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Abstract

Bayesian neural networks are enjoying a renaissance driven in part by recent
advances in variational inference (VI). The most common form of VI employs
a fully factorized or mean-field distribution, but this is known to suffer from
several pathologies, especially as we expect posterior distributions with highly
correlated parameters. Current algorithms that capture these correlations with
a Gaussian approximating family are difficult to scale to large models due to
computational costs and high variance of gradient updates. By using a new form
of the reparametrization trick, we derive a computationally efficient algorithm for
performing VI with a Gaussian family with a low-rank plus diagonal covariance
structure. We scale to deep feed-forward and convolutional architectures. We find
that adding low-rank terms to parametrized diagonal covariance does not improve
predictive performance except on small networks, but low-rank terms added to
a constant diagonal covariance improves performance on small and large-scale
network architectures.

1 Introduction

The application of Bayesian methods to neural networks (NNs) has the potential to address many
of their issues, such as enabling decision making in the low data regime [4], or capturing epistemic
uncertainty [19]. However, Bayesian methods tend to be computationally expensive, making their
direct application to large models like deep NNs impractical. Variational inference (VI), one of the
most commonly used approximate Bayesian schemes, has seen a series of advances, enabling it to
be applied to NNs [3, 12, 21]. The most common form of VI employs a mean-field (MF) Gaussian
distribution as the variational posterior [21, 35]. This fully factorized posterior can take advantage of
local reparametrization [21], enabling practical applications of Bayesian NNs (BNNs).

In this paper, we focus on deriving a computationally efficient algorithm for learning Gaussian
variational posteriors with correlations among hidden units. Adding correlations among hidden units
theoretically increases the closeness of the variational posterior to the true posterior, so we might
expect better performance, although there has also been evidence favoring simpler posteriors [40, 45].
Previous attempts to add correlations either rely on additional approximations [31], or apply the naive
global reparametrization trick resulting in high variance gradient updates [34, 41, 43]. This results in
slow learning and poor scalability, and this has not been shown to scale beyond very small NNs.
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We develop an efficient optimization scheme for learning a Gaussian posterior with a low-rank plus
diagonal covariance structure within each layer of a neural network. We do this by extending the
Local Reparametrization Trick [21], which was originally designed to work only with mean-field
posterior distributions. We derive an algorithm that can be applied to networks with fully connected
and/or convolutional layers, and scale to large NNs such as ResNets [14]. We open-source the
implementation of the algorithm derived in this paper at https://github.com/marctom/elrgvi.

2 Variational inference for neural networks

We assume a standard VI problem setup for supervised learning. Given a data set D = {(xi,yi)}Ni=1
consisting of inputs xi and corresponding targets yi, a neural network fθθθ, a likelihood function
p(y|fθθθ(x)) and a prior p(θθθ), we aim to approximate the posterior distribution p(θθθ|D). We do
this by minimizing the Kullback-Leibler divergence DKL

�
q(θθθ|λλλ)||p(θθθ|D)

�
to learn a parametrized

distribution q(θθθ|λλλ) from variational family Q. This minimization is equivalent to maximizing the
Evidence Lower Bound (ELBO) [1, 2, 16] w.r.t. variational parameters λλλ:

L(λλλ) =
N�

i=1

Eθθθ∼q(·|λλλ) log p
�
yi|fθθθ(xi)

�
− DKL

�
q(θθθ|λλλ)||p(θθθ)

�
. (1)

We can then use λλλ∗ = argmaxλλλL(λλλ) to approximate the posterior distribution p(θθθ|D) with q(θθθ|λλλ∗).
We do this at prediction time, to approximate the predictive distribution over the target y∗ given a
test input x∗: p(y∗|x∗,D) ≈

�
p(y∗|fθθθ(x∗))q(θθθ|λλλ∗)dθθθ. When the variational family Q contains the

true posterior distribution p(θθθ|D), approximate inference yields q(θθθ|λλλ∗) = p(θθθ|D), but this setting is
usually computationally intractable. The mean-field approach factorizes the variational posterior over
its dimensions, q(θθθ|λλλ) = �D

d=1 q(θd|λd) [2]. This leads to a computationally tractable setup, and
has been extensively used in practice [3, 12, 15, 21].

We assume that the variational posterior q(θθθ|λλλ) factorizes over layers q(θθθ|λλλ) = �L
l=1 ql(θθθl|λλλl), where

θθθl denote the parameters associated with layer l. When weights θθθ are random we denote this by
θθθ ∼ q(·|λλλ). In the case of a linear layer, we overload notation to index elements in matrix θθθ as θij ,
though we also use θθθ to denote a vector. We denote a single convolutional or fully connected layer in
a neural network as Fθθθl

(xl), where xl is the input to layer l. A neural network can be represented as
a composition of consecutive layers and activations, fθθθ = FθθθL

◦ aL−1 ◦FθθθL−1
, . . . ◦ a1 ◦Fθθθ1

, where
al denote nonlinearities. Therefore the weights θθθl for each layer Fθθθl

can be sampled sequentially
and used to calculate the forward pass Fθθθl

(xl). While naive reparametrization θθθl = g(λλλl, ���l), e.g.
θθθl = µµµl + σσσl � ��� can be used to estimate ∇λλλl

L(λλλ) [3], it leads to high computational cost or high
variance gradients, as we discuss next.

Estimating ∇λλλL(λλλ) with naive reparametrization. Estimating the gradient ∇λλλL(λλλ) requires
approximating the gradient reconstruction term ∇λλλ

�N
i=1 Eθθθ∼q(·|λλλ) log p

�
yi|fθθθ(xi)

�
. When the data

set D is large, the gradients ∇λλλL(λλλ) are estimated with two sources of stochasticity: (i) subsampling
the data set D, and (ii) Monte Carlo sampling of the variational posterior q(θθθ|λλλ) [43, 17].

Estimating the reconstruction term by sharing one variational sample θθθ ∼ q(·|λλλ) among inputs xi in
a data batch B introduces correlation between the terms ∇λλλ log p(yi|fθθθ(xi)). Although this does not
affect the bias of the estimator, it can lead to a dramatic increase in the estimation variance [36, 21, 46].
In comparison, this correlation is zero when we have different variational samples θθθ(i) ∼ q(·|λλλ) for
each input xi in the data batch. When using the naive reparametrization θθθl = g(λλλl, ���l), obtaining
different variational samples θθθ(i) ∼ q(·|λλλ) for different inputs xi requires storing |B| copies of
the network (one for each input in the data batch). This results in a memory cost of an update
of parameters λλλl of order O(Nl,inNl,out|B|), where Nl,in, Nl,out denote the layers’ input/output
dimensions, respectively. This cost is prohibitively large for even moderately sized networks.

The Local Reparametrization Trick (LRT). To reduce the excessive cost of having separate varia-
tional samples per input, we can resort to local reparametrization (reparametrizing Fθθθl

(xl) instead
of θθθl) and sample the layer’s outputs Fθθθl

(xl) directly, instead of sampling weights θθθl ∼ q(·|λλλl).
For instance, for a mean-field Gaussian posterior q(θθθl|λλλl), the LRT [21] provides the following
reparametrization of the forward pass Fθθθl

(xl) through a fully connected layer:

Fθθθl
(xl) = Fµµµl

(xl) + ���l �
�
Fσσσ2

l
(x2

l ), (2)
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where θθθl ∼ N (µµµl, diag[σσσ2
l ]), ���l ∼ N (0, Il) and we overloaded notation by using x2 and

√
x to denote

elementwise operations, and � to denote elementwise multiplication. The reparametrization given
by Equation (2) requires two forward passes Fµµµl

(xl) and Fσσσ2
l
(x2

l ), but allocates only O(Nl,out|B|)
memory, compared to O(Nl,outNl,in|B|) for naive reparametrization. LRT provides two benefits [21].
First, sampling ���l as opposed to the large matrix θθθl lowers the variance of estimated gradients ∇λλλL(λλλ).
Second, it is now computationally feasible to sample separate variational samples θθθ(i)l ∼ q(·|λλλl) for
each data input xi in the batch by simply sampling the perturbation noise ���l. As argued earlier, this
also reduces gradient variance during training.

Larger variational families. Theoretically, larger variational families Q (such as correlations
beyond simple mean-field) improve the quality of the variational approximation q(θθθ|λλλ∗), as the
global maximizer λλλ∗ is closer to the true posterior, with smaller DKL

�
q(θθθ|λλλ∗)||p(θθθ|D)

�
. However,

this poses two challenges. First, the derivation of local reparametrization in Equation (2) relies
on the fact that the sum of independent Gaussian distributions follows a Gaussian distribution.
Unfortunately, when considering a Gaussian posterior q(θθθl|λλλl) with non-diagonal covariance matrix,
application of the same derivation does not lead to a reduction in computational complexity. To
the best of the authors’ knowledge, no local reparametrization other than LRT has been proposed.
Second, analytically calculating DKL

�
q(θθθl|λλλ)||p(θθθl)

�
is computationally demanding for correlated

approximate posteriors. For these reasons, existing algorithms [31, 34, 41, 43] are prone to high
variance updates and/or high computational cost, preventing scalability to large models.

To complicate matters further, for BNNs, the improved quality of q(θθθ|λλλ) as measured by the ELBO
L(λλλ) does not necessarily improve predictive performance of p(y∗|x∗,D). In fact, some authors
present evidence that employing simpler variational posteriors q(θθθ|λλλ) yields better predictive perfor-
mance [40, 45], while others claim the mean-field approach apparently works well enough for deep
models [8, 35, 44]. Designing prior distributions over weights for neural networks ensuring that the
ELBO is a reliable indicator of the quality of predictive performance is an open research problem.
The evidence we gather suggests that adding complexity to the Gaussian variational posterior via
correlations does not decrease the predictive performance for small networks, and as we show in
the paper, can provide visible improvements. For larger networks, the message is more complicated.
Next we describe how to efficiently learn correlations among units within the same layer of a neural
network.

3 Methods

As discussed previously, it is challenging to introduce correlations among units within the same
layer l into Gaussian variational posteriors q(θθθl|λλλl). To overcome these difficulties, we (i) extend the
local reparametrization of Fθθθl

(xl) beyond the class of mean-field Gaussian posteriors q(θθθl|λλλl), and
(ii) demonstrate an efficient way of computing complexity penalty DKL

�
q(θθθl|λλλ)||p(θθθl)

�
. Detailed

derivations can be found in Supplementary Material A.2.

Efficient forward pass with low-rank covariance. We consider a layer-wise variational posterior
of the form q(θθθl|λλλl) = N (θθθl|µµµl,α

�K
k=1 vl,kv

�
l,k + diag[σσσ2

l ]). As the lemma below shows, we can
exploit the low-rank plus diagonal structure of the approximate posterior’s covariance matrix to derive
a local reparametrization of a forward pass Fθθθl

(xl).

Lemma 1. Let θθθ ∼ N (θθθ|µµµ,α�K
k=1 vkv

�
k + diag[σσσ2]). The forward pass through fully connected

layer Fθθθ(x) can be reparametrized as

Fθθθ(x) = Fµµµ(x) +
√
α

K�

k=1

�kFvk
(x) + εεε�

�
Fσσσ2(x2), where �k ∼ N (0, 1), εεε ∼ N (0, I). (3)

Algorithm Time Memory
MAP O(NinNout|B|) O(Nout|B|)

naive mean-field O(NinNout|B|) O(NinNout|B|)
mean-field (LRT) O(2NinNout|B|) O(2Nout|B|)

naive low-rank O(N3
inN

3
out + NinNout|B|) O(NinNout|B|)

efficient low-rank O(K3 + (K + 2)NinNout|B|) O((K + 2)Nout|B|)
full rank O(N3

inN
3
out + N2

inN
2
out|B|) O(NoutNin|B|)

Table 1: Computational cost to update λλλl per layer.

Note that Lemma 1 does not make
the assumption that vectors vk are
pairwise orthogonal. Additionally,
the noise �l,k can be shifted to ei-
ther the layer’s inputs xl, or the
layer’s outputs Fθθθl

(xl), due to lin-
earity of Fθθθl

. Based on the RHS
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of Equation (3), sampling from Fθθθl
(xl) requires performing a standard forward pass Fµµµl

(xl), K
forward passes Fvl,k

(xl) multiplied by scalar noise �l,k, and a forward pass Fσσσ2
l
(x2

l ) which we take
the square root of and then perturb by noise εεεl. For convolutional layers, the diagonal part of the
covariance diag[σσσ2

l ] cannot be reparametrized as the LRT cannot be applied directly [46]. However,
the low-rank component α

�K
k=1 vkv

�
k can be still reparametrized, yielding the middle term in

Equation (3). We discuss convolutional layers in detail in Supplementary Material A.4.

Computational cost. We now describe the computational cost per layer of different algorithms. We
first consider the additional memory allocation required to estimate ∇λλλl

L(λλλ) (not the cost to store λλλ).
As allocating memory is time-consuming, the ‘memory’ column can eventually be mapped into an
increased running time of the algorithm. We compare the computational cost required to estimate
∇λλλl

L(λλλ) in Table 1. Naive approaches (naive mean-field and naive low-rank) require sampling
reparametrized weights θθθ ∼ q(·|λλλ) and thus incur a large memory cost, proportional to the number of
parameters in that layer NinNout. The Local Reparametrization Trick (LRT) shifts sampling noise
to activations for mean-field VI, reducing the memory cost by the factor of Nin, enabling practical
use. Reparametrization in the RHS of Equation (3) achieves a similar reduction for a posterior with
low-rank plus diagonal covariance matrix, reducing the naive memory cost proportional to NinNout

(red) to (K + 2)Nout (blue). Our method also reduces computational time in a similar way, as seen
in Table 1, and described next. See Supplementary Material A.3 for more detail.

Efficiently calculating the complexity penalty. We now focus on efficiently calculating the diver-
gence between the approximate posterior and prior in Equation (1), DKL

�
q(θθθ|λλλ)||p(θθθ)

�
. Since both

the prior p(θθθ) and variational posterior q(θθθ|λλλ) factorize over layers, we can also factorize the KL
divergence over layers, and focus on deriving an analytical expression for DKL

�
q(θθθl|λλλl)||p(θθθl)

�
.

The naive approach for calculating this term is dominated by the cost of calculating the determinant
|α�K

k=1 vl,kv
�
l,k + diag[σσσ2

l ]|, with complexity O(N3
l,inN

3
l,out), for every layer l. This complexity is

too large to be feasible for deep models with large numbers of parameters. We desire the complexity
to be linear in the product Nl,inNl,out. Any dependency on the product Nl,inNl,out above linear
will cause the resulting algorithm to be too slow, preventing scaling to large models. To that end,
we derive the following lemma, enabling computationally tractable analytic calculation of the KL
divergence DKL

�
q(θθθ|λλλ)||p(θθθ)

�
between the posterior q(θθθ|λλλ) = N (θθθ|µµµ,α�K

k=1 vkv
�
k + diag[σσσ2])

and an isotropic Gaussian p(θθθ) = N (θθθ|0, γI).
Lemma 2. Let q(θθθ|λλλ) = N (θθθ|µµµ,α�K

k=1 vkv
�
k + diag[σσσ2]) and p(θθθ) = N (θθθ|0, γI). Then the

divergence DKL

�
q(θθθ|λλλ)||p(θθθ)

�
can be calculated as

DKL

�
q(θθθ|λλλ)||p(θθθ)

�
=

1

2

� D�

d=1

�σ2
d

γ
− log σ2

d

�
+

α

γ

K�

k=1

�vk�22−Δ+
1

γ
�µµµ�22+D(log γ−1)

�
, (4)

where V = [v1,v2, . . .vk] is a D ×K matrix and Δ = log |IK + αV�diag[σσσ2]−1V|.

Estimating the divergence term DKL

�
q(θθθl|λλλl)||p(θθθl)

�
using Equation (4) becomes dominated by

calculating the log determinant log |IK + αV�diag[σσσ2
l ]

−1V|. This is of shape K ×K as opposed
to Nl,inNl,out ×Nl,inNl,out, leading to a total computational cost of order O(K3 + 4Nl,inNl,out),
and enabling scalability to deep models. The same reduction in computational complexity follows for
the gradient ∇λλλl

DKL

�
q(θθθ|λλλ)||p(θθθ)

�
. This discussion is summarized in the ‘time’ column in Table 1,

demonstrating the reduction from N3
inN

3
out (red) to K3 (blue).

Theoretical properties. Although low-rank plus diagonal approximations have previously been
considered in the context of variational inference [31, 34], the theory behind the quality of the
obtained variational posterior remains unclear to the best of the authors’ knowledge. We now provide
theoretical properties of approximate inference employing a low-rank Gaussian approximate posterior,
demonstrating the difficulty in selecting the rank K. We derive a result providing the analytical
solution for {vk} and σ2 when q(θθθ|λλλ) = N (θθθ|µµµ,�K

k=1 vkv
�
k + σ2I) and the true posterior follows

Gaussian distribution p(θθθ|D) = N (θθθ|µµµp,ΣΣΣp). Related problems have been studied in [25, 39, 42].

Lemma 3. Denote the true and approximate posterior p(θθθ|D) = N (θθθ|µµµp,ΣΣΣp) and q(θθθ|µµµ,VVV ,σ2) =
N (θθθ|µµµ,ΣΣΣV I := VV�+σ2I). Assume thatµµµ∗,V∗,σ2

∗ = argminµµµ,V,σ2L(µµµ,V,σ2), rank(V) = K
and λ1 ≥ λ2 ≥ . . . ≥ λD are decreasing eigenvalues of the posterior covariance ΣΣΣp with
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corresponding orthonormal eigenvectors u1,u2, . . . ,uD. Then ΣΣΣV I∗ =
�

1≤k≤K λkuku
�
k +�

K+1≤i≤D σ2
∗uiu

�
i where σ2

∗ = ( 1
D−K

�
k+1≤i≤D λ−1

i )−1.

Lemma 3 shows that the quality of the posterior q(θθθ|λλλ) depends on the spectral properties of the true
posterior covariance matrix ΣΣΣp, which are unknown in practical settings. Even in the case of a linear
model y = θθθ�x, where the precision of posterior distribution Σ−1

p is given by XXT + σ2
priorI, it is

possible to construct examples in which any number of components K < D − 1 will result in large
DKL

�
q(θθθ|λλλ)||p(θθθ|D)

�
, as we can adjust the spectrum of XXT . Even when p(θθθ|D) is Gaussian, it is

difficult to choose a specific rank K, suggesting we should resort to empirical evaluation.

See Supplementary Material A.2 for a derivation of the exact expression for DKL(q(θθθ|λλλ)||p(θθθ|D)),
which is proportional to the gap in Jensen’s inequality log 1

D−|S|
�

k/∈S λ−1
k − 1

D−|S|
�

k/∈S log λ−1
k ,

where S is a set of indices of K largest eigenvalues. When the dimensionality D is high, in general
setting K to a value K << D cannot be expected to reduce DKL(q(θθθ|λλλ)||p(θθθ|D)) by a large margin.

When the posterior diagonal component σ2I is not parametrized and σ2 ≈ 0, then the form of
ΣΣΣV I∗ remains the same as in Lemma 3. The decrease in DKL(q(θθθ|λλλ)||p(θθθ|D)) by increasing K
by one can be well-approximated with value proportional to log λi, where λi denotes the largest
yet non-selected eigenvalue of posterior covariance ΣΣΣp. Therefore we can expect larger benefits to
introducing low-rank components compared to the previous case, where we fully parametrized the
diagonal component. However, this constant diagonal would also likely lead to an overall higher
DKL(q(θθθ|λλλ)||p(θθθ|D)).

Practical algorithm. Gaussian variational posteriors with diagonal, isotropic N (µµµl,σ
2
l Il), and

non-isotropic covariances N (µµµl, diag[σσσ2]) can be boosted by adding the term α
�K

k=1 vl,kv
�
l,k

to the covariance matrix. Lemmas 1 and 2 provide an efficient way to learn these posteriors by
reparametrizing Fθθθl

(xl). We call the resulting algorithm Efficient Low Rank Gaussian VI: ELRG-(D)-
VI, where the optional D indicates a non-isotropic diagonal component diag[σσσ2

l ]. As we demonstrate
in Section 5, ELRG-D-VI improves over MF-VI (within reasonable optimization time) only on very
small networks. Therefore we focus on evaluating ELRG-VI, where we set σ2 to a small constant
value, which performs strongly across a wide range of network sizes and architectures. While this
variational posterior has lower expressibility, it also allows scaling to deep models such as ResNets.

From an algorithmic perspective, introducing low-rank terms α
�K

k=1 vl,kv
�
l,k to the posterior

covariance has a regularizing effect. The forward pass Fθθθl
(xl) now has an additional stochastic

term
√
α
�K

k=1 �kFvl,k
(xl), making reconstruction more difficult. The gradients of the complexity

penalty ∇vl,k
DKL

�
q(θθθl|λλλl)||p(θθθl)

�
will prevent vl,k from being squeezed to 0 as they need to strike

a balance between the gradient emerging from the entropy − log |IK + αV�diag[σσσ2
l ]

−1V|, and the
L2 regularization from from the trace term in αγ−1

�K
k=1 �vl,k�22. We set hyperparameter α to 1

K .

Convolutional neural networks (CNNs). As briefly discussed before, LRT cannot be applied to
convolutional layers as applying the same kernel over different patches incurs correlations between
elements of output. A crude approximation is to simply ignore these dependencies and sample outputs
from marginal distributions. The quality of this approximation is difficult to quantify. As shown
in the Supplementary Material A.4 that the low rank component Fvk

(x), middle term in Equation
(3), can be still reparametrized for convolutional layers. Thus, fixing the diagonal component σ2I
of covariance posterior matrix with a small constant σ2 results in negligible contribution from the
diagonal term Fσ2(x), making the reparametrization in Equation (3) good approximation for CNNs.

4 Related work

Naive reparamerization θθθl = g(λλλl, ���l) was first applied to BNNs in [3]. Local reparametrization
[21] is a significant improvement, but only applies to mean-field posteriors q(θθθ|λλλ). The naive
reparametrization for Gaussian posteriors with sparse covariance/precision is investigated in [34,
41, 43] and has been considered for deep generative models [37]. Flipout [46] uses the algebraic
property (W � ���1���

�
2 )x = ���1 �W(x� ���2) to cheaply sample from {−1, 1} to decorrelate shared

variational samples among inputs. Flipout also applies only to mean-field variational posteriors
q(θθθ|λλλ). Employing a sparse low-rank structure has been considered in numerous works focusing
on shallow models [25, 30, 34, 41, 42]. Some properties of low-rank approximations are studied by
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Figure 1: ELBO and test log likelihood for a small MLP network on toy data, for ELRG-D-VI (left)
and ELRG-VI (right). Introducing low rank components to a posterior covariance visibly increases
ELBO and test log likelihood. Error bars estimated over 30 seeds.
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Figure 2: Adding low-rank terms to the covariance of Gaussian posteriors: (a) non-isotropic diag[σσσ2],
(b) isotropic diag[σσσ2], (c) ordinary mean-field VI optimized with different learning rates.

[25, 38, 42]. Recently, low-rank plus diagonal covariance structure was applied to deep models with
approximate VI in a natural gradient setting [31]. However, these methods only scale to small MLPs.
Other approaches introducing correlated posteriors include Monte Carlo dropout [11], directional
posteriors [33], and network weights defined as matrix multiplication of underlying parameters [28].
Reparametrization of models by separating the dependence between parameters and underlying noise
is a well-known approach to reduce the variance of gradients [18, 22, 29, 37]. Non-reparametrized
estimators of ELBO gradients for BNNs have been considered in [12, 15]. Problems with MF-VI
applied to shallow BNNs are discussed in [45, 9, 10]. K-tied normal distribution [40] is another
approach to alter parametrization of Gaussian variational posterior. K-tied distribution by design
reduces the expressibility of variational posterior, as opposed to introducing correlations. In addition,
neither mean-field Gaussian VI nor k-tied posterior can be reparametrized for convolutional layers.

5 Experiments

In our experiments, we focus on demonstrating the following: (i) ELRG-D-VI improves over MF-VI
for small networks, but not on larger models, (ii) ELRG-VI has better predictive performance than
MF-VI, (iii) ELRG-VI scales up to large CNNs and provides better predictive distributions than MAP,
MF-VI and MC Dropout, (iv) sharing variational samples as in [34, 41, 43] leads to poor predictive
performance. Detailed descriptions of experimental setups are in Supplementary Material A.5.

Benefit of low-rank correlations on toy data. We first consider learning correlated Gaussian
posteriors for small MLPs. As defining priors for BNNs is a challenging task, priors selected for
larger models might lead to a very low value of marginal likelihood p(D), leading to inability to
infer much information from data. For smaller MLPs, the problems with the prior assigning very low
probability of data can be expected to be much smaller, making smaller models essential to study.

We consider a two dimensional synthetic classification dataset sampled from two Gaussian distribu-
tions with µµµ1 = [1.5,−0.5]�, µµµ2 = [0.5,−1]� and ΣΣΣ1 = 0.25I, ΣΣΣ2 = I using 200 data points. We
compare ELRG-VI, ELRG-D-VI with MF-VI on a simple one hidden layer network, 10 hidden units
per layer and ELU activations [6]. In Figure 1, we see that, as K increases, the ELBO and test log
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likelihood increase for both ELRG-VI and ELRG-D-VI. While ELRG-VI achieves lower value of
ELBO and test log likelihood, the absolute increase of ELBO with K is constant and larger than in
the case of ELRG-D-VI, similarly as in the case of the true Gaussian posterior proceeding Lemma 3.

Larger networks. We find that MF-VI shows underfitting on datasets, in line with previous work
[45]. To show this clearly, we consider a larger network with 2 hidden layers with 100 hidden units
each and ReLU activations to classify vectorized MNIST [26] images, and plot the learning curves in
Figure 2. The reconstruction term and the validation negative log likelihood increase after about 100
epochs, indicating underfitting behaviour. Note that if we did not visualize the reconstruction term,
but just looked at the training (negative) ELBO, this underfitting would not be obvious, and could be
confused with overfitting (which would reduce the reconstruction and increase test loss [45]).

A natural question is: does adding low-rank terms to the covariance matrix improve the underfitting
observed in MF-VI? We do not find that this is the case empirically. As shown in Figure 2 (a),
increasing K in ELRG-D-VI still leads to the underfitting phenomenon (same final negative log
likelihood). The lack of improvement as K increases could be because, unlike the previous toy dataset,
the rank K is now small compared to the rank of the covariance matrix (which is the dimension of θθθl,
10000 in this case). Unfortunately, using larger values of K for larger networks is impractical as the
algorithm’s running time is proportional to K.

However, ELRG-VI,parametrized as q(θθθl|µµµl, {vl,k}) = N (θθθl|µµµl,
1
K

�K
k=1 vl,kv

�
l,k +σ2

constI), does
improve predictive performance, as demonstrated in Figure 2 (b). Using K > 0 improves held out log
likelihood by a visible margin, from −0.076 to −0.057. Based on this evidence, for larger networks
we now focus on evaluating ELRG-VI, not ELRG-D-VI.

400 units 800 units

algorithm test NLL test error rate test NLL test error rate

ELRG-VI K = 1 −0.071 ± 0.011 1.82 ± 0.25% −0.070 ± 0.014 1.91 ± 0.27%
ELRG-VI K = 2 −0.057 ± 0.005 1.69 ± 0.14% −0.057 ± 0.008 1.69 ± 0.24%
ELRG-VI K = 5 −0.053 ± 0.006 1.54 ± 0.18% −0.058 ± 0.005 1.68 ± 0.17%
NAIVE K = 1 −0.130 ± 0.116 3.00 ± 1.82% −0.134 ± 0.105 2.92 ± 1.47%
NAIVE K = 2 −0.112 ± 0.042 2.82 ± 0.85% −0.113 ± 0.028 2.87 ± 0.54%
K-TIED K = 2 −0.105 ± 0.004 2.67 ± 0.16% −0.108 ± 0.004 2.61 ± 0.17%
K-TIED K = 3 −0.106 ± 0.003 2.69 ± 0.15% −0.107 ± 0.004 2.64 ± 0.18%
MF-VI ADAM −0.0964 ± 0.001 2.51 ± 0.09% −0.1034 ± 0.002 2.65 ± 0.03%
MF-VI SGD [3] − 1.82% − 1.99%

SLANG K=1 [31] − 2.00% − −
SLANG K=32 [31] − 1.72% − −

Table 2: ELRG-VI and baselines on vectorized MNIST. ELRG-VI performs well, higher K is better.

Vectorized MNIST classification. Previous work [3, 31] has used classification on the vectorized
MNIST [26] images as a BNN benchmark, employing two hidden layer MLPs with both 400 and
800 hidden units per layer. We use the default ADAM optimizer [20], batch size of 256, 1 variational
samples per update, and run optimization for 500 epochs. Results are shown in Table 2. ELRG-VI
outperforms both MF-VI, naive reparametrization, k-tied Gaussian posteriors and SLANG in terms of
test accuracy and test log likelihood (higher K is better). Results are averaged over 10 random seeds.

Poor performance when sharing variational samples. We previously claimed that it is important
to sample different variational samples for each input in a data batch, as this reduces gradient
variance during training. To empirically test this, we compare ELRG-VI to an approach that shares a
variational sample θθθ ∼ q(·|λλλ) among inputs xi on a vectorized MNIST classification task. We report
the learning curves for expected and validation log likelihood for K = 2 and K = 5 in Figure 3.
We observe that sharing variational samples leads to slower optimization of expected log likelihood
with asymptotically suboptimal value and worse validation log likelihood by a clear margin (−0.112
for sharing a sample and −0.057 for separate samples). Additionally, the gains in performance by
applying reparametrization in Lemma 3 become larger when K increases, which reveals the weakness
of naive reparametrization applied to BNNs.

LeNet image recognition. We now investigate image classification with a simple convolutional
neural network. The most recent approach introducing correlations to Gaussian posteriors [31]
was not scaled beyond two fully-connected hidden layers, but we are able to scale due to our low
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Figure 3: Comparison of the naive approach to learn low rank Gaussian variational posterior with
applying the reparametrization given by Lemma 1 on a vectorized MNIST classification. Sharing
variational samples θθθ ∼ q(·|λλλ) among inputs xi leads to worse performace by a clear margin.

neg. test log likelihood test error rate

MNIST KUZUSHIJI FASHIONMNIST CIFAR10 MNIST KUZUSHIJI FASHIONMNIST CIFAR10

ELRG-VI K=1 0.0274± 0.002 0.1714± 0.004 0.2609± 0.006 1.0955± 0.005 0.9± 0.07% 4.75± 0.09% 9.25± 0.21% 33.19± 0.44%
ELRG-VI K=2 0.0272± 0.001 0.1693± 0.002 0.2563± 0.007 0.9907± 0.017 0.89± 0.05% 4.59± 0.18% 8.95± 0.19% 31.80± 0.30%
ELRG-VI K=5 0.0257± 0.002 0.1668± 0.004 0.2522± 0.004 0.8711± 0.011 0.8± 0.08% 4.62± 0.19% 9.17± 0.09% 29.43± 0.32%

MF-VI 0.0462± 0.002 0.2244± 0.004 0.2747± 0.002 0.8579± 0.003 1.09± 0.08% 6.02± 0.13% 9.79± 0.01% 28.89± 0.16%
MAP 0.0268± 0.01 0.1834± 0.009 0.2747± 0.002 0.9389± 0.007 0.81± 0.016% 4.76± 0.20% 9.86± 0.18% 32.36± 0.29%

Table 3: Results for ELRG-VI and MF-VI for image classification with LeNet CNN.

computational cost and low gradient variance during training. We experiment with common simple
computer vision benchmarks: MNIST, KMNIST [5], FASHIONMNIST [47] and CIFAR10 [23].
We use the LeNet architecture [27] (two convolutional layers followed by two fully connected layers)
with ReLU activations. We train all models for 500 epochs (except MAP, which is run for 50
epochs) using a batch size of 512 using the ADAM optimizer [20], and do not use data augmentation.
Table 3 shows log likelihoods and accuracies. ELRG-VI outperforms both MAP and MF-VI on all
data sets except for CIFAR10, with significantly better predictive likelihoods and error rates. As
expected, increasing rank K provides better results. Interestingly, we obtained good MF-VI results on
CIFAR10, far better than in reported e.g. in [35], but these results do not transfer to other datasets.

Modern CNNs. We now demonstrate that ELRG-VI can scale up to larger convolutional neural
networks. We run ELRG-VI on RESNET [14] and ALEXNET [24], and compare with MAP estimation
and MC dropout. These experiments are far larger scale than previous work with low-rank approxi-
mations [34, 41, 31]. We consider 4 data sets: CIFAR10, CIFAR100 [23], SVHN [32] and STL10
(10 classes, 5000 images 96× 96) [7]. We train all algorithms for 200 epochs using a batch size of
256 and the ADAM optimizer [20], with data augmentation. In Table 4, we report final test accuracy,
test log likelihood (LL) and ECE score [13] to capture model calibration. We find that ELRG-VI has
the best uncertainty metrics, but often worse accuracy. This is similar to the VOGN results [35]: on
CIFAR10 and RESNET18, ELRG-VI K = 4 improves on VOGN, with accuracy of 87.24± 0.37%
compared to 84.27% and an improved negative test log likelihood of −0.382± 0.002 compared to
−0.477. Similarly, ELRG-VI outperforms VOGN on CIFAR10 and ALEXNET with accuracy of
76.43±0.20% compared to 75.48% and test log likelihood of −0678±0.006 vs. −0.703. Compared
to MC Dropout, ELRG-VI yields better test log likelihood six times out of eight (they tie once), and
better test ECE six times out of eight (again they tie once). MAP performs badly on uncertainty
metrics (and always worse than ELRG-VI). Overall, MC Dropout performs well for the ALEXNET
architecture on CIFAR10 and CIFAR100, but this is not the case for other datasets and architectures.
MF-VI underfits and leads to significantly lower test log likelihood compared to other methods.

In several cases MAP estimation has good test accuracy, but at the cost of a very poor test log
likelihood/calibration scores. This is a known property of MAP estimation (see e.g. Figure 3 in [13]).
This is because MAP estimation aggressively picks patterns from the training data set. While this can
provide better accuracy as some of the picked patterns can generalize, spurious patterns can lead to
severe mistakes on the test set.

Out of distribution test. We plot the histogram of predictive entropies for RESNET18 trained on
CIFAR100 in Figure 4. We consider test data from CIFAR100 and then out-of-distribution data
from SVHN and CIFAR10. Ideally, we want lower entropy on the CIFAR100 test data, and high
entropy on the out-of-distribution datasets. We observe that MAP estimation leads to confident
predictions on both in distribution and out-of-distribution data, which is undesirable. On the other
hand, MF-VI has under-confident predictions on both in distribution and out-of-distribution data.
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RESNET18 CIFAR10 CIFAR100

test LL test acc test ECE test LL test acc test ECE

MAP −0.523± 0.013 87.66± 0.18% 0.08± 0.003 −2.111± 0.005 59.15± 0.04% 0.218± 0.001
MC Dropout −0.534± 0.012 87.47± 0.24% 0.084± 0.001 −2.121± 0.02 59.28± 0.19% 0.227± 0.001

MF-VI −0.697± 0.005 76.63± 0.32% 0.071± 0.004 −2.239± 0.005 41.07± 0.31% 0.100± 0.001
ELRG-VI K = 1 −0.413± 0.004 86.96± 0.29% 0.044± 0.003 −1.819± 0.021 57.81± 0.51% 0.154± 0.005
ELRG-VI K = 2 −0.395± 0.007 87.09± 0.21% 0.033± 0.002 −1.747± 0.021 57.85± 0.60% 0.134± 0.004
ELRG-VI K = 3 −0.386± 0.007 87.21± 0.22% 0.025± 0.002 −1.695± 0.012 57.75± 0.17% 0.115± 0.002
ELRG-VI K = 4 −0.382± 0.010 87.24± 0.37% 0.018± 0.002 −1.634± 0.019 58.14± 0.28% 0.096± 0.005

SVHN STL10

test LL test acc test ECE test LL test acc test ECE

MAP −0.2± 0.003 95.73± 0.08% 0.025± 0.001 −1.22± 0.007 77.21± 0.06% 0.165± 0.0
MC Dropout −0.207± 0.001 95.78± 0.02% 0.026± 0.0 −1.161± 0.007 76.86± 0.2% 0.165± 0.002

MF-VI −0.218± 0.004 94.53± 0.24% 0.047± 0.003 −1.290± 0.143 71.55± 1.95% 0.179± 0.019
ELRG-VI K = 1 −0.158± 0.002 95.90± 0.08% 0.010± 0.001 −0.811± 0.018 73.66± 0.36% 0.080± 0.012
ELRG-VI K = 2 −0.151± 0.001 95.95± 0.02% 0.006± 0.001 −0.779± 0.010 73.23± 0.36% 0.037± 0.012
ELRG-VI K = 3 −0.149± 0.004 95.96± 0.19% 0.005± 0.001 −0.783± 0.011 72.24± 0.49% 0.012± 0.005
ELRG-VI K = 4 −0.145± 0.001 96.03± 0.05% 0.003± 0.000 −0.789± 0.007 72.01± 0.28% 0.017± 0.003

ALEXNET CIFAR10 CIFAR100

test LL test acc test ECE test LL test acc test ECE

MAP −0.895± 0.008 77.89± 0.30% 0.126± 0.002 −3.808± 0.019 46.6± 0.03% 0.326± 0.003
MC Dropout −0.717± 0.01 75.22± 0.328 0.023± 0.003 −2.196± 0.019 43.12± 0.39% 0.022± 0.002

MF-VI −0.994± 0.008 65.38± 0.32% 0.062± 0.004 −2.659± 0.051 32.41± 1.39% 0.049± 0.010
ELRG-VI K = 1 −0.723± 0.010 76.87± 0.42% 0.065± 0.006 −2.583± 0.084 42.71± 0.72% 0.168± 0.016
ELRG-VI K = 2 −0.687± 0.011 76.65± 0.50% 0.029± 0.006 −2.368± 0.043 42.90± 0.84% 0.099± 0.022
ELRG-VI K = 3 −0.681± 0.007 76.53± 0.14% 0.021± 0.004 −2.275± 0.021 42.71± 0.80% 0.074± 0.014
ELRG-VI K = 4 −0.678± 0.006 76.43± 0.20% 0.013± 0.004 −2.260± 0.007 42.41± 0.18% 0.038± 0.008

SVHN STL10

test LL test acc test ECE test LL test acc test ECE

MAP −0.293± 0.003 91.70± 0.47% 0.019± 0.009 −3.005± 0.325 65.30± 0.93% 0.138± 0.053
MC Dropout −0.361± 0.006 89.70± 0.15% 0.047± 0.003 −1.059± 0.013 63.646± 1.101 0.052± 0.021

MF-VI −0.476± 0.015 87.30± 0.56% 0.094± 0.005 −1.707± 0.085 65.46± 0.52% 0.222± 0.008
ELRG-VI K = 1 −0.312± 0.007 90.66± 0.31% 0.006± 0.001 −1.088± 0.046 59.99± 2.15% 0.018± 0.008
ELRG-VI K = 2 −0.322± 0.014 90.25± 0.46% 0.010± 0.004 −1.145± 0.078 57.53± 3.47% 0.018± 0.002
ELRG-VI K = 3 −0.313± 0.013 90.43± 0.49% 0.008± 0.001 −1.138± 0.014 58.01± 0.60% 0.022± 0.002
ELRG-VI K = 4 −0.342± 0.009 89.63± 0.35% 0.019± 0.002 −1.181± 0.094 56.10± 4.35% 0.020± 0.006

Table 4: Image classification using RESNET18 and ALEXNET architectures.

We observe similar behavior for MC Dropout, in line with [35]. In comparison, ELRG-VI strikes a
balance between confidence on train data, and good generalization to unseen samples.

6 Conclusions

We developed a scalable VI algorithm that learns Gaussian variational posteriors with non-diagonal
covariance matrices by extending the Local Reparametrization Trick. Our algorithm allows us
to lower the variance of ELBO gradients during training and lower the variance of the predictive
distribution at test time. We added off-diagonal components to two MF-VI posteriors, first with a
parametrized component, and second with a constant diagonal component. Although we did not
observe improvements in performance for the former posterior when applied to larger networks, we
observed that adding covariance terms to the latter posterior (ELRG-VI) prevents overfitting and
provides better predictive properties. We demonstrated that ELRG-VI outperforms MF-VI in terms
of predictive performance and scales to modern CNNs.
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Broader Impact

Probabilistic methods have the potential to bring considerable benefits to neural networks and
computer vision [19]. These approaches return to the user multiple hypotheses that are consistent
with the observed data and the user’s modeling assumptions. These hypotheses can be used to carry
out predictions allowing the degree of confidence in predictions to be quantified and broken apart into
aleatoric contributions (e.g. label noise) and epistemic uncertainty (e.g. from lack of data). Real time
modeling of epistemic uncertainty can prevent models from making catastrophic mistakes, which is
crucial for real time decision making systems.

While the approach introduced in this paper is still prone to making misclassification mistakes, the
model tends to output high entropy predictive distributions in this case as compared to deterministic
approaches. It should be noted that the approximate inference techniques studied in this paper
(Variational Inference) assumes that the data distribution is given and cannot automatically detect or
remove biases existing in the data.
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