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1 Data Preparation1

1.1 Graph Construction2

Given a dataset of scholarly publications (e.g., from PubMed), we extract and categorize the terms3

in the documents defined on a set of UMLS [18] and MeSH [1] terms. In this study, we use data4

from the pubmed database of March 2019 and Semantic scholar COVID-19 dataset [2] collected in5

March 2020. Each UMLS term belongs to one of three categories, namely: 1) Genes, 2) Chemicals,6

and 3) Diseases. We construct a network G = {V,E}, where V is the set of nodes corresponding7

to the biomedical terms. The relationship E represents the close co-occurrence of the two terms8

in literature. To be specific, an edge in E connects two nodes if the two corresponding terms are9

mentioned together in the same title, abstract, or paragraph of a paper1.10

Next, we split the obtained network using year windows, thereby, obtaining a sequence of temporal11

graphlets G = {G1, G2, ..., GT }. As defined in the Introduction Section 1 of the main paper, this12

graphlet sequence encapsulates the temporal evolution of node pair relationships. Since the node13

terms belong to several categories (e.g., drugs and diseases), the graph Gt = {V t, Et, xt} is, in fact,14

a dynamic heterogeneous attributed graph, with incremental nodes V 1 ⊆ V 2, ...,⊆ V T and edges15

E1 ⊆ E2, ...,⊆ ET . The node attribute xt is composed of the term description when available, and16

the term contexts, which are the aggregation of sentences encompassing the mention of the terms in17

the documents. We use the texts from the publication titles, abstracts, and full-text paragraphs when18

available. The node attributes vary per time window due to the increase in the number of publications.19

1.2 Positive Samples Construction20

For each time step t, we construct only the node pairs of positive samples, since the negative pairs21

are uncertain. The positive node pairs are identified based on the graph observed at the next time22

step. Denote aij =< vi, vj > a node pair consisting of nodes vi and vj . As shown in Figure 1 of this23

supplementary document, the node pair aij at time step t is assigned a positive class +1 if a connection24

between node vi and vj is observed in graph Gt+1 (i.e., sijt = +1 ⇐⇒ e(vi, vj) ∈ Et+1).25

Otherwise, the node pair aij remains as unlabeled.26

Since we consider the insertion only graphlets sequence, the graph size of the graphlets grows27

proportionally with the increase in time step. Therefore, the use of all possible pairs for training28

becomes more computationally expensive and less feasible in application. In this study for large29

graphs, the notion of a node pair set is defined as a sampled subset of all possible node pairs. This30

sample is drawn uniformly for each time step t.31

1A mention can have a positive or negative connotation. We consider any kind of mention as a relationship,
regardless of positive or negative. We leave the study of edge polarity for future investigation.
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Figure 1: An illustration of the graph sequence G = {G1, G2, ..., GT } with the sequential positive-
unlabeled supervision in A = {A1, A2, ..., AT } (T=4 here). As the graph grows with more nodes
and more connections, At is constructed from the graph Gt+1. One unit at i, j of At is filled by 1 (a
positive relation) if node i and j are connected inGt+1. The unit is filled by a 0 (an unknown relation)
if node i and j are NOT connected in Gt+1. During training, since we do not observe the future, the
node pairs in AT are equivalent to those in AT−1. The difference between them in the colored units
are only observed in testing. In the training process, Gt and At (t = 1...T ) form training samples
of node pairs with positive or unknown labels. When testing, we aim to predict the unobserved pair
relationships (colored tiles), in AT .

2 Neighborhood Aggregation32

The neighborhood aggregation is handled by the aggregator network fG(.; θG). This network uses33

GraphSAGE at its core to aggregate each node’s information in a given node pair aij =< vi, vj > to34

obtain a concise representation for them. For each node v in the pair, the aggregation network takes35

as input the current node feature xtv as well as the neighborhood information, which includes the36

node features of the sampled node neighbors xtNr(v). Given a maximum neighboorhood layer M37

to consider for information aggregation; at each aggregation step m, the representation vectors of38

neighbors {Γm−1
u ,∀u ∈ Nr(v)} at iteration m−1 are aggregated into a single vector Γm

v at iteration39

m. Several aggregation techniques for the neighborhood aggregation are proposed in [14]. At the40

initial aggregation step m = 0, node vector Γ0
v is the input node attribute (i.e., Γ0

v = xtv). After the41

neighborhood aggregation steps, the final representation ztv = ΓM
v . The performance of aggregators42

often depends on the property of the applied graph [14]. We evaluate different aggregators and report43

the best.44

Neighborhood Definition. Following the principle of [14], to keep the computational footprint to45

a minimum, we work on a fix-size sample set of node neighbors instead of the full neighborhood46

nodes. Hence the notion of node neighbors Nr(v) is defined as a fix-size sample of the full node47

neighborhood {u ∈ V : (u, v) ∈ E}. This sample is drawn uniformly at each iteration, thereby48

reducing the time and memory complexity. With the sampling strategy, the memory and time49

complexity per node aggregation step is fixed at O
(∏M

m=1 Sm

)
, where Sm is the neighborhood50

sample size at layer m, and M is the maximum layer considered (i.e., up to M -hop neighbors).51

3 Dataset52

In this project, each dataset contains the title and abstract of papers published in the biomedical fields.53

To evaluate the model’s adaptivity in different scientific domains, we construct three graphs from54

papers on COVID-19, Immunotherapy, and Virology.55

The graph statistics are shown in Table 1 of the main paper. To set up the training and test-56

ing data, we split the graph by a 10-year interval starting from 1949 (i.e., {≤ 1949}, {1950 −57

1959}, . . . , {2010 − 2019}) for the virology and immunotherapy datasets. Due to the nov-58

elty of the COVID-19 virus, we split the graph by a 5-year interval starting from 1995 (i.e.,59

{≤ 1995}, {1995− 2000}, . . . , {2010− 2015}). We use year splits of ≤ 2009 ({G1, G2, ..., G7})60

for training, and the final split 2010− 2019 for testing on the virology and immunotherapy datasets.61
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We use year splits of ≤ 2015 ({G1, G2, ..., G5}) for training, and the final split 2015 − 2020 for62

testing on the COVID-19 datasets.63

At each t, for a given node (a biomedical term), we extract its term description and context (sentences64

encompassing the term in literature). The term description and contexts are respectively converted65

to a 300-dimensional feature vector by applying the latent semantic analysis (LSI) method on the66

document-term matrix features. The missing term and context attributes are completed with zero67

vectors. At each time t, the context features are updated with the new information about them in68

discoveries, and publications.69

4 Experimental Setup70

4.1 Baselines in Experiments71

We use node2vec [13] to learn the graph structure feature and concatenate it with the text attributes to72

obtain an enriched node representation. In our link prediction task, we concatenate the embeddings73

of each node pair together as the final features.74

When conducting the baseline experiments, we reweight the unlabeled examples following the75

instructions from [11] for Elkan’s baseline. As for SAR-EM [5], SCAR-C [5], SCAR-KM2 [23],76

SCAR-TIcE [4], we randomly select 30 features from the embedding features, which are used to77

calculate propensity score. For other hyper-parameters, we follow the same setting as their paper.78

However, due to training SAR-EM model is very time-consuming, and the result is very unstable, we79

limit the expectation-maximization iteration to 10,30,300, and we finally select the best performance80

among them.81

4.2 TRP Model82

In all our experiments, we treat the graph to be undirected and set the hidden dimensions to d = 128.83

For each neural network-based model, we performed a grid search over the learning rate lr =84

{1e−2, 5e−3, 1e−3, 5e−2}, on the Virology and Immunotherapy datasets from 1944 to 1999, and85

from 1950 to 2010 for the COVID-19 dataset. The best parameters per model from the grid search are86

then used in all experiments. The TRP models are trained with a parameter set (d = 128, S1 = 20, and87

S2 = 10), where S1, S2 are the neighborhood sample size for the one-hot and two-hop neighborhood88

aggregation respectively. We implement TRP on Python, using the Tensorflow library. Each GPU89

based experiment was conducted on an Nvidia 1080TI GPU. The code will be publicly available90

upon the acceptance of the work.91

5 Evidence for Supporting the Discovered Pairs92

In this section, we provide evidences supporting the connectivity prediction between COVID-19 and93

the terms in Table 3 of the main paper. Note that the cited reference papers as evidence here were not94

present in our training and testing graphs.95

Anti-bodies – COVID-19. The relationship between antibodies and the COVID-19 is well known,96

and several articles have been published linking the two terms together. The relationship is mainly97

seen in articles about the research and development of vaccines.98

A549 cells – COVID-19. There are several very recent studies on the effects of COVID-19 on the99

A549 cells. Specifically, the capacity of COVID-19 to infect and replicate in A549 cells [15, 6, 8].100

Mycoplasma – COVID-19. Several articles studied the effects of coinfection of Mycoplasma and101

COVID-19 and their correlation [19, 12].102

White matter – COVID-19. White matter is the parts of the brain that connect brain cells to each103

other. Brun et al. [7] studied and analyzed the effects of the COVID-19 virus on the neurological104

functions of the brain.105

Zinc – COVID-19. The effect of zinc on common colds, mostly caused by rhinoviruses, has been106

studied. Although the novel coronavirus that causes COVID-19 is not the same type of coronavirus107

that causes common colds, several studies [9, 16] have been made on the effect of zinc supplements108

on COVID-19 virus.109

3



Tobacco – COVID-19. Some researchers have studied and analyzed the effect of tobacco usage with110

COVID-19 [3, 24]. Another research is the Cotiana Project [20], which studies the potential use of111

tobacco for vaccine production.112

Macrophages – COVID-19. Macrophages are a population of innate immune cells that sense113

and respond to microbial threats by producing inflammatory molecules that eliminate pathogens114

and promote tissue repair [17]. Several recent studies have shown the effects of Macrophages on115

COVID-19 [22, 17].116

Adaptive immunity – COVID-19. Adaptive immunity is an immunity that occurs after exposure to117

an antigen either from a pathogen or a vaccination. Several works have studied the availability and118

duration of adaptive immunity after a patient has been exposed to the COVID-19 virus [21, 10].119
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