on its
post-synaptic neurons are either all excitatory or all inhibitory. This violation has been addressed by
introducing separate reconstruction error cost functions for E and I neurons [12,15]. While E neurons
reconstruct an input signal, I neurons reconstruct the non-Dalian part of recurrent E interactions,
assuming that I neuron dynamics equilibrates faster than E neurons. Our work extends these previous
accounts in two ways.
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First, we take a more principled approach and propose a common minimax dynamics that E and I
spiking neurons collectively optimize, adopting an idea from previous work on networks of rate-
coding (continuous outputs) E-I neurons [16]. The minimax approach, besides other benefits, provides
an intriguing interpretation of the antagonism between E and I neural populations.

Second, we consider minimax objectives that perform functions beyond signal reconstruction. Energy
minimizing networks with symmetric interactions have been a powerful modeling framework for
neuroscience since Hopfield’s seminal contribution [14]. Phenomena such as associative memory [14],
oculomotor integration [17, 18], coding of periodic variables like head direction [19–23] and grating
orientation [24], and spatial navigation [25, 26] were modeled with fixed-point or manifold attractors
resulting from such energy minimizing neural dynamics. Here, by moving from energy minimization
to minimax optimization, we extend the reach of normative modeling to E-I spiking networks and
provide derivations of circuits for each of the functions listed above.

Our technical contributions in this paper are:
• Derivation of a greedy spiking algorithm from a minimax objective. We discuss the optimality

conditions leading to firing rate predictions of individual neurons and detailed balance. We
argue that greedy spiking dynamics leads to tight balance, and provide necessary conditions for
convergence of the dynamics.

• Applications. We design spiking networks that reconstruct signals, and exhibit fixed-point and
manifold attractors, while obeying Dale’s law and remaining in tight and detailed balance. We
verify our theory in simulations. These applications indicate that our approach offers a principled
method for designing spiking neural network models for cortical functions.

2 Minimax dynamics of optimally balanced E-I spiking networks

In this section, we consider the spiking dynamics of an integrate-and-fire E-I network, and show how
such dynamics can be derived from a minimax objective function as a greedy optimization algorithm.
By analyzing the optimum of the constrained minimax objective, we observe that the network is in
detailed balance and derive conditions for stability of the optimum. Finally, we derive conditions
for convergence of the dynamics and demonstrate tight balance. Our derivation extends the methods
of [12, 13] to minimax optima.

Our network is composed of separate E and I neuron populations of NE and N I neurons (Fig. 1a).
For simplicity, only the E neurons receive N0 dimensional external inputs, although our results and
analysis still hold when both populations receive external inputs. The spiking dynamics is given by
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Here, V E
i , i = 1, . . . , NE and V I

i , i = 1, . . . , N I , denote the membrane potentials for E and I
neurons respectively, ⌧E and ⌧I are the corresponding membrane time constants, and sEj and sIj
denote the spike trains of E and I neurons: e.g. sE(I)

j (t) =
P

k �(t� tj,k), where tj,k is the time of
the k-th spike of the j-th neuron. s0j , j = 1, . . . , N0 denotes the input signal, which is not required
to be a spike train. F 2 RNE⇥N0

is the feed-forward connectivity matrix and WEE,EI,IE,II are
the connectivity matrices within and between the E-I populations. We require WEE 2 RNE⇥NE

and WII 2 RNI⇥NI

to be symmetric and WIE = WEI>
for our minimax objective approach. All

the off-diagonal elements of the weight matrices are non-negative so that the network obeys Dale’s
law. The spiking reset is incorporated into the diagonals of WEE and WII , which define how much
the membrane potentials decrease after the arrival of a spike. Therefore, the diagonal elements of
WEE are negative and WII are positive. The spiking thresholds for the E and I neurons are given
by TE

i = � 1
2W

EE
ii and T I

i = 1
2W

II
ii respectively. We can obtain implicit expressions for V E

i and

2



V I
i by integrating Eq. (1):
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where rE,I
j and xj are defined by filtering the spike train or the input signal with an exponential

kernel:

rE,I
j (t) =

Z 1

0
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j (t� t0)dt0, xj(t) =

Z 1

0
e�(t�t0)/⌧Es0j (t� t0)dt0. (3)

Our intuition is that the network is in a balanced state when the dynamics reaches the optimum of an
objective. Detailed balance of E and I inputs require that V E,I

i should fluctuate around zero for each
neuron i [6]. Tight balance requires the imbalance between E and I to be short-lived [6]. As we show
next, both of these goals are achieved when the dynamics Eq. (1) performs a greedy optimization
of a minimax objective S, where the implicit expressions Eq. (2) correspond to the saddle-point
conditions.

Spiking dynamics is a greedy algorithm optimizing a minimax objective: Because I to E con-
nections and E to I connections have opposite signs in Eq.s (1) and (2), a network that obeys Dale’s law
cannot be derived from a single minimizing objective. We instead consider the minimax optimization
problem:

min
rE�0

max
rI�0

S(rE , rI), S = �1

2
rE

>
WEErE + rE

>
WEIrI � 1

2
rI

>
WIIrI � x>F>rE . (4)

We can derive from our objective function a greedy algorithm that performs the optimization, which
corresponds to the spiking dynamics Eq. (1), by adopting a similar approach to [12, 13]. The details
of the derivation is provided in Supplementary Information (SI) A. Here we outline the approach. We
track filtered spike trains, rE,I

i given in Eq. (3), instantaneously. At each time, each E/I neuron makes
an individual decision to spike. An E neuron spikes if the spike decreases the instantaneous value
of S: S(rE + ei, rI) < S(rE , rI), where ei is the i-th standard basis vector. An I neuron spikes if
the spike increases the instantaneous value of S: S(rE , rI + ei) > S(rE , rI). This series of spiking
decisions lead to the spiking dynamics defined in Eq. (1) when ⌧E = ⌧I = ⌧ , and the dynamics in
Eq.s (2) and (3) for the general case where the time constants can be different.

KKT conditions imply detailed and tight balance of active neurons: We can verify that the
detailed balance is reached at the optimum of the constrained minimax problem by examining the
KKT conditions [27] obtained by considering the optimizations with respect to rI and rE sequentially.
These KKT conditions are satisfied for local optimal points of the minimax problem [28, 29]. We
obtain, 8i 2 {1, . . . , N I}
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and 8i 2 {1, . . . , NE}
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(6)

From the KKT conditions, we see that for active neurons with rE,I
i > 0, we have V E,I

i = 0 at the
saddle point, which suggests that any neuron that is active is in detailed balance.
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Figure 1: Optimally balanced E-I network. (a) Network of E-I neurons that obeys the Dale’s law.
Weights are designed to satisfy conditions in Eq.s (7) and (8). (b) E input (WEErE + Fx) and I
input (WEIrI ) for an active E neuron with different time constants ⌧ , normalized by the maximum
value of the E input. (c) Net input (WEErE + Fx�WEIrI ), normalized by the maximum value
of the E input. Net input fluctuates around zero, occasionally going above the threshold (dashed
line, also normalized). (d) Spiking pattern for an input with constant firing rate for 5⌧ , ⌧ = 0.5,
corresponding to the same simulation time period as shown in the bottom panel of (b). (e) Pearson
correlation coefficient between E and I input for an active neuron with different time constants ⌧ .
The network becomes more tightly balanced with increasing ⌧ . (f) Prediction of firing rate for E and
I populations. The prediction is obtained by directly solving the KKT conditions of the minimax
optimization problem. Left: ⌧ = 0.1, Right: ⌧ = 1. Larger time constant results in more accurate
prediction. (g) The error of firing rate prediction exhibits a power law dependence on the time
constant. (h) Distribution of inter-spike interval (ISI) coefficient of variation (CV) for active neurons
(⌧ = 0.08). Most of the neurons have CV close to 1. (i) The average CV for active neurons increases
as ⌧ becomes larger, but remains close to 1, and saturates around 1.7.

Because of the greedy nature of optimization, when the network state deviates from the balanced
state, the dynamics will automatically self-correct (imperfectly) by producing spikes when Vi is
larger than the spiking threshold Vth, leading to tight balance. For the inactive (non-spiking) neurons,
KKT conditions state that the voltage Vi < 0. This is smaller than a positive Vth, consistent with the
neuron never spiking.

We verify our conclusions with simulations. The E and I inputs for active neurons closely track each
other (Fig. 1b), and their total input fluctuates around zero (Fig. 1c). Spike raster plot of the network
is shown in Fig. 1d for ⌧ = 0.5. The network is more tightly balanced with increasing time constants
⌧ as the Pearson correlation ⇢ between E and I inputs for the same active neuron increases (Fig.1e).
We can predict individual neuron firing rates (defined as fE,I

i (t) = 1
⌧ r

E,I
i (t), a normalized version

of rE,I
i ) in this spiking neural network by directly solving KKT conditions Eq.s (5) and (6) of the

quadratic minimax problem Eq. (4). As shown in Fig. 1f, the prediction is quite accurate. We observe
that the firing rate prediction becomes more accurate as ⌧ increases (Fig. 1f&g). Similar observation
was made for reconstruction error minimizing spiking networks [13]. Despite being tightly balanced,
the spiking is also irregular. The coefficient of variation (CV) for active neurons are close to 1 (Fig.
1i), and the distribution of ISI is close to exponential (not shown). CV also increases as ⌧ becomes
larger, but it remains close to 1.
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Further optimality conditions: KKT conditions are necessary but not sufficient. The second order
sufficient conditions [27–29] of the minimax problem (by considering maximization and minimization
sequentially, details in SI B.1) give us

ŴII < 0, ŴEIŴII�1

ŴIE � ŴEE < 0, (7)

where ŴII is the principal submatrix of WII whose columns and rows correspond to nonzero
elements of rI , ŴEE is the principal submatrix of WEE whose columns and rows correspond to
nonzero elements of rE , and ŴEI is a submatrix of WEI with its rows corresponding to nonzero
elements of rE and its columns corresponding to nonzero elements of rI .

Convergence conditions: The dynamics of approaching a saddle point of our minimax objective
can be quite different than that of a minimum. The conditions discussed above describe an optimum of
the objective, however, unlike in a minimization problem, where the objective itself act as Lyapunov
function of the dynamics, these optimality conditions do not guarantee that the spiking dynamics
converges to the optimum. The convergence of spiking dynamics is challenging to prove. Instead, we
characterize the convergence conditions for a rate dynamics optimizing the minimax objective Eq.
(4), hypothesizing that similar conditions would hold for the spiking dynamics. This thinking is also
motivated by previous work that proved the convergence of a certain type of spiking dynamics to the
fixed point of a rate dynamics, both minimizing the reconstruction error cost function [30, 31]. By
constructing an energy (or Lyapunov) function [16, 32] on the rate dynamics, we derive the sufficient
convergence conditions below (see SI B.2 for details):
1. The following eigenvalue condition guarantees the convergence of any bounded trajectory that

does not exhibit a change in the set of active/inactive neurons through its evolution:

�min(Ŵ
II) > �max(Ŵ

EE). (8)

2. Replacing the positive semidefiniteness in the second order sufficient conditions for the opti-
mality of the objective (Eq. (7)) with strict positive definiteness guarantees the boundedness of
trajectories.

We empirically observed that these conditions are also valid for the convergence of spiking dynamics.

3 Applications

Having access to an objective function allows us to design balanced E-I networks to perform specific
functions. Such normative approach has been common in neuroscience, using energy minimizing
dynamics to derive efficient coding circuits [12, 15, 33–37]. Energy functions for various types of
attractors have been thoroughly studied: fixed point attractor networks are commonly used as models
for associative memory [14], ring attractor networks are used to model head-direction systems [19–23]
and orientation selectivity [24] and grid attractor models are used to model grid cell responses [25,26].
Here, we revisit all these systems and show how balanced E-I circuits performing the same tasks can
be obtained by designing the minimax objectives and weights.

3.1 Input reconstruction

Consider the typical objective for a signal reconstruction problem: minimization of the mean squared
error with an l2-regularizer on the response,

argmin
rE

kx� F>rEk22 +
�

2
krEk22 = argmin

rE
�x>F>rE +

1

2
rE

>
FF>rE +

�

2
rE

>
rE . (9)

Our goal is to transform this problem to the one in Eq. (4), allowing a mapping to an E-I network.
To achieve our goal, we first perform a matrix factorization FF> = U⌃U> where U 2 RNE⇥NI

,
⌃ 2 RNI⇥NI

�0 . We emphasize that the elements of ⌃ are non-negative, ⌃ is symmetric and can be,
but does not have to be, diagonal. For the factorization to be plausible N I � rank(F). We will show
examples of two different ways of performing the factorization, 1) by simply choosing ⌃ = I and
U = F, and 2) performing a singular value decomposition (SVD) on FF>. We also separate out the
positive and negative parts in U, and denote them by [U]+ = U+, and [U]� = U�. With all this set
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up, the reconstruction error cost function can be written as:

min
rE

�x>F>rE+rE
>
✓
U+⌃U>

� +U�⌃U>
+ +

�

2
I

◆
rE+

1

2
rE

>
(U+ �U�)⌃ (U+ �U�)

> rE .

(10)
Next, using a “variable substitution” trick commonly used in statistical mechanics and the similarity
matching framework [38], we transform the problem into a minimax problem and introduce the I
neurons:

min
rE

max
rI

�x>F>rE+rE
>
✓
U+⌃U>

� +U�⌃U>
+ +

�

2
I

◆
rE+rI

>
⌃ (U+ �U�) r

E�1

2
rI

>
⌃rI .

(11)
The equivalence of Eq. (11) to Eq. (10) can be seen by performing the rI maximization explicitly.
With this formulation, we have WEE = 2(U+⌃U>

� +U�⌃U>
� + �

2 I), W
IE = ⌃(U+ �U�),

and WII = ⌃. Next, we present simulations of this network.

Reconstruction of synthetic data First, we test our network on a synthetic dataset with randomly
generated N0 dimensional i.i.d. uniformly distributed input in [0, rmax]N

0

. We choose ⌃ = I, i.e.
there are no recurrent connections between I neurons. To be able to reconstruct all non-negative
inputs, we choose F such that F+ = F(F>F)�1 is non-negative. We then design our weights
correspondingly to satisfy the constraints described in Eq.s (7) and (8). In Fig. 2a, we see that the
reconstruction is remarkably accurate. In this example dimensionality is expanded, i.e. NE > N0,
but N I = rank(F) = N0 to satisfy the factorization rank constraints.

We also simulate time varying inputs. Here, the network computes a leaky integration of the input
signal dependent on the timescale of the network. We simulate step inputs given by s(t), as shown in
Fig. 2b. The target line is obtained by directly computing dx

dt = �x
⌧ + s(t), where ⌧ = ⌧E = ⌧I . The

prediction line is given by decoding the firing rate of the spiking network, i.e. computing F>rE(t).

Reconstruction of natural image patches with varying number of I neurons. Next, we recon-
struct natural image patches. Using the sparse coding algorithm of [33], we learn a dictionary for
13⇥ 13 natural image patches, concatenated to the rows of the matrix F. We build our network using
an SVD, FF> = U⌃U>, and keep only the largest N I singular values. For this example we allow
N I < rank(F), leading to signal loss. We observe that the reconstruction becomes more accurate as
we increase the number of I neurons (Fig. 2c&d) because larger ratio of the variance of the dictionary
we learned from natural image patches is captured by the I neurons (Fig. 2e).

3.2 Attractor networks

Attractor networks are widely used as models of neural and cognitive phenomena [14, 19–22, 24, 26,
39, 40]. Frequently such attractor networks minimize energy functions and violate Dale’s law. Here,
we show how minimax objectives can be used to design optimally balanced E-I attractor networks for
popular manifold attractors used in neuroscience.

Fixed point attractors. Fixed point attractors have been used to model associative memory [14].
We can store attractors in our network as discrete fixed points with properly designed weights,
allowing different fixed points to have overlapping sets of active neurons. In Fig. 3, for a given set of
fixed points, the network weights are obtained by performing a nonlinear constrained optimization
problem. We minimize the mean-squared-error of the membrane potentials V E,I

i for the active
neurons at the fixed points, subject to the constraints given by the KKT conditions for the inactive
neurons (Eq.s (5) and (6)), the second order sufficient (Eq. (7)) condition, and the condition for
convergence of rate dynamics (Eq. (8)) (see SI C.1). We show in Fig. 3 that with the optimized
weights, our network can store different attractors (Fig. 3a&b) while remaining tightly balanced (Fig.
3c).

Ring attractor. Ring attractors have been used to model the head direction system [19–23] and
orientation selectivity in primary visual cortex [24]. Its dynamics can be derived from energy
functions. To store a ring attractor in our E-I network, we design the weight matrices such that the
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effective energy function for the E neurons matches the energy function in a standard ring attractor
network [20]:

L = � 1

2NE

X

ij

rEi (w0+w1 cos(✓i�✓j))r
E
j �

X

i

(h0+h1 cos(✓0�✓i))r
E
i +

X

i

Z rEi

0
f�1(rEi ),

(12)
where w0, w1, h0, h1 are scalar parameters that control the system’s behavior (see SI C.2), and
f(x) = [x]+ represents ReLU nonlinearity (see SI B.2). Each neuron i in the E population is
assigned a distinct preferred angle ✓i 2

n
0, 2⇡

NE , . . . , 2⇡(NE�1)
NE

o
.

We assume that the inhibitory neurons are all active (rIi (t) > 0) at the optima for simplicity, which
can be achieved by carefully designing the weights (eg. WII�1

WIE > 0). We obtain an effective
energy function for E neurons by maximizing over rI in Eq. (4) and plugging in the optimum value:

Leff = �1

2
rE

>
(WEE �WEIWII�1

WIE)rE � x>F>rE . (13)
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on initialization. Bottom: Spiking network with the same parameters as in corresponding panel in
(a), except that h1 is zero throughout the simulation (Left: � = 0.15, Right: � = 0.08). Larger �
corresponds to higher angular frequency. (b) The network remains tightly balanced in the attractor
states. The E and I inputs for 20⌧ (⌧ = 0.1) are both normalized by the maximum of the E input,
they closely track each other. (c) Spiking model for grid attractors. Each pixel represents a neuron.
Color indicates firing rate of individual neurons as defined in Eq. (3). (d) E and I input for one of the
active neurons in (c) for a duration of 4⌧E , both normalized by the maximum of the E input. The
network is tightly balanced.

To match this effective energy function with Eq. (12), we design weights such that (WEE �
WEIWII�1

WIE)ij =
1

NE
(w0 +w1 cos(✓i � ✓j))� �ij (�ij term is due to the nonlinearity, similar

to SI B.2). For simplicity, we choose WII to be an identity matrix and WEI to be a uniform
matrix whose elements are all equivalent. The amplitude of the two matrices are tuned for the
constraints to be satisfied. The input to the i-th neuron is given by h0+h1 cos(✓0�✓i). ✓0 reflects the
inhomogeneity of the input: if h1 > 0, neurons with their preferred angle ✓i closer to ✓0 receive larger
inputs. As the standard ring attractor model, this network exhibits different behaviors in different
parameter regimes [41] (see SI C.2). In a certain regime the network self-organizes into a bump
attractor state even with homogeneous input (Fig. 4a). It also exhibits tight balance (Fig. 4b).

We can introduce anisotropy to our weights to obtain further functions while loosing the objec-
tive function interpretation. By following [41, 42], when we design the weights as (WEE �
WEI(WII)�1WIE)ij = 1

NE
(w0 + w1 cos(✓i � ✓j) � w1� sin(✓i � ✓j)) � �ij (WII and WEI

are chosen as above), the network produces traveling waves, where � controls the angular frequency
(Fig. 4a). In this example, the network stays on a limit cycle and does not reach an equilibrium, and
therefore is not balanced (SI C.2).

Grid attractor. We next discuss a grid attractor, which is used to model the grid cells of the
entorhinal cortex [26]. Here, neurons are arranged on a square sheet with periodic boundary conditions
(a torus). Each neuron is assigned a positional index xi. We design the weight matrices such that the
effective energy function for the E neurons resembles that of the grid attractor :

L = �1

2

X

ij

rEi W0(xi � xj)r
E
j +

X

i

Air
E
i +

X

i

Z rEi

0
f�1(rEi ), (14)

where W0(x) = ae��|x|2 � e��|x|2 [26]. We design the weights such that (WEE �
WEI(WII)�1WIE)ij = W0(xi � xj) � �ij (WII and WEI are chosen same as the ring at-
tractor, for detailed parameters see SI C.3). Neurons receive homogeneous input, i.e. Ai = A, 8i. We
see that although the input is homogeneous, the spiking neural network self-organizes into a grid-like
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pattern reminiscent of grid cells on the entorhinal cortex (Fig. 4c). Furthermore, the active neurons in
the network remain tightly balanced with the E-I currents cancelling each other precisely (Fig. 4d).

4 Conclusion

Our work provides a novel normative framework for modeling of biologically realistic spiking
neural networks. While energy minimization has been used widely in computational neuroscience
[12, 14, 15, 19–26, 33–37], we extend normative modeling to minimax optimization in optimally
balanced E-I spiking networks. Compared to existing work on minimax dynamics of rate neurons [16],
we made several major contributions. We extended the framework to spiking neurons and by
inspecting the KKT conditions, we proved that the active neurons are in detailed balance at the saddle
point. Simulations confirmed tight balance. We also described conditions on the weights for the rate
dynamics (gradient descent-ascent) to converge. Furthermore, by relating our effective objective to
the well-studied energy functions for different types of computational goals, we designed novel E-I
circuit architectures for various applications from minimax objectives, where the saddle points can
be either discrete or forming manifolds, similar to the minima in traditional minimization objective
formulations. These applications could be potentially useful for the neuroscience community. Finally,
minimax objectives can be a useful strategy when faced with uncertainty and previous works have
demonstrated that minimax objectives can be used to solve problems such as source localization [43]
and sensorimotor control [44].

Broader Impact

This work introduces a principled approach to designing spiking neural networks of excitatory (E)
and inhibitory (I) neurons to perform various computations. As any spiking neural network model,
networks derived from our approach could be applied in the field of neuromorphic computing, where
information is transmitted through spikes instead of rate, and is thus more energy efficient. Previous
work have shown that E-I balanced networks can serve as fast responding modules [9, 10], and
our approach could be applied to designing E-I balanced modules that potentially speed up solving
optimization problems in general neuromorphic computing systems.

Furthermore, we provided several conditions for the regular functioning of our spiking networks.
These conditions could potentially have implications on understanding neural connectivity in the
cortex, and how pathological activities in the brain may arise from disrupted synaptic interactions.
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