
Supplementary material

A Experimental details

We are using JAX [Bradbury et al., 2018].

All the models except for section C.4 have been trained with Softmax loss normalized as
L({x, y}B) =

1
2k|B|

P
(x,y)2B,i yi log pi(x), pi(x) =

ef
i(x)

P
j efj(x)

, where k is the number of classes

and yi are one-hot targets.

All experiments that compare different learning rates and L2 parameters use the same seed for
the weights at initialization and we consider only one such initialization (unless otherwise stated)
although we have not seen much variance in the phenomena described. We will be using standard
normalization with LeCun initialization W ⇠ N (0, �2

w
Nin

), b ⇠ N (0,�2
b).

Batch Norm: we are using JAX’s Stax implementation of Batch Norm which doesn’t keep track of
training batch statistics for test mode evaluation.

Data augmentation: denotes flip, crop and mixup.

We consider 3 different networks:

• WRN: Wide Resnet 28-10 [Zagoruyko and Komodakis, 2016] with has batch-normalization
and batch size 1024 (per device batch size of 128), �w = 1,�b = 0. Trained on CIFAR-10.

• FC: Fully connected, three hidden layers with width 2048 and ReLU activation and batch
size 512,�w =

p
2,�b = 0. Trained on 512 samples of MNIST.

• CNN: We use the following architecture: Conv1(300) ! Act ! Conv2(300) !

Act ! MaxPool((6,6), ’VALID’) ! Conv1(300) ! Act ! Conv2(300) !

MaxPool((6,6), ’VALID’) ! Flatten() ! Dense(500) ! Dense(10). Dense(n) denotes a
fully-connected layer with output dimension n. Conv1(n),Conv2(n) denote convolutional
layers with ’SAME’ or ’VALID’ padding and n filters, respectively; all convolutional layers
use (3, 3) filters. MaxPool((2,2), ’VALID’) performs max pooling with ’VALID’ padding
and a (2,2) window size. Act denotes the activation: ‘(Batch-Norm !) ReLU ’ depending
on whether we use Batch-Normalization or not. We use batch size 128, �w =

p
2,�b = 0.

Trained on CIFAR-10 without data augmentation.

The WRN experiments are run on v3-8 TPUs and the rest on P100 GPUs.

Here we describe the particularities of each figure. Whenever we report performance for a given time
budget, we report the maximum performance during training which does not have to happen at the
end of training.

Figure 1a WRN trained using momentum= 0.9, data augmentation and a learning rate schedule
where ⌘(t = 0) = 0.2 and then decays ⌘ ! 0.2⌘ at {0.3 · T, 0.6 · T, 0.9 · T}, where T is the
number of epochs. We compare training with a fixed T = 200 training budget, against training with
T (�) = 0.1/�. This was chosen so that T (0.0005) = 200.

Figures 1b, 4, S4. WRN trained using momentum= 0.9, data augmentation and ⌘ = 0.2 for
� 2 (5 · 10�6, 10�5, 5 · 10�5, 0.0001, 0.0002, 0.0004, 0.001, 0.002). The predicted � performance
of 1b was computed at � = 0.0066/T 2 (0.000131, 6.56 · 10�5, 2.63 · 10�5, 1.31 · 10�5, 6.56 ·

10�6, 4.38 · 10�6, 3.28 · 10�6) for T 2 (50, 100, 250, 500, 1000, 1500, 2000) respectively.

Figures 1c,S9. WRN trained using momentum= 0.9, data augmentation and ⌘ = 0.2, evolved for
200 epochs. The AUTOL2 algorithm is written explicitly in SM E and make measurements every 10
steps.

Figure 2a,b,c. FC trained using SGD 2
⌘� epochs with learning rate and L2 regulariza-

tions ⌘ 2 (0.0025, 0.01, 0.02, 0.025, 0.03, 0.05, 0.08, 0.15, 0.3, 0.5, 1, 1.5, 2, 5, 10, 25, 50), � 2

(0, 10�5, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50, 100). The � = 0 model
was evolved for 106/⌘ epochs which is more than the smallest �.

1

Figure 2d,e,f. WRN trained using SGD without data augmentation for 0.1
⌘� epochs for the follow-

ing hyperparameters ⌘ 2 (0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6),� 2 (0, 1.5625 · 10�5, 6.25 ·

10�5, 1.25 · 10�4, 2.5 · 10�4, 5 · 10�4, 10�3, 2 · 10�3, 4 · 10�3, 8 · 10�3, 0.016), as long as the total
number of epochs was 4000 epochs (except for ⌘ = 0.2,� = 6.25 · 10�5 which was evolved for
8000 epochs). We evolved the � = 0 models for 10000 epochs.

Figure S7. Fully connected depth 3 and width 64 trained on CIFAR-10 with batch size 512, ⌘ = 0.1
and cross-entropy loss.

Figure S8. ResNet-50 trained on ImageNet with batch size 8192, using the implementation in
https://github.com/tensorflow/tpu.

Figure 5 (a,b) plots ft in equation 3 with k = 2 (for 2-layer) and k = 1 (for linear), for different
values of � and � = 0.01. (c) The empirical kernel of a 2�layer ReLU network of width 5,000
was evaluated on 200-samples of MNIST with even/odd labels. The linear, 2�layer curves come
from evolving equation 1 with the previous kernel and setting k = 1, k = 2, respectively . The
experimental curve comes from training the 2-layer ReLU network with width 105 and learning rate
⌘ = 0.01 (the time is step ⇥ ⌘).

Figure 3a,b,c. CNN without BN trained using SGD for 0.01
⌘� epochs for the following hyperparameters

⌘ = 0.01,� 2 (0, 5 · 10�5, 0.0001, 0.0005, 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2). with � = 0 was
evolved for 21000 epochs.

Figure 3d,e,f. CNN with BN trained using SGD for a time 0.01
⌘� for the following hyperparameters

⌘ = 0.01,� = 0, 5 · 10�5, 0.0001, 0.0005, 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2. The model with
� = 0 was evolved for 9500 epochs, which goes beyond where all the other �’s have peaked.

Figure S5. FC trained using SGD and MSE loss for 1
⌘� epochs and the fol-

lowing hyperparameters ⌘ 2 (0.001, 0.005, 0.01, 0.02, 0.035, 0.05, 0.15, 0.3),� 2

(10�5, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 50, 100). For � = 0, it was trained for
105/⌘ epochs.

Rest of SM figures. Small modifications of experiments in previous figures, specified explicitly in
captions.

B Details of theoretical results

In this section we prove the main theoretical results. We begin with two technical lemmas that
apply to k-homogeneous network functions, namely network functions f✓(x) that obey the equation
fa✓(x) = akf✓(x) for any input x, parameter vector ✓, and a > 0.
Lemma 1. Let f✓(x) be a k-homogeneous network function. Then

P
µ ✓µ@µ@⌫1 · · · @⌫mf(x) =

(k � m)@⌫1 · · · @⌫mf(x).

Proof. We prove by induction on m. For m = 0, we differentiate the homogeneity equation with
respect to a.

0 =
@

@a

����
a=1

�
fa✓(x) � akf✓(x)

�
=
X

µ

@f(x)

@✓µ
✓µ � kf✓(x) . (S1)

For m > 0,
X

µ

✓µ@µ@⌫1 · · · @⌫mf(x) = @⌫m

X

µ

✓µ@µ@⌫1 · · · @⌫m�1f(x)

!
�

X

µ

(@⌫m✓µ) @µ@⌫1 · · · @⌫m�1f(x)

= @⌫m(k � m+ 1)@⌫1 · · · @⌫m�1f(x) �

X

µ

�µ⌫m@⌫m✓µ@µ@⌫1 · · · @⌫m�1f(x)

= (k � m)@⌫1 · · · @⌫m�1@⌫mf(x) .

(S2)

2

Lemma 2. Consider a k-homogeneous network function f✓(x), and a correlation function

C(x1, . . . , xm) that involves derivative tensors of f✓. Let L =
P

x2S `(x) + 1
2�k✓k22 be a loss

function, where S is the training set and ` is the sample loss. We train the network using gradient

flow on this loss function, where the update rule is
d✓µ

dt = �
dL
d✓µ . If the conjecture of Dyer and

Gur-Ari [2020] holds, and if the conjecture implies that C = O(n�1) where n is the width, then

dC
dt = O(n�1) as well.

Proof. The cluster graph of C has m vertices; we denote by ne (no) the number of even (odd)
components in the graph (we refer the reader to Dyer and Gur-Ari [2020] for a definition of the
cluster graph and other terminology used in this proof). By assumption, ne + (no � m)/2 �1.

We can write the correlation function as C(x1, . . . , xm) =
P

indices E✓ [@f(x1) · · · @f(xm)],
where E✓ [·] is a mean over initializations, @f(x) is shorthand for a derivative tensor of the form
@µ1...µaf(x) := @af(x)

@✓⌫1 ···@✓⌫a for some a, and the sum is over all the free indices of the derivative

tensors. Then dC
dt =

Pm
b=1 Cb, where Cb := E✓

h
@f(x1) · · ·

d@f(xb)
dt · · · @f(xm)

i
. To bound the

asymptotic behavior of dC/dt it is therefore enough to bound the asymptotics of each Cb.

Notice that each Cb is obtained from C by replacing a derivative tensor @f with d(@f)/dt inside
the expectation value. Let us see how this affects the cluster graph. For any derivative tensor
@µ1...µaf(x) := @af(x)/@✓⌫

1

· · · @✓⌫
a

, we have

d

dt
@µ1...µaf(x) =

X

⌫

@µ1...µa⌫f(x)
d✓⌫

dt

= �

X

⌫

@µ1...µa⌫f(x)

"
X

x02S

@⌫f(x
0)`0(x0) + �✓⌫

#

= �

X

⌫,x0

@µ1...µa⌫f(x)@µf(x
0)`0(x0) � (k � a)�@µ1...µaf(x) . (S3)

In the last step we used lemma 1. We now compute how replacing the derivative tensor @f by
each of the terms in the last line of (S3) affects the cluster graph, and specifically the combination
ne + (no � m)/2.

The second term is equal to the original derivative tensor up to an n-independent factor, and therefore
does not change the asymptotic behavior. For the first term, the `0 factor leaves ne and no�m invariant
so it will not affect the asymptotic behavior. The additional @µf factor increases the number of vertices
in the cluster graph by 1, namely it changes m 7! m+1. In addition, it increases the size of the graph
component of @µ1...µaf(x) by 1, therefore either turning an even sized component into an odd sized
one or vice versa. In terms of the number of components, it means we have ne 7! ne±1, no 7! no⌥1.
Therefore, ne + (no �m)/2 7! ne + (no �m)/2± 1⌥

1
2 �

1
2 ne + (no �m)/2 1. Therefore,

it follows from the conjecture that Cb = O(n�1) for all b, and then dC/dt = O(n�1).

We now turn to the proof of Theorems 1 and 2.

Proof (Theorem 1). A straightforward calculation leads to the following gradient flow equations for
the network function and kernel.

dft(x)

dt
= �

X

x02S

⇥t(x, x
0)`0(x0) � k�ft(x) , (S4)

d⇥t(x, x0)

dt
= �2(k � 1)�⇥t(x, x

0) + Tt(x, x
0) + Tt(x

0, x) , (S5)

Tt(x, x
0) = �

X

x002S

@µ⌫ft(x)@µft(x
0)@⌫ft(x

00)`0(x00) . (S6)

Here `0 = d`/df . In deriving these we used the gradient flow update d✓µ

dt = �
@L
@✓µ and Lemma 1. It

was shown in Dyer and Gur-Ari [2020] that E✓ [T0] = O(n�1). If then follows from Lemma 2 that
E✓

h
dmT0
dtm

i
= O(n�1) for all m, where the expectation value is taken at initialization. Furthermore,

3

the results of Dyer and Gur-Ari [2020] imply that Var
h
dmT0
dtm

i
= O(n�2) and therefore dmT0

dtm !
p
0.4

In the strict infinite width limit we can therefore neglect the T contribution in the following equation,
and write

dm⇥0(x, x0)

dtm
= [�2(k � 1)�]m⇥0(x, x

0) , m = 0, 1, (S7)

The solution of this set of equations (labelled by m) is the same as for the any-time equation
d
dt⇥t(x, x0) = �2(k � 1)�⇥t(x, x0), and the solution is given by

⇥t(x, x
0) = e�2(k�1)�t⇥0(x, x

0) . (S8)

Proof (Theorem 2). The evolution of the kernel eigenvalues, and the fact that its eigenvectors do
not evolve, follow immediately from (2). The solution (3) can be verified directly by plugging it
into (1) after projecting the equation on the eigenvector êa. Finally, the fact that the function decays
to zero at late times can be seen from (3) as follows. From the assumption k � 2, notice that
exp
h
�

�a(t
0)

2(k�1)� � (k � 2)�t0
i

 1 when t0 � 0. Therefore, we can bound each mode as follows.

|fa(x; t)| e�k�t

e

(�a(t)��a)
2(k�1)� |fa(x; 0)| + |�ay|e

�a(t)
2(k�1)�

Z t

0
dt0
�
. (S9)

Therefore, limt!1 |fa(x; t)| = 0.

For completeness we now write down the solution (3) in functional form, for x 2 S in the training
set.

ft(x) = e�k�t

(
X

x02S

exp

⇥t � ⇥0

2(k � 1)�

�
(x, x0) f0(x

0)

+
X

x0,x002S

Z t

0
dt0 e�(k�2)�t0 exp

⇥t � ⇥t0

2(k � 1)�

�
(x, x0)⇥0(x

0, x00) y(x00)

)
.

⇥t(x, x
0) = e�2(k�1)�t⇥0(x, x

0) . (S10)

Here, exp(·) is a matrix exponential, and ⇥t is a matrix of size Nsamp ⇥ Nsamp.

B.1 Deep linear fixed point analysis

Let’s consider a deep linear model f(x) = �WL....W0.x, with � = n�L/2 for NTK normalization
and � = 1 for standard normalization. The gradient descent equation will be:

�W l
ab = �⌘�W l

ab � ⌘� ~W l+1
a

~W
l�1

b↵

X

(x,y)2S

`0(x, y)x↵ (S11)

where we defined:
~W l

⌘ WL...W l, ~W
l

↵ ⌘ W l...W 0
↵ (S12)

Evolution will stop when the fixed point (�W = 0) is reached:

WL>l>0
ab = ~W l+1

a Ŵ l�1
b ;WL

a = ŴL�1
a ;W 0

a↵ = ~W 1
a Ŵ

�1
↵ (S13)

Ŵ l�1
b ⌘ �

�

�
~W
l�1

b↵

X

(x,y)2S

`0(x, y)x↵; ~W
�1

a↵ = �a↵ (S14)

Furthermore note that:

~W l.Ŵ l�1 = �
1

�

X

(x,y)2S

`0(x, y)f(x) = f̃ (S15)

4See appendix D in Dyer and Gur-Ari [2020].

4

Now, we would like to show that, at the fixed point

~W l
a = f̃L�lŴ l�1

a (S16)

This follows from induction:
~WL = WL = ŴL�1 (S17)

~W l = ~W l+1(~W l+1Ŵ l�1) = f̃L�l�1Ŵ l(~W l+1Ŵ l�1) = f̃L�lŴ l�1 (S18)

Which has a trivial solution if f̃ = 0. Let’s assume that it is non-trivial. If we contract the previous
equation with Ŵ l�1 we get:

f̃ = f̃L�l
||Ŵ l�1

||
2 (S19)

We can finally set l = 0 and simplify:

�L+1

�2
= [�

X

(x,y)2S

`0(x, y)f(x)]L�1
X

(x,y),(x0,y0)2S

`0(x, y)`0(x0, y0)x.x0 (S20)

At large n, to obtain a non-trivial fixed point f(x) should be finite as n ! 1. From the previous
equation, this implies that �L+1

�2 = ✓(n0). In NTK normalization �2 = n�L, for � = ✓(n� L
L+1), we

will get a non-trivial (f(x) 6= 0) fixed point. This also implies that these corrections will be important
for � = ✓(n0) in standard normalization since there � = 1. Note that if �L+1

�2 6= ⌦(n0), we expect
that we get the � = 0 solution `0(x, y) = 0.

We can be very explicit if we consider L = 1 and one sample with x, y = 1, 1 for MSE loss. The
fixed point has a logit:

�
p
n = f � 1 (S21)

which is only different from 0, 1 for fixed �2n.

5

C More on experiments

C.1 Training accuracy = 1 scale

We can see how the time it takes to rech training accuracy 1 depends very mildly on �, and for small
enough learning rates it scales like 1/⌘.

10�2 10�1 100

�

102

103

T
im

e
to

tr
ai

n
ac

c
1

�=1e-05

�=0.005

(a) FC

10�2 10�1 100

�

102

T
im

e
to

tr
ai

n
ac

c
1

�=1.6e-05

�=0.008

(b) WRN

Figure S1: Training accuracy vs learning rate the setup of figure 2. The specific values for the ⌘,�
sweeps are in A.

C.2 More WRN experiments

We can also study the previous in the presence of momentum and data augmentation. These are the
experiments that we used in figure 4, evolved until convergence. As discussed before, in the presence
of momentum the t⇤ depends on ⌘, so we will fixed the learning rate ⌘ = 0.2.

10�5 10�4 10�3

�

0.80

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy

�=0.2

(a)

10�5 10�4 10�3

�

101

102

103

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.2
0.01
� t

0.2
�

(b)

10�4 10�2

�

0.80

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy

50 epochs

100 epochs

250 epochs

500 epochs

2000 epochs

(c)

Figure S2: WRN 28-10 with momentum and data augmentation trained with a fixed learning rate.

C.3 More on optimal L2

Here we give more details about the optimal L2 prediction of section 3. Figure S3 illustrates how
performance changes as a function of � for different time budgets with the predicted � marked with
a dashed line. If one wanted to be more precise, from figure 2 we see that while the scaling works
across �’s, generally lower �’s have a scaling ⇠ 2 times higher than the larger �’s. One could try to
get a more precise prediction by multiplying c by two, csmall� ⇠ 2clarge�, see figure S4. We reserve a
more detailed analysis of this more fine-grained prescription for the future.

6

10�4 10�2

�

0.80

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy

50 epochs

100 epochs

250 epochs

500 epochs

2000 epochs

� = 0.0066
t

Figure S3: WRN trained with momentum and data augmentation. Given a number of epochs, we
compare the maximum test accuracy as a function of L2 and compare it with the smallest L2 with the
predicted one. We see that this gives us the optimal � within an order of magnitude.

0 500 1000 1500 2000
Total training epochs

0.90

0.92

0.94

0.96

0.98

T
es

t
ac

cu
ra

cy

Predicted �

Optimal �

(a)

10�4 10�2

�

0.80

0.85

0.90

0.95

1.00
T
es

t
ac

cu
ra

cy
50 epochs

100 epochs

250 epochs

500 epochs

2000 epochs

� = 0.0132
t

(b)

0 500 1000 1500 2000
Total training epochs

0.00000

0.00005

0.00010

0.00015

0.00020

�

Predicted

Optimal (within 0.1%)

(c)

Figure S4: Same as previous figure with c = 2clarge� = 0.0132.

C.4 MSE and the catapult effect

In Lewkowycz et al. [2020] it was argued that, in the absence of L2 when training a network with
SGD and MSE loss, high learning rates have a rather different final accuracy, due to the fact that
at early times they undergo the "catapult effect". However, this seems to contradict with our story
around 1.1 where we argue that performance doesn’t depend strongly on ⌘. In figure S5, we can
see how, while when stopped at training accuracy 1, performance depends strongly on the learning
rate, this is no longer the case in the presence of L2 if we evolve it for ttest. We also show how the
training MSE loss has a minimum after which it increases.

7

10�6 10�4 10�2

� · �

102

104

106

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.001

�=0.05
0.2
�·� t

0.5
�·�

(a)

10�4 10�2 100 102

�

0.5

0.6

0.7

0.8

0.9

T
es

t
ac

cu
ra

cy

�=0.001

�=0.05

� = 0

(b)

10�1 101 103

Epochs·�

0.5

0.6

0.7

0.8

0.9

T
es

t
ac

cu
ra

cy

�=0.005

�=0.05

� = 0

� =10�5

(c)

10�1 101 103

Epochs·�

10�11

10�8

10�5

10�2

101

B
ar

e
tr

ai
ni

ng
lo

ss

�=0.005

�=0.05

� = 0

� =10�5

(d)

Figure S5: MSE and catapult effect: we see how even if there is a strong dependence of the test
accuracy on the learning rate when the training accuracy is 1, this dependence flattens out when
evolved until convergence in the presence of � . The specific values for the ⌘,� sweeps are in A.

8

C.5 Dynamics of loss and accuracy

In figure S6 we illustrate the training curves of the experiments we have discussed in the main text
and SM.

100 102 104

Epochs

0.86

0.88

0.90

T
es

t
ac

cu
ra

cy

�=1e-05

�=0.005

�=0.1

� = 0

(a) FC

102 104

Epochs

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
ac

cu
ra

cy

�=6.25e-05

�=0.001

�=0.016

� = 0

(b) WRN

102 104

Epochs

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
ac

cu
ra

cy

�=5e-05

�=0.001

�=0.05

� = 0

(c) CNN no BN

100 102 104

Epochs

0.2

0.4

0.6

0.8

1.0

T
ra

in
ac

cu
ra

cy

�=1e-05

�=0.005

�=0.1

� = 0

(d) FC

102 104

Epochs

0.2

0.4

0.6

0.8

1.0

T
ra

in
ac

cu
ra

cy

�=6.25e-05

�=0.001

�=0.016

� = 0

(e) WRN

102 104

Epochs

0.2

0.4

0.6

0.8

1.0

T
ra

in
ac

cu
ra

cy

�=5e-05

�=0.001

�=0.05

� = 0

(f) CNN no BN

10�3 10�2 10�1 100

Epochs·� · �

0.86

0.88

0.90

T
es

t
ac

cu
ra

cy

�=1e-05

�=0.005

�=0.1

� = 0

(g) FC

10�3 10�1

Epochs·� · �

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
ac

cu
ra

cy

�=6.25e-05

�=0.001

�=0.016

� = 0

(h) WRN

10�5 10�3

Epochs·� · �

0.65

0.70

0.75

0.80

T
es

t
ac

cu
ra

cy

�=5e-05

�=0.001

�=0.05

� = 0

(i) CNN no BN

10�3 10�2 10�1 100

Epochs·� · �

10�6

10�4

10�2

B
ar

e
tr

ai
ni

ng
lo

ss

�=1e-05

�=0.005

�=0.1

f = 0

(j) FC

10�3 10�1

Epochs·� · �

10�5

10�3

10�1

B
ar

e
tr

ai
ni

ng
lo

ss

�=6.25e-05

�=0.001

�=0.016

f = 0

(k) WRN

10�5 10�3

Epochs·� · �

10�5

10�3

10�1

B
ar

e
tr

ai
ni

ng
lo

ss

�=5e-05

�=0.001

�=0.05

f = 0

(l) CNN no BN

Figure S6: This shows the dynamics of experiments in figures 2, 3.The learning rates are 0.01 for the
CNN and 0.2 for the WRN and 0.15 for the FC. Each legend has the min, max and median value of
the logspace �’s with its respective color.

9

D Examples of setups where the scalings don’t work

We will consider a couple of setups which don’t exhibit the behaviour described in the main text: a
3 hidden layer, width 64 fully-connected network trained on CIFAR-10 and ResNet-50 trained on
ImageNet. We attribute this difference to deviations from the overparametrized/large width regime.
In this situation, the optimal test accuracy with respect to � has a maximum at some �opt 6= 0.

For the FC experiment, the time it takes to reach this maximum accuracy scales like 1/� for � & �opt,
but becomes constant (equal to the value for � = 0) for � . �opt. This peak of the maximum
test accuracy happens before the training accuracy reaches 1. Generically, we don’t observe that a
network trained with cross-entropy and without regularization to have a peak in the test accuracy at a
finite time.

We do not have as clear an understanding of the ImageNet experimental results because they involve
a learning rate schedule. Performance for small �s does not improve even if when evolving for a
longer time. However, we do observe that performance is roughly constant when ⌘ · � is held fixed.

10�5 10�3 10�1

�

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

�=0.1

� = 0

(a)

10�6 10�4 10�2

� · �

101

102

103

104

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.1

� = 0
0.2
�·� t

2e+00
�·�

(b)

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Test

Train

(c)

Figure S7: Experiments with FC of width 64 and depth 3 trained on CIFAR-10.

(a) (b)

Figure S8: ResNet-50 trained on ImageNet. (a) Evolved for 14,232 epochs for different ⌘,�. While
changing ⌘ or � independently has a strong effect of performance, we see that performance is rather
similar along the diagonal. (b) Fixed ⌘ = 0.1 and evolve for different � and number of epochs T
(rescaling the learning rate schedule to T). In constrast to the overparameterized case, we see that
one cannot reach the same performance with a smaller � by increasing T .

10

E More on AUTOL2

The algorithm is the following:

Algorithm 1: AUTOL2
MINLOSS,MINERROR=1,1
MIN_STEP,L2=0,0.1
for t in steps do

UPDATE_WEIGHTS;
if t mod k = 0 then

MAKE_MEASUREMENTS;
if ERROR_OR_LOSS_INCREASES AND t > MIN_STEP then

L2=L2/10;
MIN_STEP=0.1/L2 + t;

else

MINLOSS,MINERROR=min(LOSSt�k,MINLOSS),min(ERRORt�k,MINERROR);

Function error_or_loss_increases (LOSS,ERROR,MINLOSS,MINERROR):

if LOSSt>MINLOSS AND LOSSt�k>MINLOSS then

return True;
if ERRORt>ERROR AND ERRORt�k>ERROR then

return True;
return False;

We require the loss/error to be bigger than its minimum value two measurements in a row (we make
measurements every 5 steps), we do this to make sure that this increase is not due to a fluctuation.
After decaying, we force � to stay constant for a time 0.1/� steps, we choose the refractory period to
scale with 1/� because this is the physical scale of the system.

To complement the AUTOL2 discussion of section 3 we have done another experiment where the
learning rate is decayed using the schedule described in 2. Here we see how while AUTOL2 trains
faster in the beginning, the optimal � = 0.0005 outperforms it. We have not hyperparameter tuned
the possible parameters of AUTOL2.

0 50 100 150 200
Epochs

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy

(a)

10�1 101

Epochs

10�4

10�2

�

Auto-L2

� =0.0001

� = 0.0005

� =1e-05

(b)

Figure S9: Here we have a WRN trained with momentum and data augmentation for 200 epochs. We
compare the AUTOL2 with different fixed L2 parameters and we see how it trains faster and gets
better accuracy.

We have also applied AUTOL2 to other setups, and in the absence of learning rate schedules beats
the optimal L2 parameter. See figure S11.

11

0 50 100 150 200
Epochs

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy
(a)

10�1 100 101 102

Epochs

10�4

10�2

�

Auto-L2

� = 0.0005

(b)

Figure S10: Setup of S9 in the presence of a learning rate schedule. While AUTOL2 trains faster and
better in the beginning, it can’t keep pace with the big jumps of constant �.

0 100 200 300
Epochs

0.92

0.93

0.94

0.95

0.96

T
es

t
ac

cu
ra

cy

WRN on SVHN
Auto-L2

� =5e-05

0 100 200 300 400 500
Epochs

0.60

0.65

0.70

0.75

0.80

T
es

t
ac

cu
ra

cy

WRN on CIFAR100
Auto-L2

� =5e-05

0 100 200 300
Epochs

0.70

0.75

0.80

0.85

T
es

t
ac

cu
ra

cy

CNN-noBN on CIFAR10
Auto-L2

� =0.001

0 100 200 300
Epochs

0.70

0.75

0.80

0.85

T
es

t
ac

cu
ra

cy

CNN-BN on CIFAR10

Auto-L2

� =0.0005

Figure S11: AUTOL2 for the other architectures considered in the main text compared with the
optimal L2 parameters.

F Different initialization scales

We have discussed the dependence on the time to convergence in ⌘,�. Another quantity which is
relevant for learning is �w the scale of initialization, which for WRN we set to 1. We can repeat
the WRN experiment of figure 1a for different �w. We see that the final performance depends very
mildly on �w. This is what we expect when reaching equilibrium: the dependence of properties at
initialization is eventually washed away.

12

0 50 100 150 200
Epochs

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

�w =0.01

�w =0.1

�w =0.2

�w =0.8

�w =1.0

�w =2.0

�w =5.0

�w =10.0

�w =100.0

�w =1000.0

0 50 100 150 200
Epochs

0.940

0.945

0.950

0.955

0.960

0.965

0.970
T
es

t
A

cc
ur

ac
y

�w =0.01

�w =0.1

�w =0.2

�w =0.8

�w =1.0

�w =2.0

�w =5.0

�w =10.0

�w =100.0

�w =1000.0

Figure S12: While models with different �w behave rather differently at early times, at late times,
this �w dependence washes off for longer times.

13

