
A Spatial Conditioning Without Bubble Artifacts

Let us begin by recalling how SPADE works, and study where its defects come from. SPADE is
based on the utilization of Spatially Adaptive Normalization (SPADE) layers, which given an input
h 2 RN⇥C⇥H⇥W and spatial conditioning ‘style’ ss, sb 2 R1⇥C⇥H⇥W

SPADE(h, s) = ss �
h� µD(h)

�D(h)
+ sb (3)

where � means pointwise multiplication and µD(h),�D(h) 2 R1⇥C⇥1⇥1 are per-channel statistics
of h:

µD(h)c :=
1

NHW

NX

n=1

HX

i=1

WX

j=1

hn,c,i,j (4)

�D(h)
2
c
:=

1

NHW

NX

n=1

HX

i=1

WX

j=1

(hn,c,i,j � µD(h)c)
2 (5)

These statistics are calculated via averages over examples and all spatial dimensions. To clarify,
the subtraction and division in (3) are broadcasted on non-channel dimensions, and the pointwise
multiplication and addition are broadcasted over examples.

SPADE layers are remarkably similar to the Adaptive Instance Normalization (AdaIN) layers that
are used in StyleGAN to condition on z. In StyleGAN, the authors have z ⇠ Pz , and first obtain
s = (ss, sb) = F (z) with ss, sb 2 R1⇥C⇥1⇥1 and F is a learned transformation from the noise
vector z. Finally, the conditioning of the generator’s output y = g(z) (StyleGAN is an unconditional
generative model) is done via AdaIN layers conditioned on s(z). AdaIN layers are defined as

AdaIN(h, s) = ss
h� µ(h)

�(h)
+ sb (6)

An important difference is that µ(h),�(h) 2 RN⇥C⇥1⇥1 are not averaged over the data

µ(h)n,c :=
1

HW

HX

i=1

WX

j=1

hn,c,i,j (7)

�(h)2
n,c

:=
1

HW

HX

i=1

WX

j=1

(hn,c,i,j � µ(h)n,c)
2 (8)

and hence AdaIN is applied independently across examples.

AdaIN (6) and SPADE (3) are incredibly similar, with the only differences being the spatial con-
ditioning and that SPADE averages over datapoints while AdaIN does not. As mentioned in [18],
AdaIN is prominent to have droplet-like artifacts. In Figure 4, we can see that SPADE has these
droplet artifacts as well. The solution presented in [18] was to take out the mean normalization,
and replace the statistics µ(h),�(h) with expected statistics, assuming h are independent random
variables with expectation 0 and standard deviation 1. When merging scaling conditioning with
s = F (z) 2 R1⇥C⇥1⇥1, convolution with a weight vector w, and subsequent normalization, they
arrive to the layer

ModulatedConvw(h, s) =
w ⇤ (sh)
�E(w, s)

(9)

where �E(w, s) 2 R1⇥C⇥1⇥1 is the expected standard deviation of w ⇤ (sh) assuming h are
independent variables with zero mean and unit variance

�E(w, s)
2
c0 = Eh

2

4 1

HW

HX

i=1

WX

j=1

⇣
(w ⇤ (sh))

c0,i,j � Eh

h
(w ⇤ (sh))

c0,i,j

i⌘2
3

5 (10)

=
HX

i=1

WX

j=1

CX

c=1

w
2
c0,c,i,js

2
c

(11)

13



In the same way, we can derive a spatially modulated conv by merging spatial conditioning with
s 2 R1⇥C⇥H⇥W , convolution with a weight vector w, and subsequent normalization based on
expected statistics. Thus, we arrive to our Spatially Modulated Convolution layer

SpatiallyModulatedConv
w
(h, s) =

w ⇤ (s� h)

�E(w, s)

and in this case we have �E(w, s) 2 R1⇥C⇥1⇥1 is the expected standard deviation of w ⇤ (s� h),
which after some algebraic manipulations we can see equates

�E(w, s)
2
c0 = Eh

2

4 1

HW

HX

i=1

WX

j=1

⇣
(w ⇤ (s� h))

c0,i,j � Eh

h
(w ⇤ (s� h))

c0,i,j

i⌘2
3

5 (12)

=
1

HW

HX

i=1

WX

j=1

0

@
HX

i0=1

WX

j0=1

CX

c=1

w
2
c0,c,i0,j0s

2
c,i+i0,j+j0

1

A (13)

=
1

HW

HX

i=1

WX

j=1

�
w

2 ⇤ s2
�
c0,i,j

(14)

where the squares in (14) are taken element-wise.

This new normalization layer has similarities and fundamental differences with that of StyleGAN2
[18]. An important difference between our spatially modulated convolution (1) and the modulated
convolution of StyleGAN2 (9) is that (1) cannot be expressed as a convolution w̃ ⇤ h with a new set
of weights. While one can rewrite (9) as

⇣
sw

�E(w,s)

⌘
⇤ h, one cannot do the same thing with equation

(1). This is due to the fact that one cannot commute the pointwise multiplication of (1) with the
convolution. In essence, this means that when conditioning on spatial inputs, modulating the inputs is
inherently different to modulating the weights, while in the non-spatial case these are equivalent.

B Negative Results

B.1 Low Distortion Path Length Regularization

We identified one potential problem with the path length regularization technique introduced in [18].
Path length regularization drives the generator so that the Jacobian-vector product @g(z,y)

@z

T

y has
constant norm for all directions y 2 Y and all z. In particular, this regularization term encourages all
parts of z to affect all parts of y with equal strength, which directly contradicts the fact that we want
za to minimally affect blocks yb with a 6= b. Therefore, we want to adapt the regularization technique
so that @g(z,y)a

@za

T

ya has large and constant norm for all z, ya, and @g(z,y)b
@za

T

yb has small and constant
norm for all z, yb. We tried to achieve this by replacing the path length regularization with

Ez,y⇠N(0,I)

2

4
X

a

 
k@g(z, y)a

@za

T

yak2 � �+

!2

+
X

b 6=a

 
k@g(z, y)b

@za

T

ybk2 � ��

!2
3

5 (15)

where �+ >> ��. Note that if one had �+ = �� then this would be exactly the path length regular-
ization of [18]. Taking �+ >> �� allows us to keep the stability properties of this regularization, but
driving g so that za minimally affects yb.

Despite the rationale behind this idea, we could not find settings where we noticed a decrease
in distortion that was not accompanied by a drastic decrease in quality. In particular, we could
not observe any noticeable benefit by replacing the path length regularization term of [18] with
(15). We experimented with �+ = 1, �� = 0.1, and regularization weights for (15) to one of
{200000, 20000, 2000, 200, 20, 2} without a perceived increase of quality for any given distortion
value.

C Supplemental Figures

14



Figure 5: Pareto curve visualizing the trade-off between quality (measured by FID) and distortion for
SSNs trained in FFHQ at 256 x 256 resolution. Based on these results we chose to use �D = 100
for the qualitative experiments since it incurred a negligible loss in FID while drastically decreasing
distortion.

15



Figure 6: Generations of our SSN model and corresponding resamplings. The model was trained on
256 x 256 LSUN churches. The latent code has dimension z 2 R4⇥4⇥512 and the new images were
obtained by resampling the latent blocks z(1,1) and z(1,2). We can see that the new images change
mostly locally, with elements like towers appearing or disappearing, or trees changing. However,
some minor changes are present in other parts of the image in order to keep global consistency,
something that inpainting would not be able to do. The quality is comparable to that of StyleGAN2
[18].

16



Figure 7: Generations of our SSN model and corresponding resamplings. The model was trained on
256 x 256 FFHQ. The latent code has dimension z 2 R4⇥4⇥512 and the new images were obtained
by resampling the latent blocks z(1,1) and z(1,2). We can see that the new images change mostly
locally, with changes corresponding to the hair, eye color, expressions, glasses, and other semantic
elements. Some minor changes are present in non-resampled parts of the image in order to keep
global consistency, something that inpainting would not be able to do. The quality is comparable to
that of StyleGAN2 [18].

17



Figure 8: We include additional experiments to highlight two things: The distinction between
inpainting and potential advantages in certain situations, and the workings of SSNs with new block
resolutions. In these experiments, we switch from 4⇥ 4 blocks to 8⇥ 8 blocks to showcase a more
granular resampling. We resample the blocks constituting to the left eye in a picture three times (zoom
to view well). The left image for each pair of images is the original generated image and the right
is after resampling. All resamplings occur at the same location. The left-most, single image shows
the underlying latent code dimension z 2 R8⇥8⇥512 overlayed onto the original generated image,
with the blocks to be resampled highlighted in red. In A we obtain a local resampling: the left eye
region is more lit and less shadowy. This is a typical desired case of LDBR. In B, we see change that
spans outside the resampled region with glasses appearing across the face. This resampling adheres
semantically since it would be out of distribution to have glasses appear only on one half of the face.
In C we receive little to no change, which is also in distribution but arguably not the desired use
case. The distinction between LDBR and inpainting is very clear in case B. Inpainting by definition
is not allowed to make changes to the area specified as conditioning, which includes the right eye.
However, for SSNs, the other eye can be changed with added glasses. This example highlights the
intrinsic trade-off between having a faithful (and diverse) resampling of the data distribution and low
distortion.

18


	Introduction
	Low Distortion Block-Resampling
	Spatially Stochastic Networks
	Spatial Conditioning Revisited
	Leveraging Unsupervised Techniques
	Low Distortion Regularization
	Transfer Learning For High Resolution Experiments

	Experiments
	Qualitative Experiments

	Related Work
	Conclusions and Future Work
	Broader Impact
	Spatial Conditioning Without Bubble Artifacts
	Negative Results
	Low Distortion Path Length Regularization

	Supplemental Figures

