A Proofs of results in Section 3

A. 1 Proof of Theorem 1

Here, we present the full proof of Theorem 1, with the precise bound spelled out. To present the theorem, recall the definition of $\tilde{\mathfrak{R}}_{U, m}(\mathcal{H})$ in (5): let m, n be two positive integers, and let $U=\left(z_{1}, z_{2}, \ldots, z_{m+n}\right) \in \mathcal{Z}^{m+n}$ be a sample set. Then we define a notion of Rademacher complexity $\tilde{\mathfrak{R}}_{U, m}(\mathcal{H})$ as follows: if $\boldsymbol{\sigma}$ is a vector of $(m+n)$ independent random variables taking value $\frac{m+n}{n}$ with probability $\frac{n}{m+n}$ and value $-\frac{m+n}{m}$ with probability $\frac{m}{m+n}$, then

$$
\tilde{\mathfrak{R}}_{U, m}(\mathcal{H}):=\frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left|\sum_{i=1}^{m+n} \sigma_{i} L\left(h, z_{i}\right)\right|\right]
$$

Furthermore, define $\tilde{\mathfrak{R}}_{m, n}=\mathbb{E}_{U}\left[\tilde{\mathfrak{R}}_{U, m}(\mathcal{H})\right]$.
The bound of Theorem 1 as stated in Section 3 is for the special case $m=n$, and is stated in terms of the standard Rademacher complexity $\mathfrak{R}_{2 m}(\mathcal{H})$. This follows from the following bound:
Lemma 8. If $m=n$, then $\tilde{\mathfrak{R}}_{U, m}(\mathcal{H}) \leq 4 \mathfrak{R}_{U}(\mathcal{H})$.
Proof. Since $m=n, \boldsymbol{\sigma}$ is a vector of $2 m$ variables taking values in $\{-2,2\}$ uniformly at random.

$$
\begin{aligned}
\tilde{\mathfrak{R}}_{U, m}(\mathcal{H}) & =\frac{1}{2 m} \underset{\sigma}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left|\sum_{i=1}^{2 m} \sigma_{i} L\left(h, z_{i}\right)\right|\right] \\
& =\frac{1}{2 m} \underset{\sigma}{\mathbb{E}}\left[\sup _{\substack{h \in \mathcal{H} \\
s \in\{-1,+1\}}} s \sum_{i=1}^{2 m} \sigma_{i} L\left(h, z_{i}\right)\right] \\
& \leq \frac{1}{2 m} \underset{\sigma}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{2 m} \sigma_{i} L\left(h, z_{i}\right)\right]+\frac{1}{2 m} \underset{\sigma}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{2 m}-\sigma_{i} L\left(h, z_{i}\right)\right] \\
& =4 \mathfrak{R}_{U}(\mathcal{H}) .
\end{aligned}
$$

Theorem 1. Let $P_{S} \in \Delta(\mathcal{H})$ be a prior over \mathcal{H} determined by the choice of $S \in \mathcal{Z}^{m}$, and let n be a positive integer. Then, for any $\delta>0$, with probability at least $1-\delta$ over the draw of the sample $S \sim D^{m}$, the following inequality holds for all $Q \in \Delta(\mathcal{H})$, if $D:=\max \left\{\mathrm{D}\left(Q \| P_{S}\right), 2\right\}$,

$$
\begin{align*}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] & \leq \underset{\substack{h \sim Q \\
z \sim S}}{\mathbb{E}}[L(h, z)]+\inf _{\alpha \geq 0} \sqrt{2\left(2 D+\alpha+\log \mathcal{N}\left(\alpha, m, n, \mathrm{D}_{\infty}\right)\right)\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n} \tag{10}\\
& +3 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right) \log \left(\frac{4 D}{\delta}\right)}+2 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n \log \left(\frac{8 e D}{\delta}\right)} .
\end{align*}
$$

Similarly, for any $\delta>0$, with probability at least $1-\delta$ over the draw of the sample $S \sim \mathcal{D}^{m}$, the following inequality holds for all $Q \in \Delta(\mathcal{H})$:

$$
\begin{align*}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] & \leq \underset{\substack{h \sim Q \\
z \sim S}}{\mathbb{E}}[L(h, z)]+\inf _{\alpha \geq 0} 2(2 \sqrt{D}+\alpha) \tilde{\mathfrak{R}}_{m, n}(\mathcal{H})+\sqrt{2 \log \left(\mathcal{N}\left(\alpha, m, n, \ell_{1}\right)\right)\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n} \\
& +3 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right) \log \left(\frac{4 D}{\delta}\right)}+2 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n \log \left(\frac{8 e D}{\delta}\right)} . \tag{11}
\end{align*}
$$

Proof. Fix $\mu>0$ and define the sample-dependent hypothesis set as

$$
Q_{S, \mu}=\left\{Q \in \Delta(\mathcal{H}): \mathrm{D}\left(Q \| P_{S}\right) \leq \mu\right\},
$$

where $\Delta(\mathcal{H})$ is the family of all distributions defined over \mathcal{H}. We define the loss of $Q \in \Delta(\mathcal{H})$ over the labeled sample $z=(x, y) \in \mathcal{Z}$ as $\ell(Q, z)=\left\langle Q, L_{z}\right\rangle$. Thus, the expected loss of Q is

$$
\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(Q, z)]=\underset{\substack{h \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] .
$$

We also define the sample-indexed family of sample-dependent hypothesis sets $\mathcal{Q}_{m, \mu}=\left(\mathbb{Q}_{S, \mu}\right)_{S \in \mathcal{Z}^{m}}$ and the U-restricted union of sample-dependent hypothesis sets $\bar{Q}_{U, m, \mu}=\bigcup_{\substack{ \\S \subseteq U}} \mathcal{Z}_{S, \mu}$.
In view of that, by Theorem 2 , for any $\delta>0$, with probability $1-\delta$ over the draw of a sample $S \sim \mathcal{D}^{m}$, the following holds for any $Q \in \mathcal{H}_{S, \mu}$:
$\underset{\substack{\sim \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{\substack{h \sim Q \\ z \sim S}}{\mathbb{E}}[L(h, z)]+2 \max _{U \in \mathcal{Z}^{m+n}} \widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right)+3 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right) \log \left(\frac{2}{\delta}\right)}+2 \sqrt{\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n}$,
where $\mathfrak{R}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right)$ is defined for any $U=\left(z_{1}, \ldots, z_{m+n}\right) \in Z^{m+n}$ as follows: if $\boldsymbol{\sigma}$ is a vector of $(m+n)$ independent random variables taking value $\frac{m+n}{n}$ with probability $\frac{n}{m+n}$ and value $-\frac{m+n}{m}$ with probability $\frac{m}{m+n}$, then

$$
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right)=\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \bar{\Omega}_{U, m, \mu}} \frac{1}{m+n} \sum_{i=1}^{m+n} \sigma_{i}\left\langle Q, L_{z_{i}}\right\rangle\right]
$$

Via covering number arguments for D_{∞} (Lemma 1) and ℓ_{1} (Lemma 2) we derive bounds on $\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right)$. The bounds in the theorem then follow by applying Lemma 3.

A. 2 Proof of Lemma 1

Lemma 1. For any $\alpha \geq 0$, we have

$$
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \sqrt{\left(\frac{\mu+\alpha+\log \mathcal{N}\left(\alpha, U, \mathrm{D}_{\infty}\right)}{2}\right)\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n}
$$

Proof. Let C be a covering for U under D_{∞} at scale α of size $\mathcal{N}\left(\alpha, U, \mathrm{D}_{\infty}\right)$. Define $\mathcal{G}_{U, m, \mu+\alpha}$ as

$$
\mathcal{G}_{U, m, \mu+\alpha}:=\{Q \in \Delta(\mathcal{H}): \exists P \in C \text { s.t. } \mathrm{D}(Q \| P) \leq \mu+\alpha\} .
$$

Now, let $Q \in \overline{\mathcal{H}}_{U, m, \mu}$. Then there exists a some subset S of U of size m, such that $\mathrm{D}\left(Q \| P_{S}\right) \leq \mu$. Since C is a covering for U under D_{∞} at scale α, there exists a distribution $P^{\prime} \in C$ such that $\mathrm{D}_{\infty}\left(P \| P^{\prime}\right) \leq \alpha$. We have $\mathrm{D}\left(Q \| P^{\prime}\right) \leq \mathrm{D}(Q \| P)+\mathrm{D}_{\infty}\left(P \| P^{\prime}\right) \leq \mu+\alpha$. Thus, $Q \in \mathcal{G}_{U, m, \mu+\alpha}$. This implies that $\overline{\mathcal{H}}_{U, m, \mu} \subseteq \mathcal{G}_{U, m, \mu+\alpha}$.

In the following derivation, we will use the shorthand $u_{\boldsymbol{\sigma}}(h)=\sum_{i=1}^{m+n} \sigma_{i} L\left(h, z_{i}\right)$, so that $\sum_{i=1}^{m+n} \sigma_{i}\left\langle Q, L_{z_{i}}\right\rangle=\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle$. For any $P \in C$ and $Q \in \Delta(\mathcal{H})$, define $\Psi_{P}(Q)$ by $\Psi_{S}(Q)=\mathrm{D}\left(Q \| P_{S}\right)$ if $\mathrm{D}\left(Q \| P_{S}\right) \leq \mu+\alpha$ and $+\infty$ otherwise. It is known that the conjugate function Ψ_{P}^{*} of Ψ_{P} is given by $\Psi_{P}^{*}(u)=\log \left(\mathbb{E}_{h \in P}\left[e^{u(h)}\right]\right)$, for all $u \in \mathbb{R}^{\mathcal{H}}$ (see for example [Mohri et al., 2018, Lemma B.37]). We now upper bound the transductive Rademacher complexity term as follows:

$$
\begin{aligned}
& \widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right)=\frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \overline{\mathcal{H}}_{U, m, \mu}}\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& \leq \frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \mathcal{S}_{U, m, \mu+\alpha}}\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& =\frac{1}{(m+n) t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \mathcal{G}_{U, m, \mu+\alpha}}\left\langle Q, t u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& =\frac{1}{(m+n) t} \underset{\sigma}{\mathbb{E}}\left[\sup _{P \in C} \sup _{Q: \mathrm{D}(Q \| P) \leq \mu+\alpha}\left\langle Q, t u_{\boldsymbol{\sigma}}\right\rangle\right] \quad \quad \text { (iterated sup) } \\
& \leq \frac{1}{(m+n) t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C} \sup _{Q: \mathrm{D}(Q \| P) \leq \mu+\alpha}\left[\Psi_{P}(Q)+\Psi_{P}^{*}\left(t u_{\boldsymbol{\sigma}}\right)\right]\right] \quad \text { (Fenchel inequality) }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{(m+n) t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\left[\mu+\alpha+\Psi_{S}^{*}\left(t u_{\boldsymbol{\sigma}}\right)\right]\right] \\
& =\frac{\mu+\alpha}{(m+n) t}+\frac{1}{(m+n) t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C} \Psi_{P}^{*}\left(t u_{\boldsymbol{\sigma}}\right)\right] \\
& =\frac{\mu+\alpha}{(m+n) t}+\frac{1}{(m+n) t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C} \log \left(\underset{h \sim P}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right] \quad \text { (definition of } \Psi_{P}(Q) \text {) } \quad \text { (distribute) }
\end{aligned}
$$

We now upper bound $\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{P \in C} \log \left(\mathbb{E}_{h \sim P}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right]$ as follows:

$$
\begin{aligned}
& \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C} \log \left(\underset{h \sim P}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right]=\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\log \left(\sup _{P \in C} \underset{h \sim P}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right] \\
& \leq \log \left[\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left(\sup _{P \in C} \underset{h \sim P}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right] \\
& \leq \log \left[\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left(\sum_{P \in C} \underset{h \sim P}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right] \\
& =\log \left[\sum_{P \in C} \underset{h \sim P}{\mathbb{E}} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right] \quad \text { (lin. of expectation; } h, \boldsymbol{\sigma} \text { indep.) } \\
& =\log \left[\sum_{P \in C} \underset{h \sim P}{\mathbb{E}} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[e^{t \sum_{i=1}^{m+n} \sigma_{i} L\left(h, z_{i}^{U}\right)}\right]\right] \\
& =\log \left[\sum_{P \in C} \underset{h \sim P}{\mathbb{E}}\left[\prod_{i=1}^{m+n} \underset{\sigma_{i}}{\mathbb{E}} e^{t \sigma_{i} L\left(h, z_{i}^{U}\right)}\right]\right] \quad \text { (indep. entries of } \boldsymbol{\sigma} \text {) } \\
& \leq \log \left[\sum_{P \in C} \underset{h \sim P}{\mathbb{E}}\left[e^{\frac{t^{2}(m+n)^{5}}{8(m n)^{2}}}\right]\right] \quad \text { (Hoeffding's lemma) } \\
& =\log \left[\sum_{P \in C} e^{\frac{t^{2}(m+n)^{5}}{8(m n)^{2}}}\right] \\
& =\log \left[|C| \cdot e^{\frac{t^{2}(m+n)^{5}}{8(m n)^{2}}}\right] \\
& =\log |C|+\frac{t^{2}(m+n)^{5}}{8(m n)^{2}} . \\
& \text { (log is mon. incr.) } \\
& \text { (Jensen's inequality) } \\
& \text { (nonnegative terms) } \\
& \text { (def. of } u_{\boldsymbol{\sigma}}(h) \text {) } \\
& \text { (no dep. on } h \text {) } \\
& \text { (all terms equal) }
\end{aligned}
$$

Plugging this back in, we get:

$$
\begin{aligned}
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) & \leq \frac{\mu+\alpha}{(m+n) t}+\frac{1}{(m+n) t}\left[\log |C|+\frac{t^{2}(m+n)^{5}}{8(m n)^{2}}\right] \\
& =\frac{\mu+\alpha+\log |C|}{(m+n) t}+\frac{t(m+n)^{4}}{8(m n)^{2}} .
\end{aligned}
$$

We find that $t=\sqrt{\frac{8(m n)^{2}(\mu+\alpha+\log |C|)}{(m+n)^{5}}}$ minimizes the bound.
Plugging this optimal t back in, we obtain:

$$
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \sqrt{\frac{(\mu+\alpha+\log |C|)(m+n)^{3}}{2(m n)^{2}}}=\sqrt{\left(\frac{\mu+\alpha+\log |C|}{2}\right)\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n} .
$$

A. 3 Proof of Lemma 2

Lemma 2. For any $\alpha \geq 0$, we have

$$
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq(\sqrt{2 \mu}+\alpha) \tilde{\mathfrak{R}}_{U, m}(\mathcal{H})+\sqrt{\frac{\log \mathcal{N}\left(\alpha, U, \ell_{1}\right)}{2}\left(\frac{1}{m}+\frac{1}{n}\right)^{3} m n}
$$

Proof. Let C be a covering for U under ℓ_{1} at scale α of size $\mathcal{N}\left(\alpha, U, \ell_{1}\right)$. Let $\mathcal{G}_{U, m, \sqrt{2 \mu}+\alpha}$ be the union of all the ℓ_{1} balls of radius $\sqrt{2 \mu}+\alpha$ around distributions in C, i.e.

$$
\mathcal{G}_{U, m, \sqrt{2 \mu}}=\left\{Q \in \Delta(\mathcal{H}): \exists P \in C \text { s.t. }\|Q-P\|_{1} \leq \sqrt{2 \mu}+\alpha\right\} .
$$

Now, let $Q \in \overline{\mathcal{H}}_{U, m, \mu}$. By Pinsker's inequality, for some subset S of U of size m, we have $\left\|Q-P_{S}\right\|_{1} \leq$ $\sqrt{2 \mu}$. Since C is a covering for U under ℓ_{1} at scale α, there exists a distribution $P \in C$ such that $\left\|P_{S}-P\right\|_{1} \leq \alpha$. This implies that $\|Q-P\|_{1} \leq \sqrt{2 \mu}+\alpha$, so $Q \in \mathcal{G}_{U, m, \sqrt{2 \mu}+\alpha}$. Hence $\overline{\mathcal{H}}_{U, m, \mu} \subseteq$ $\mathcal{G}_{U, m, \sqrt{2 \mu}+\alpha}$. In the following derivation, we will use the shorthand $u_{\boldsymbol{\sigma}}(h)=\sum_{i=1}^{m+n} \sigma_{i} L\left(h, z_{i}\right)$, so that $\sum_{i=1}^{m+n} \sigma_{i}\left\langle Q, L_{z_{i}}\right\rangle=\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle$. We can now proceed the bound the Rademacher complexity as follows:

$$
\begin{aligned}
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) & =\frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \overline{\mathcal{H}}_{U, m, \mu}}\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& \leq \frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{Q \in \mathcal{G}_{U, m, \sqrt{2 \mu}+\alpha}}\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& \leq \frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\left\langle P, u_{\boldsymbol{\sigma}}\right\rangle\right]+(\sqrt{2 \mu}+\alpha) \tilde{\mathfrak{R}}_{U, m}(\mathcal{H})
\end{aligned}
$$

The last inequality follows since for any $Q \in \mathcal{G}_{U, m, \sqrt{2 \mu}+\alpha}$ there exists a distribution $P \in C$ such that $\|Q-P\|_{1} \leq \sqrt{2 \mu}+\alpha$, and so we have

$$
\underset{\sigma}{\mathbb{E}}\left[\left|\left\langle Q-P, u_{\boldsymbol{\sigma}}\right\rangle\right|\right] \leq \underset{\sigma}{\mathbb{E}}\left[\|Q-P\|_{1}\left\|u_{\boldsymbol{\sigma}}\right\|_{\infty}\right] \leq(\sqrt{2 \mu}+\alpha) \underset{\sigma}{\mathbb{E}}\left[\left\|u_{\boldsymbol{\sigma}}\right\|_{\infty}\right]=(\sqrt{2 \mu}+\alpha)(m+n) \tilde{\mathfrak{R}}_{U, m}(\mathcal{H})
$$

Now, define $v: \Delta(\mathcal{H}) \rightarrow[0,1]^{m+n}$ as $v(P)_{i}=\mathbb{E}_{h \sim P}\left[L\left(h, z_{i}\right)\right]$. Note that $\left\langle P, u_{\boldsymbol{\sigma}}\right\rangle=\langle\boldsymbol{\sigma}, v(P)\rangle$, and so

$$
\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\left\langle P, u_{\boldsymbol{\sigma}}\right\rangle\right]=\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\langle\boldsymbol{\sigma}, v(P)\rangle\right]
$$

We can now bound $\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{P \in C}\langle\boldsymbol{\sigma}, v(P)\rangle\right]$ by a version of Massart's lemma which applies to nonRademacher (but still zero mean) random variables σ, as follows: let $t>0$ to be chosen momentarily. We have

$$
\begin{array}{rlr}
\exp \left(t \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\langle\boldsymbol{\sigma}, v(P)\rangle\right]\right) & \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\exp \left(t \sup _{P \in C}\langle\boldsymbol{\sigma}, v(P)\rangle\right)\right] \\
& \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sum_{P \in C} \exp (\langle\boldsymbol{\sigma}, t v(P)\rangle)\right] \\
& =\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sum_{P \in C} \prod_{i=1}^{m} \exp \left(t v(P)_{i} \sigma_{i}\right)\right] \\
& =\sum_{P \in C} \prod_{i=1}^{m+n} \underset{\sigma_{i}}{\mathbb{E}}\left[\exp \left(t v(P)_{i} \sigma_{i}\right)\right] \\
& \leq|C| \exp \left(\frac{t^{2}(m+n)^{5}}{8(m n)^{2}}\right) & \text { (Hoensen's inequality) }
\end{array}
$$

Thus,

$$
\begin{aligned}
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) & \leq \frac{1}{m+n} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{P \in C}\langle\boldsymbol{\sigma}, v(P)\rangle\right]+(\sqrt{2 \mu}+\alpha) \tilde{\mathfrak{R}}_{U, m}(\mathcal{H}) \\
& \leq \frac{\log |C|}{t(m+n)}+\frac{t(m+n)^{4}}{8(m n)^{2}}+2(\sqrt{2 \mu}+\alpha) \tilde{R}_{U, m}(\mathcal{H}) .
\end{aligned}
$$

Setting $t=\sqrt{\frac{8(m n)^{2}(\log |C|)}{(m+n)^{5}}}$ to minimize the bound, we obtain:

$$
\widehat{\mathfrak{R}}_{U, m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \sqrt{\frac{(m+n)^{3} \log |C|}{2(m n)^{2}}}+(\sqrt{2 \mu}+\alpha) \tilde{\mathfrak{R}}_{U, m}(\mathcal{H})
$$

A. 4 Proof of Lemma 3

Lemma 3. Suppose the following bound holds with probability at least $1-\delta$ over the choice of S : for all $Q \in \mathcal{Q}_{S, \mu}$,

$$
\underset{\substack{h \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{\substack{h \sim Q \\ z \sim S}}{\mathbb{E}}[L(h, z)]+f(\mu)+g(\delta),
$$

where f is an increasing function of μ and g is a decreasing function of δ. Then, the following holds with probability at least $1-\delta$ for all $Q \in \Delta(\mathcal{H})$:

$$
\underset{\substack{h \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{\substack{h \sim Q \\ z \sim S}}{\mathbb{E}}[L(h, z)]+f\left(2 \max \left\{D\left(Q \| P_{S}\right), 2\right\}\right)+g\left(\frac{\delta}{\max \left\{D\left(Q \| P_{S}\right), 2\right\}}\right) .
$$

Proof. The proof follows [Kakade et al., 2008][Corollary 8]. First, define the sequences $\left(\mu_{j}\right)_{j=0}^{\infty}$ and $\left(\delta_{j}\right)_{j=0}^{\infty}$. Let $a=4, \mu_{j}:=a 2^{j}$ and $\delta_{j}:=2^{-(j+1)} \delta$, so that $\sum_{j=0}^{\infty} \delta_{j}=\delta$.
By the union bound, we thus have that with probability at least $1-\delta$ over the draw of a sample $S \sim \mathcal{D}^{m}$, for all $Q \in \Delta(\mathcal{H})$:

$$
\begin{equation*}
\underset{\substack{h \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{\substack{h \sim Q \\ z \sim S}}{\mathbb{E}}[L(h, z)]+f\left(\mu_{j}\right)+g\left(\delta_{j}\right) \tag{12}
\end{equation*}
$$

where μ_{j} is the smallest element of $\left(\mu_{j}\right)_{j=0}^{\infty}$ such that $D\left(Q \| P_{S}\right) \leq \mu_{j}$ (i.e., since we have a sequence of bounds holding for increasing values of μ_{j}, we choose the tightest applicable bound for each Q).
We now plug in the values of μ_{j}, δ_{j} :

$$
\begin{equation*}
\underset{\substack{h \sim Q \\ z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{\substack{h \sim Q \\ z \sim S}}{\mathbb{E}}[L(h, z)]+f\left(a 2^{j}\right)+g\left(2^{-(j+1)} \delta\right) \tag{13}
\end{equation*}
$$

and try to upper bound the RHS in terms of $D\left(Q \| P_{S}\right)$, eliminating any appearances of j (i.e., we want a single bound that captures the sequence of bounds).

Upper bound μ_{j} : By the assumption that μ_{j} is the smallest element of $\left(\mu_{j}\right)_{j=0}^{\infty}$ such that $D\left(Q \| P_{S}\right) \leq$ μ_{j}, we necessarily have $D\left(Q \| P_{S}\right)>\mu_{j-1}$ for $j \geq 1$. (For $j=0$, this simply yields $D\left(Q \| P_{S}\right) \geq 0$, which will not help, so we need to handle $j=0$ separately.)
For $j \geq 1$, we thus have $D\left(Q \| P_{S}\right)>\mu_{j-1}=a 2^{j-1}$, so $2 D\left(Q \| P_{S}\right)>a 2^{j}$.
For $j=0, a 2^{j}=a$.
This yields:

$$
a 2^{j} \leq \max \left\{2 D\left(Q \| P_{S}\right), a\right\}=2 \max \left\{D\left(Q \| P_{S}\right), 2\right\}
$$

Lower bound δ_{j} : Since $\delta_{j}=2^{-(j+1)} \delta$, we use the same assumption as above to obtain $4 D\left(Q \| P_{S}\right)>$ $a 2^{j+1}$ and then use the definition of δ_{j} to obtain the lower bound: $\delta_{j}>\frac{a \delta}{4 D\left(Q \| P_{S}\right)}$ for $j \geq 1$. For $j=0$, we simply have $\delta_{j}=\delta / 2$ by definition. This yields:

$$
\delta_{j} \geq \min \left\{\frac{a \delta}{4 D\left(Q \| P_{S}\right)}, \delta / 2\right\}=\frac{\delta}{\max \left\{D\left(Q \| P_{S}\right), 2\right\}}
$$

The stated bound follows from the monotonicities of f and g.

B Proofs of results in Section 4

B. 1 Proof of Theorem 3

We prove Theorem 3, with the exact bound explicitly spelled out:
Theorem 3. Suppose $\mathcal{Q}_{m}=\left(Q_{S}\right)_{S \in \mathcal{Z}^{m}}$ is β-uniformly stable. Then, for any $\delta>0$, with probably at least $1-\delta$ over the draw of the sample $S \sim \mathcal{D}^{m}$, the following holds for all $Q \in \mathcal{Q}_{S}$:

$$
\begin{aligned}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq & \underset{h \sim Q}{\mathbb{E}}\left[\frac{1}{m} \sum_{i=1}^{m} L\left(h, z_{i}\right)\right] \\
& +2 \mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m}\right)+\left(2 \beta\left(2 \mathfrak{R}_{m}(\mathcal{H})+\sqrt{\frac{\log \left(4 m^{1.5} / \delta\right)}{2 m}}\right)+\frac{1}{m}\right) \sqrt{8 m \log \left(\frac{4}{\delta}\right)}
\end{aligned}
$$

Proof. The proof is along the lines of the proof of Theorem 2 in [Foster et al., 2019] with a tighter analysis coming from the special structure in our setting. Specifically, for two samples $S, S^{\prime} \in Z^{m}$, define the function $\Psi\left(S, S^{\prime}\right)$ as follows:

$$
\Psi\left(S, S^{\prime}\right)=\sup _{Q \in \mathfrak{Q}_{S}}\langle Q, \ell\rangle-\left\langle Q, \hat{\ell}_{S^{\prime}}\right\rangle
$$

where $\ell, \hat{\ell}_{S^{\prime}} \in \mathfrak{R}^{\mathcal{H}}$ defined as $\ell(h)=\mathbb{E}_{z \sim \mathcal{D}}[L(h, z)]$ and $\hat{\ell}_{S^{\prime}}(h)=\mathbb{E}_{z \sim S^{\prime}}[L(h, z)]$, where $z \sim S^{\prime}$ indicates uniform sampling from S^{\prime}. The proof of the bound consists of applying McDiarmid's inequality to $\Psi(S, S)$. To do this, we need to analyze the sensitivity of this function, i.e. compute a bound on $\left|\Psi(S, S)-\Psi\left(S^{\prime}, S^{\prime}\right)\right|$ where S^{\prime} is a sample differing from S in exactly one point. As in [Foster et al., 2019], we first observe that $\Psi(S, S)-\Psi\left(S, S^{\prime}\right) \leq \frac{1}{m}$, so now we turn to

$$
\Psi\left(S, S^{\prime}\right)-\Psi\left(S^{\prime}, S^{\prime}\right)=\sup _{Q \in \hat{Q}_{S}}\langle Q, \ell\rangle-\left\langle Q, \hat{\ell}_{S^{\prime}}\right\rangle-\sup _{Q \in Q_{S^{\prime}}}\langle Q, \ell\rangle-\left\langle Q, \hat{\ell}_{S^{\prime}}\right\rangle
$$

By definition of the supremum, for any $\epsilon>0$ there exists a $Q_{\epsilon} \in Q_{S}$ such that

$$
\sup _{Q \in \Omega_{S}}\langle Q, \ell\rangle-\left\langle Q, \hat{\ell}_{S^{\prime}}\right\rangle-\epsilon \leq \sup _{Q \in Q_{S}}\left\langle Q_{\epsilon}, \ell\right\rangle-\left\langle Q_{\epsilon}, \hat{\ell}_{S^{\prime}}\right\rangle
$$

Using the β-stability of $\mathcal{Q}_{m}=\left(\mathcal{Q}_{S}\right)_{S \in Z^{m}}$, there exists a $Q_{\epsilon}^{\prime} \in \mathcal{Q}_{S^{\prime}}$ such that $\left\|Q_{\epsilon}-Q_{\epsilon}^{\prime}\right\|_{1} \leq 2 \beta$. Thus, we have

$$
\begin{aligned}
\Psi\left(S, S^{\prime}\right)-\Psi\left(S^{\prime}, S^{\prime}\right) & \leq\left\langle Q_{\epsilon}, \ell\right\rangle-\left\langle Q_{\epsilon} \hat{\ell}_{S^{\prime}}\right\rangle+\epsilon-\left\langle Q_{\epsilon}^{\prime}, \ell\right\rangle-\left\langle Q_{\epsilon}^{\prime}, \hat{\ell}_{S^{\prime}}\right\rangle+\epsilon \\
& =\left\langle Q_{\epsilon}-Q_{\epsilon}^{\prime}, \ell-\hat{\ell}_{S^{\prime}}\right\rangle+\epsilon \\
& \leq\left\|Q_{\epsilon}-Q_{\epsilon}^{\prime}\right\| 1\left\|\ell-\hat{\ell}_{S^{\prime}}\right\|_{\infty}+\epsilon \\
& \leq 2 \beta \sup _{h}\left|\ell(h)-\hat{\ell}_{S^{\prime}}(h)\right|+\epsilon .
\end{aligned}
$$

Since this bound holds for any $\epsilon>0$, we conclude that $\Psi\left(S, S^{\prime}\right)-\Psi\left(S^{\prime}, S^{\prime}\right) \leq 2 \beta \sup _{h}\left|\ell(h)-\hat{\ell}_{S^{\prime}}(h)\right|$, which implies that

$$
\Psi(S, S)-\Psi\left(S^{\prime}, S^{\prime}\right) \leq 2 \beta \sup _{h}\left|\ell(h)-\hat{\ell}_{S^{\prime}}(h)\right|+\frac{1}{m} \leq 2 \beta+\frac{1}{m}
$$

Now, via standard Rademacher complexity bounds Mohri et al. [2018], with probability at least $1-\delta$ over the choice of S^{\prime}, we have

$$
\sup _{h}\left|\ell(h)-\hat{\ell}_{S^{\prime}}(h)\right| \leq 2 \Re_{m}(\mathcal{H})+\sqrt{\frac{\log (2 / \delta)}{2 m}} .
$$

Thus, with probability at least $1-\delta^{\prime}$ over the choice of S^{\prime}, we have

$$
\Psi(S, S)-\Psi\left(S^{\prime}, S^{\prime}\right) \leq 2 \beta\left(2 \Re_{m}(\mathcal{H})+\sqrt{\frac{\log \left(2 / \delta^{\prime}\right)}{2 m}}\right)+\frac{1}{m}
$$

Define $B:=2 \beta\left(2 \mathfrak{R}_{m}(\mathcal{H})+\sqrt{\frac{\log \left(2 / \delta^{\prime}\right)}{2 m}}\right)+\frac{1}{m}$ for notational convenience. Now we can apply a variant of McDiarmid's inequality that allow almost-everywhere stability [Kutin and Niyogi, 2002] (using the explicit form in Theorem 5.2 in [Rakhlin et al., 2005] with $M=2 \beta+\frac{1}{m}, \beta_{n}=B$, and $\delta_{n}=\delta^{\prime}$) to conclude that for any $t>0$,

$$
\mathbb{P}[|\Psi(S, S)-\mathbb{E} \Psi(S, S)| \geq t] \leq 2 \exp \left(\frac{-t^{2}}{8 n B^{2}}\right)+\frac{2\left(2 \beta+\frac{1}{m}\right) m \delta^{\prime}}{B} \leq 2 \exp \left(\frac{-t^{2}}{8 n B^{2}}\right)+2 m^{1.5} \delta^{\prime}
$$

Now, set $\delta^{\prime}=\frac{\delta}{2 m^{1.5}}$ and $t=B \sqrt{8 m \log \left(\frac{4}{\delta}\right)}$ so that $\mathbb{P}[|\Psi(S, S)-\mathbb{E} \Psi(S, S)| \geq t] \leq \delta$. Finally, exactly as in [Foster et al., 2019], we have $\mathbb{E}_{S \sim \mathcal{D}^{m}}[\Psi(S, S)] \leq 2 \mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m}\right)$.

B. 2 Explicit bound of Theorem 4

Theorem 4. Suppose the family of sample-dependent priors $\left(P_{S}\right)_{S \epsilon \mathcal{Z}^{m}}$ has D_{∞} sensitivity ϵ. Also assume that for some $\eta>0$, we have $P_{S}(h) \geq \eta$ for all $h \in \mathcal{H}$, and all $S \in \mathcal{Z}^{m}$. Then, for any $\delta>0$, with probability at least $1-\delta$ over the draw of the sample $S \sim \mathcal{D}^{m}$, the following inequality holds for all $Q \in \Delta(\mathcal{H}):$ if $D=\max \left\{\mathrm{D}\left(Q \| P_{S}\right), 2\right\}$,

$$
\begin{aligned}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] \leq \underset{h \sim Q}{\mathbb{E}}\left[\frac{1}{m} \sum_{i=1}^{m} L\left(h, z_{i}\right)\right] & +2 \sqrt{\frac{4 D}{m}+2 \epsilon^{2}+2 \epsilon \sqrt{\frac{\log \left(2 m^{2} / \eta\right)}{m}}}+\sqrt{\frac{8}{m}}+\frac{2}{m} \\
& +\left(4 \epsilon\left(2 \Re_{m}(\mathcal{H})+\sqrt{\frac{\log \left(4 m^{1.5} D / \delta\right)}{2 m}}\right)+\frac{1}{m}\right) \sqrt{8 m \log \left(\frac{4 D}{\delta}\right)}
\end{aligned}
$$

B. 3 Lemma 9 \& Proof

Lemma 9 (Extension of Lemma 3.17 in [Dwork and Roth, 2014]). Let \mathcal{P} be a distribution on (S, T, h) s.t. $\mathrm{D}_{\infty}^{\gamma}\left(\mathcal{P} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa$, where $\mathcal{D}^{2 m}$ is the marginal distribution of (S, T) induced by \mathcal{P} and \mathcal{P} is the marginal distribution of h induced by \mathcal{P}. Then \exists a distribution \mathcal{P}^{\prime} on (S, T, h) s.t. $\left\|\mathcal{P}-\mathcal{P}^{\prime}\right\|_{\mathrm{TV}} \leq \gamma$ and $\mathrm{D}_{\infty}\left(\mathcal{P}^{\prime} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa\left(\right.$ following Lemma 3.17) and, further, \mathcal{P} and \mathcal{P}^{\prime} induce the same marginal distributions on (S, T) - i.e., the marginal distribution of (S, T) induced by \mathcal{P}^{\prime} is also $\mathcal{D}^{2 m}$.

Proof. We construct \mathcal{P}^{\prime} s.t. $\mathcal{P}_{S, T}^{\prime}=\mathcal{D}^{2 m}$ (i.e., the marginal distribution of (S, T) matches that of \mathcal{P} by design) and then, for any fixed (S, T), we define the conditional distribution $\mathcal{P}_{h \mid(S, T)}^{\prime}$ in terms of $\mathcal{P}_{h \mid(S, T)}$ as follows (as is done in Lemma 3.17):
Let $\mathrm{S}_{S, T}:=\left\{h: \mathcal{P}_{h \mid(S, T)}(h)>e^{\kappa} \cdot \mathcal{P}(h)\right\}$ and $\mathrm{T}_{S, T}:=\left\{h: \mathcal{P}_{h \mid(S, T)}(h)<\mathcal{P}(h)\right\}$. (For the moment, κ can be thought of as any positive constant; its connection to our assumption will only come into play at the end, with γ.)
We want to remove the following total probability from $\mathrm{S}_{S, T}$:

$$
\sum_{h \in S_{S, T}}\left[\mathcal{P}_{h \mid(S, T)}(h)-e^{\kappa} \cdot \mathcal{P}(h)\right]=\mathcal{P}_{h \mid(S, T)}\left(\mathrm{S}_{S, T}\right)-e^{\kappa} \cdot \mathcal{P}\left(\mathrm{S}_{S, T}\right)
$$

And we have the following additional capacity in $\mathrm{T}_{S, T}$:

$$
\begin{aligned}
\sum_{h \in \mathbb{T}_{S, T}}\left[\mathcal{P}(h)-\mathcal{P}_{h \mid(S, T)}(h)\right] & =\sum_{h \notin \mathbb{T}_{S, T}}\left[\mathcal{P}_{h \mid(S, T)}(h)-\mathcal{P}(h)\right] \\
& \geq \sum_{h \in \mathcal{S}_{S, T}}\left[\mathcal{P}_{h \mid(S, T)}(h)-\mathcal{P}(h)\right] \\
& \geq \sum_{h \in \mathcal{S}_{S, T}}\left[\mathcal{P}_{h \mid(S, T)}(h)-e^{\kappa} \cdot \mathcal{P}(h)\right],
\end{aligned}
$$

which exceeds the mass we want to remove from $S_{S, T}$.
Therefore, just as in Lemma 3.17, we can lower the probabilities for $h \in \mathrm{~S}_{S, T}$ and raise the probabilities for $h \in \mathrm{~T}_{S, T}$ to construct $\mathcal{P}_{h \mid(S, T)}^{\prime}$. We obtain:

1. $\forall h \in \mathrm{~S}_{S, T}, \mathcal{P}_{h \mid(S, T)}^{\prime}(h)=e^{\kappa} \cdot \mathcal{P}(h)<\mathcal{P}_{h \mid(S, T)}(h)$.
2. $\forall h \in \mathrm{~T}_{S, T}, \mathcal{P}_{h \mid(S, T)}(h) \leq \mathcal{P}_{h \mid(S, T)}^{\prime}(h) \leq \mathcal{P}(h)$.
3. $\forall h \notin \mathrm{~S}_{S, T} \cup \mathrm{~T}_{S, T}, \mathcal{P}_{h \mid(S, T)}^{\prime}(h)=\mathcal{P}_{h \mid(S, T)}(h) \leq e^{\kappa} \cdot \mathcal{P}(h)$.

We thus have $\mathrm{D}_{\infty}\left(\mathcal{P}_{h \mid(S, T)}^{\prime} \| \mathcal{P}\right) \leq \kappa$ and consequently $\mathrm{D}_{\infty}\left(\mathcal{P}^{\prime} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa$, due to the equivalent marginal distributions on (S, T).
Formally, our original assumption $\mathrm{D}_{\infty}^{\gamma}\left(\mathcal{P} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa$ means that for all events E :

$$
\mathcal{P}(E)-e^{\kappa} \cdot\left(\mathcal{D}^{2 m} \otimes \mathcal{P}\right)(E) \leq \gamma .
$$

Let $E:=\left\{(S, T, h) \in \mathcal{D}^{2 m} \times \mathcal{H}: \mathcal{P}_{h \mid(S, T)}(h)>e^{\kappa} \cdot \mathcal{P}(h)\right\}$. We then have:

$$
\begin{aligned}
\left\|\mathcal{P}^{\prime}-\mathcal{P}\right\|_{\mathrm{TV}} & =\underset{(S, T) \sim \mathcal{D}^{2 m}}{\mathbb{E}}\left[\left\|\mathcal{P}_{h \mid(S, T)}^{\prime}-\mathcal{P}_{h \mid(S, T)}\right\|_{\mathrm{TV}}\right] \\
& =\underset{(S, T) \sim \mathcal{D}^{2 m}}{\mathbb{E}}\left[\mathcal{P}_{h \mid(S, T)}\left(\mathrm{S}_{S, T}\right)-\mathcal{P}_{h \mid(S, T)}^{\prime}\left(\mathrm{S}_{S, T}\right)\right] \\
& =\underset{(S, T) \sim \mathcal{D}^{2 m}}{\mathbb{E}}\left[\mathcal{P}_{h \mid(S, T)}\left(\mathrm{S}_{S, T}\right)-e^{\kappa} \cdot \mathcal{P}\left(\mathrm{S}_{S, T}\right)\right] \\
& =\underset{(S, T) \sim \mathcal{D}^{2 m}}{\mathbb{E}}\left[\mathcal{P}(E \mid S, T)-e^{\kappa} \cdot\left(\mathcal{D}^{2 m} \otimes \mathcal{P}\right)(E \mid S, T)\right] \\
& =\mathcal{P}(E)-e^{\kappa} \cdot\left(\mathcal{D}^{2 m} \otimes \mathcal{P}\right)(E) \\
& \leq \gamma .
\end{aligned}
$$

We have thus shown that $\left\|\mathcal{P}^{\prime}-\mathcal{P}\right\|_{\mathrm{TV}} \leq \gamma$ and $\mathrm{D}_{\infty}\left(\mathcal{P}^{\prime} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa$ for a \mathcal{P}^{\prime} whose marginal distribution on (S, T) matches that of \mathcal{P}.

B. 4 Proof of Theorem 5

We prove Theorem 5, with the exact bound explicitly spelled out:
Theorem 5. Suppose the family of sample-dependent priors $\left(P_{S}\right)_{S \in Z^{m}}$ has D_{∞} sensitivity ϵ. Then, for any $\delta>0$, with probability at least $1-\delta$ over the draw of the sample $S \sim \mathcal{D}^{m}$, the following inequality holds for all $Q \in \Delta(\mathcal{H})$: if $D=\max \left\{\mathrm{D}\left(Q \| P_{S}\right), 2\right\}$,

$$
\begin{aligned}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] & \leq \underset{h \sim Q}{\mathbb{E}}\left[\frac{1}{m} \sum_{i=1}^{m} L\left(h, z_{i}\right)\right] \\
& +\max \left\{4 \sqrt{\frac{4 D+4 \log (2)}{m}+2 \epsilon^{2}+2 \epsilon \sqrt{\frac{\log (2)}{m}}}, 8 \epsilon^{2 / 3} \Re_{m}(\mathcal{H})^{1 / 3}, 8 \epsilon^{4 / 5}\right\} \\
& +\frac{2}{\sqrt{m}}+\left(4 \epsilon\left(2 \mathfrak{R}_{m}(\mathcal{H})+\sqrt{\frac{\log \left(4 m^{1.5} D / \delta\right)}{2 m}}\right)+\frac{1}{m}\right) \sqrt{8 m \log \left(\frac{4 D}{\delta}\right)}
\end{aligned}
$$

Proof. Define a sample-dependent family of distributions $\mathcal{Q}_{m}=\left(Q_{S}\right)_{S \epsilon \mathcal{Z}^{m}}$ where $\mathcal{Q}_{S}=$ $\left\{Q: \mathrm{D}_{\infty}\left(Q \| P_{S}\right) \leq \mu\right\}$ for some parameter μ. We now apply the bound in Theorem 3, using the bound on the Rademacher complexity from Lemma 10 , and the bound $\beta \leq 2 \epsilon$ from Lemma 6 . Finally, a uniform bound over all values of μ follows by an application of Lemma 3 .

Lemma 10. If $\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point, then

$$
\mathfrak{R}_{m}^{\circ}\left(\mathcal{Q}_{m, \mu}\right) \leq \max \left\{2 \sqrt{\frac{2 \mu+4 \log (2)}{m}+2 \epsilon^{2}+2 \epsilon \sqrt{\frac{\log (2)}{m}}}, 4 \epsilon^{2 / 3} \mathfrak{R}_{m}(\mathcal{H})^{1 / 3}, 4 \epsilon^{4 / 5}\right\}+\frac{1}{\sqrt{m}} .
$$

Proof. Assume $\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in Z^{m}$ differing by exactly one point.
Now, we fix the value of $\sigma \in\{-1,1\}^{m}$ and introduce the following two distributions on \mathcal{H} :
(1) Let $\mathcal{P}_{\boldsymbol{\sigma}}$ be a joint distribution on (S, T, h) induced by sampling $S, T \sim \mathcal{D}^{m}$, and then, conditioned on the values of S and T, sampling $h \sim P_{S_{T}^{\sigma}}$, using the notation $P_{S_{T}^{\sigma}}$ introduced for Equation 8.
(2) Let \mathcal{P} be the marginal distribution of h induced by $\mathcal{P}_{\boldsymbol{\sigma}}$. We have dropped $\boldsymbol{\sigma}$ from the notation because - since all elements of S and T are sampled i.i.d. - we have:

$$
\underset{S, T \sim D^{m}}{\mathbb{E}}\left[P_{S_{T}^{\sigma}}(h)\right]=\underset{S \sim D^{m}}{\mathbb{E}}\left[P_{S}(h)\right]
$$

i.e., the marginal distribution of h is independent of σ.

We first invoke several differential privacy results to show that, for the distributions $\mathcal{P}_{\boldsymbol{\sigma}}$ and \mathcal{P} as defined above, and $\kappa:=\epsilon^{2} m+\epsilon \sqrt{m \log (2 / \gamma)}$, we have:

$$
\begin{equation*}
\mathrm{D}_{\infty}^{\gamma}\left(\mathcal{P}_{\boldsymbol{\sigma}} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa \tag{14}
\end{equation*}
$$

Specifically, consider $U=(S, T)$ and $U^{\prime}=\left(S^{\prime}, T^{\prime}\right)$ for $S, T, S^{\prime}, T^{\prime} \in \mathcal{Z}^{m}$ such that U and U^{\prime} differ by only one of their $2 m$ elements. Then S_{T}^{σ} and $S_{T^{\prime}}^{\prime}$ can only differ by at most one element, so by our main assumption: $\mathrm{D}_{\infty}\left(P_{S_{T}^{\sigma}} \| P_{S^{\prime}}{ }_{T^{\prime}}\right) \leq \epsilon$. Crucially, another way of saying this is: the algorithm \mathcal{A} taking $U=(S, T)$ as input and outputting $h \sim P_{S_{T}^{\sigma}}$ is an ϵ-differentially private algorithm, so we can apply Theorem 20 in [Dwork et al., 2015], with an input of size $2 m$, and obtain (14).
We now use Lemma 3.17 (Part 1) in [Dwork and Roth, 2014] to convert (14) into a result concerning D_{∞} vs. $\mathrm{D}_{\infty}^{\gamma}$, so we can more easily use it below. Specifically, by Lemma 3.17 (Part 1), there exists a distribution $\mathcal{P}_{\boldsymbol{\sigma}}^{\prime}$ on (S, T, h) such that $\left\|\mathcal{P}_{\boldsymbol{\sigma}}-\mathcal{P}_{\boldsymbol{\sigma}}^{\prime}\right\|_{\mathrm{TV}} \leq \gamma$ and $\mathrm{D}_{\infty}\left(\mathcal{P}_{\boldsymbol{\sigma}}^{\prime} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa$.
Finally, we upper bound $\mathfrak{R}_{m}^{\infty}\left(\mathcal{Q}_{m, \mu}\right)$ as follows. For convenience, we use a variable $t>0$ and the function $\Psi_{P}(Q)$, which is defined as $\mathrm{D}(Q \| P)$ if $\mathrm{D}(Q \| P) \leq \mu$ and $+\infty$ otherwise; thus, its conjugate function is $\Psi_{P}^{*}(u)=\log \left(\mathbb{E}_{h \in P}\left[e^{u(h)}\right]\right)$, for all $u \in \mathbb{R}^{\mathcal{H}}$ [Mohri et al., 2018, Lemma B.37]. We use the shorthand $u_{\boldsymbol{\sigma}}(h)=\sum_{i=1}^{m} \sigma_{i} L\left(h, z_{i}\right)$, where z_{i} is element i of sample T, so that $\sum_{i=1}^{m} \sigma_{i}\left\langle Q, L_{z_{i}}\right\rangle=\left\langle Q, u_{\boldsymbol{\sigma}}\right\rangle$.

$$
\begin{align*}
\mathfrak{R}_{m}^{\triangleright}\left(\mathcal{Q}_{m, \mu}\right) & =\frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}} \underset{(S, T)}{\mathbb{E}}\left[\sup _{\mathrm{D}\left(Q \| P_{S_{T}^{\boldsymbol{\sigma}}}\right) \leq \mu}\left\langle Q, t u_{\boldsymbol{\sigma}}\right\rangle\right] \\
& \leq \frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}} \underset{(S, T)}{\mathbb{E}}\left[\sup _{\Psi_{P_{S_{T}^{\boldsymbol{\sigma}}}}(Q) \leq \mu} \Psi_{P_{S_{T}^{\boldsymbol{\sigma}}}}(Q)+\Psi_{P_{S_{T}^{\boldsymbol{\sigma}}}^{*}}^{*}\left(t u_{\boldsymbol{\sigma}}\right)\right] \quad \text { (Fenchel inequality) } \\
& \leq \frac{\mu}{m t}+\frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}} \underset{(S, T)}{\mathbb{E}}\left[\Psi_{P_{S_{T}^{\boldsymbol{\sigma}}}^{*}}^{*}\left(t u_{\boldsymbol{\sigma}}\right)\right] \\
& \left.=\frac{\mu}{m t}+\frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}} \underset{(S, T)}{\mathbb{E}}\left[\log \left(\underset{h \sim P_{S_{T}^{\boldsymbol{\sigma}}}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right)\right] \quad \text { (definition of } \Psi^{*}\right) \\
& \leq \frac{\mu}{m t}+\frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]\right) \quad \text { (Jensen's inequality) } \tag{15}
\end{align*}
$$

In the following, to make the dependence of $u_{\boldsymbol{\sigma}}$ on the set T explicit, we now denote it as $u_{\boldsymbol{\sigma}, T}$. For any sample T, define $\Psi(T)$ by $\Psi(T)=\frac{1}{m} \sup _{h \in \mathcal{H}}\left(u_{\boldsymbol{\sigma}, T}(h)-\mathbb{E}_{T^{\prime} \sim \mathcal{D}^{m}}\left[u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right]\right)$. Changing one point in T affects $\Psi(T)$ by at most $1 / m$, since the loss is bounded by one. Thus, by McDiarmid's inequality, for any fixed σ and for any $\delta>0$, we have

$$
\underset{T \sim D^{m}}{\mathbb{P}}\left[\Psi(T) \leq \underset{T \sim \mathcal{D}^{m}}{\mathbb{E}}[\Psi(T)]+\sqrt{\frac{2 \log \left(\frac{1}{\delta}\right)}{m}}\right] \geq 1-\delta
$$

Now, $\mathbb{E}_{T \sim \mathcal{D}^{m}}[\Psi(T)]$ can be bounded in terms of the Rademacher complexity as in the standard analyses:

$$
\begin{aligned}
\underset{T \sim \mathcal{D}^{m}}{\mathbb{E}}[\Psi(T)] & =\frac{1}{m} \underset{T \sim \mathcal{D}^{m}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \underset{T^{\prime} \sim \mathcal{D}^{m}}{\mathbb{E}}\left[u_{\boldsymbol{\sigma}, T}(h)-u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right]\right] \\
& \leq \frac{1}{m} \underset{T, T^{\prime} \sim \mathcal{D}^{m}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} u_{\boldsymbol{\sigma}, T}(h)-u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right] \quad \quad \text { (sub-additivity of sup) } \\
& \leq \frac{1}{m} \underset{T, T^{\prime} \sim \mathcal{D}^{m}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m}\left(\sigma_{i} L\left(h, z_{i}^{T}\right)-\sigma_{i} L\left(h, z_{i}^{T^{\prime}}\right)\right)\right] \\
& \leq \frac{1}{m} \underset{T, T^{\prime} \sim \mathcal{D}^{m}, \boldsymbol{\beta}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \beta_{i}\left(\sigma_{i} L\left(h, z_{i}^{T}\right)-\sigma_{i} L\left(h, z_{i}^{T^{\prime}}\right)\right)\right] \quad \text { (Rademacher variables } \beta_{i} \text {) } \\
& \leq \frac{2}{m} \underset{T \sim \mathcal{D}^{m}, \boldsymbol{\beta}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \beta_{i}\left(\sigma_{i} L\left(h, z_{i}^{T}\right)\right)\right] \\
& =\frac{2}{m} \underset{T \sim \mathcal{D}^{m}, \boldsymbol{\beta}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \beta_{i} L\left(h, z_{i}^{T}\right)\right] \\
& =2 \mathfrak{R}_{m}(\mathcal{H}) .
\end{aligned}
$$

Thus, for any fixed σ and for any $\delta>0$, we have

$$
\begin{equation*}
\underset{T \sim \mathcal{D}^{m}}{\mathbb{P}}\left[\sup _{h}\left(u_{\boldsymbol{\sigma}, T}(h)-\underset{T^{\prime} \sim \mathcal{D}^{m}}{\mathbb{E}}\left[u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right]\right) \leq 2 m \Re_{m}(\mathcal{H})+\sqrt{2 m \log (1 / \delta)}\right] \geq 1-\delta \tag{16}
\end{equation*}
$$

Note that for any h, we have $\mathbb{E}_{T^{\prime} \sim \mathcal{D}^{m}}\left[u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right]=\sum_{i=1}^{m} \sigma_{i} \mathbb{E}_{z \sim D}[L(h, z)]$, and hence $\left|\mathbb{E}_{T^{\prime} \sim \mathcal{D}^{m}}\left[u_{\boldsymbol{\sigma}, T^{\prime}}(h)\right]\right| \leq\left|\sum_{i=1}^{m} \sigma_{i}\right|$. Hence, we conclude that

$$
\begin{equation*}
\underset{T \sim D^{m}}{\mathbb{P}}\left[\sup _{h} u_{\boldsymbol{\sigma}, T}(h) \leq\left|\sum_{i=1}^{m} \sigma_{i}\right|+2 m \mathfrak{R}_{m}(\mathcal{H})+\sqrt{2 m \log (1 / \delta)}\right] \geq 1-\delta . \tag{17}
\end{equation*}
$$

For notational convenience, define

$$
B_{\boldsymbol{\sigma}}:=\left|\sum_{i=1}^{m} \sigma_{i}\right|+2 m \mathfrak{R}_{m}(\mathcal{H})+\sqrt{2 m \log (1 / \delta)} .
$$

Now, let $\delta:=e^{-t m}$, and let $G \subseteq Z^{m}$ be the set of m-element samples T such that

$$
G:=\left\{T \in \mathcal{Z}^{m}: \sup _{h} u_{\boldsymbol{\sigma}, T}(h) \leq B_{\boldsymbol{\sigma}}\right\} .
$$

By (16), we have $\mathbb{P}_{T \sim \mathcal{D}^{m}}[G] \geq 1-\delta$. Hence, we have

$$
\begin{aligned}
\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}, T}(h)}\right] & \leq \underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}, T}(h)}\right]+\left(\sup _{T \in G} \sup _{h} e^{t u_{\boldsymbol{\sigma}, T}(h)}\right) \cdot\left(\left|{\underset{\mathcal{P}}{\boldsymbol{\mathcal { F }}}}_{\mathbb{P}}^{\mathbb{P}}[T \in G]-\underset{\mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{P}}[T \in G]\right|\right) \\
& +e^{t m} \cdot \underset{\mathcal{P}_{\boldsymbol{\sigma}}}{\mathbb{P}}[T \notin G] \\
& \leq \underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}, T}(h)}\right]+\gamma e^{t B_{\boldsymbol{\sigma}}}+e^{t m} \delta \\
& =\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}, T}(h)}\right]+\gamma e^{t B_{\boldsymbol{\sigma}}}+1 \\
& \leq\left(\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}, T}(h)}\right]+1\right) \cdot\left(\gamma e^{t B_{\boldsymbol{\sigma}}}+1\right) .
\end{aligned}
$$

Using this bound in (15), we get

$$
\begin{equation*}
\mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \frac{\mu}{m t}+\frac{1}{m t} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\log \left(\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]+1\right)+\log \left(\gamma e^{t B_{\boldsymbol{\sigma}}}+1\right)\right] \tag{18}
\end{equation*}
$$

We bound the two terms involving the logarithm in (18) separately. First, we have

$$
\begin{array}{rlr}
\underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\underset{(S, T, h) \sim \mathcal{P}_{\boldsymbol{\sigma}}^{\prime}}{\mathbb{E}}\right. & \left.\left[e^{t u_{\boldsymbol{\sigma}}(h)}\right]+1\right) \\
& \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\underset{(S, T, h) \sim \mathcal{D}^{2 m} \otimes \mathcal{P}}{\mathbb{E}}\left[e^{\kappa} e^{t u_{\boldsymbol{\sigma}}(h)}\right]+1\right) & \left(\text { since } \mathrm{D}_{\infty}\left(\mathcal{P}_{\boldsymbol{\sigma}}^{\prime} \| \mathcal{D}^{2 m} \otimes \mathcal{P}\right) \leq \kappa\right) \\
& \leq \log \left(\underset{(S, T, h) \sim \mathcal{D}^{2 m} \otimes \mathcal{P}}{\mathbb{E}} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[e^{\kappa} e^{t u_{\boldsymbol{\sigma}}(h)}\right]+1\right) & \text { (Jensen's inequality) } \\
& \leq \log \left(\underset{(S, T, h) \sim \mathcal{D}^{2 m} \otimes \mathcal{P}}{\mathbb{E}} e^{\kappa+m t^{2} / 2}+1\right) & \text { (Hoeffding's lemma) } \\
& \leq \log \left(2 e^{\kappa+m t^{2} / 2}\right) & \left(e^{k+m t^{2} / 2} \geq 1\right) \\
& \leq \kappa+\frac{m t^{2}}{2}+\log (2) & \tag{19}
\end{array}
$$

As for the second term, setting $\gamma=e^{-\left(2 m t \Re_{m}(\mathcal{H})+\sqrt{2} m t^{3 / 2}\right)}$, we have

$$
\begin{align*}
\underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\gamma e^{t B_{\boldsymbol{\sigma}}}+1\right) & =\underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\gamma e^{t\left(\left|\sum_{i=1}^{m} \sigma_{i}\right|+2 m \Re_{m}(\mathcal{H})+\sqrt{2 m \log (1 / \delta)}\right)}+1\right) \quad\left(\text { definition of } B_{\boldsymbol{\sigma}}\right) \\
& =\underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(e^{t\left|\sum_{i=1}^{m} \sigma_{i}\right|}+1\right) \quad\left(\text { using } \gamma=e^{-\left(2 m t \Re_{m}(\mathcal{H})+\sqrt{2} m t^{3 / 2}\right)}\right) \\
& \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(2 e^{t\left|\sum_{i=1}^{m} \sigma_{i}\right|}\right) \\
& =\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[t\left|\sum_{i=1}^{m} \sigma_{i}\right|\right]+\log (2) \\
& =t \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sqrt{\left(\sum_{i=1}^{m} \sigma_{i}\right)^{2}}\right]+\log (2) \\
& \leq t \sqrt{\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\left(\sum_{i=1}^{m} \sigma_{i}\right)^{2}\right]}+\log (2) \quad \text { (Jensen's inequality) } \\
& =\sqrt{m} t+\log (2) \tag{20}
\end{align*}
$$

Using bounds (19), (20), and the bound on k in (18) we get

$$
\begin{aligned}
& \mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \frac{1}{m t}\left(\mu+\kappa+\frac{m t^{2}}{2}+\sqrt{m} t+2 \log (2)\right) \\
&\left.\leq \frac{1}{m t}\left(\mu+\epsilon^{2} m+\epsilon \sqrt{m\left(2 m t \Re_{m}(\mathcal{H})+\sqrt{2} m t^{3 / 2}\right.}\right)\right)+m \log (2) \\
& m t^{2} \\
& 2+\sqrt{m} t+2 \log (2)) \\
& \leq \max \left\{2 \sqrt{\frac{2 \mu+4 \log (2)}{m}+2 \epsilon^{2}+2 \epsilon \sqrt{\frac{\log (2)}{m}}}, 4 \epsilon^{2 / 3} \Re_{m}(\mathcal{H})^{1 / 3}, 4 \epsilon^{4 / 5}\right\}+\frac{1}{\sqrt{m}},
\end{aligned}
$$

setting $t=\max \left\{\sqrt{\frac{2 \mu+4 \log (2)}{m}+2 \epsilon^{2}+2 \epsilon \sqrt{\frac{\log (2)}{m}}}, 2 \epsilon^{2 / 3} \Re_{m}(\mathcal{H})^{1 / 3}, 2 \epsilon^{4 / 5}\right\}$.

B. 5 Proof of Theorem 6

The requirement in Theorem 5 that the family of sample-dependent priors $\left(P_{S}\right)_{S \in \mathcal{Z}^{m}}$ has D_{∞} sensitivity ϵ is equivalent to saying that the priors define an ϵ-differentially private mechanism. Here, we give an extension to Theorem 5 which makes the weaker assumption that the priors define an (ϵ, δ)-differentially private mechanism, for some $\delta>0$. The extension relies on the following theorem of Rogers et al. [2016]. The statement given below is an adaptation of Theorem 3.1 in [Rogers et al., 2016] that is implicit in their proof. We need this more nuanced statement for our analysis.
Theorem 7 (Theorem 3.1 in [Rogers et al., 2016]). Let $\mathcal{A}: X^{m} \rightarrow y$ be an (ϵ, δ)-differentially private algorithm for $\epsilon \in\left(0, \frac{1}{2}\right]$ and $\delta \in(0, \epsilon)$. Let \mathcal{D} be any distribution on X and let $S \in X^{m}$ be a dataset with elements sampled i.i.d. from \mathcal{D}. Let \mathcal{P} be the joint distribution of $(S, \mathcal{A}(S))$, and \mathcal{P} be the marginal distribution of $\mathcal{A}(S)$. Then there is a constant $c>0$ such that for any $\gamma \in(0,1]$ we have

$$
\mathrm{D}_{\infty}^{\delta+c \sqrt{\frac{\delta}{\epsilon}} m}\left(\mathcal{P} \| \mathcal{D}^{m} \otimes \mathcal{P}\right) \leq 72 \epsilon^{2} m+6 \epsilon \sqrt{2 m \log (1 / \gamma)}+c \sqrt{\frac{\delta}{\epsilon}} m
$$

With this theorem, we can now prove the following theorem which is analogous to Theorem 5 but assumes only the priors define an (ϵ, δ)-differentially private mechanism.
Theorem 6. Assume that $\epsilon \geq 0$ and $\delta \in\left[0, \frac{e^{-16 m}}{4 c^{2} m^{2}} \epsilon\right]$, where c is the constant from Theorem 7 . Suppose the family of sample-dependent priors $\left(P_{S}\right)_{S \in \mathcal{Z}^{m}}$ satisfy the property that $\mathrm{D}_{\infty}^{\delta}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in Z^{m}$ differing in exactly one point. Then, for any $\nu>0$, with probability at least $1-\nu$ over the draw of the sample $S \sim \mathcal{D}^{m}$, the following inequality holds for all $Q \in \Delta(\mathcal{H}):$ if $D=\max \left\{\mathrm{D}\left(Q \| P_{S}\right), 2\right\}$,

$$
\begin{aligned}
\underset{\substack{h \sim Q \\
z \sim \mathcal{D}}}{\mathbb{E}}[L(h, z)] & \leq \underset{h \sim Q}{\mathbb{E}}\left[\frac{1}{m} \sum_{i=1}^{m} L\left(h, z_{i}\right)\right] \\
& +\max \left\{4 \sqrt{\left.\frac{4 D+6 \log (2)}{m}+300 \epsilon^{2}, 30 \epsilon^{2 / 3} \mathfrak{R}_{m}(\mathcal{H})^{1 / 3}, 30 \epsilon^{4 / 5}\right\}}\right. \\
& +\frac{2}{\sqrt{m}}+\frac{c \sqrt{\delta}}{4 \epsilon^{3 / 2}}+\left(4 \epsilon\left(2 \mathfrak{R}_{m}(\mathcal{H})+\sqrt{\frac{\log \left(4 m^{1.5} D / \nu\right)}{2 m}}\right)+\frac{1}{m}\right) \sqrt{8 m \log \left(\frac{4 D}{\nu}\right)} .
\end{aligned}
$$

Proof. Define a sample-dependent family of distributions $\mathcal{Q}_{m}=\left(\mathcal{Q}_{S}\right)_{S \in \mathcal{Z}^{m}}$ where $\mathcal{Q}_{S}=$ $\left\{Q: \mathrm{D}_{\infty}\left(Q \| P_{S}\right) \leq \mu\right\}$ for some parameter μ. We now apply the bound in Theorem 3, using the bound on the Rademacher complexity from Lemma 11, and the bound $\beta \leq 2 \epsilon$ from Lemma 6. Finally, a uniform bound over all values of μ follows by an application of Lemma 3.

Lemma 11. Assume that $\epsilon \geq 0$ and $\delta \in\left[0, \frac{e^{-16 m}}{4 c^{2} m^{2}} \epsilon\right]$, where c is the constant from Theorem 7. Suppose that $\mathrm{D}_{\infty}^{\delta}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing in exactly one point. Then,

$$
\mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq \max \left\{2 \sqrt{\frac{2 \mu+6 \log (2)}{m}+300 \epsilon^{2}}, 15 \epsilon^{2 / 3} \mathfrak{R}_{m}(\mathcal{H})^{1 / 3}, 15 \epsilon^{4 / 5}\right\}+\frac{1}{\sqrt{m}}+\frac{c \sqrt{\delta}}{8 \epsilon^{3 / 2}} .
$$

Proof. The proof is exactly along the lines of the proof of Lemma 10. Instead of using Theorem 20 in [Dwork et al., 2015], we use Theorem 7 above. Using this theorem, the proof of Lemma 11 follows with

$$
\kappa=144 \epsilon^{2} m+12 \epsilon \sqrt{m \log (1 / \gamma)}+2 c \sqrt{\frac{\delta}{\epsilon}} m
$$

and γ replaced by $\gamma+2 c \sqrt{\frac{\delta}{\epsilon}} m$. The bound (20) changes as follows: setting $\gamma=$ $e^{-\left(2 m t \Re_{m}(\mathcal{H})+\sqrt{2} m t^{3 / 2}\right)}$ exactly as in the proof of Lemma 10, and assuming that we choose $t \leq 2$ ($t>2$ leads to a trivial bound), we note that $\gamma+2 c \sqrt{\frac{\delta}{\epsilon}} m \leq 2 \gamma$ since we assumed that $\delta \leq \frac{e^{-16 m}}{4 c^{2} m^{2}} \epsilon$, and hence

$$
\underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(\left(\gamma+2 c \sqrt{\frac{\delta}{\epsilon}} m\right) e^{t B_{\boldsymbol{\sigma}}}+1\right) \leq \underset{\boldsymbol{\sigma}}{\mathbb{E}} \log \left(2 \gamma e^{t B_{\boldsymbol{\sigma}}}+1\right) \leq \sqrt{m} t+\log (4)
$$

Finally, we have

$$
\begin{aligned}
\mathfrak{R}_{m}^{\diamond}\left(\mathcal{Q}_{m, \mu}\right) \leq & \frac{1}{m t}\left(\mu+\kappa+\frac{m t^{2}}{2}+\sqrt{m} t+3 \log (2)\right) \\
\leq & \frac{1}{m t}\left(\mu+144 \epsilon^{2} m+12 \epsilon \sqrt{\left.m\left(2 m t \Re_{m}(\mathcal{H})+\sqrt{2} m t^{3 / 2}\right)\right)}+2 c \sqrt{\frac{\delta}{\epsilon} m+\frac{m t^{2}}{2}+\sqrt{m} t}\right. \\
& +3 \log (2)) \\
\leq & \max \left\{2 \sqrt{\frac{2 \mu+6 \log (2)}{m}+300 \epsilon^{2}}, 15 \epsilon^{2 / 3} \mathfrak{R}_{m}(\mathcal{H})^{1 / 3}, 15 \epsilon^{4 / 5}\right\}+\frac{1}{\sqrt{m}}+\frac{c \sqrt{\delta}}{8 \epsilon^{3 / 2}},
\end{aligned}
$$

setting $t=\min \left\{\max \left\{\sqrt{\frac{2 \mu+6 \log (2)}{m}+300 \epsilon^{2}}, 15 \epsilon^{2 / 3} \Re_{m}(\mathcal{H})^{1 / 3}, 15 \epsilon^{4 / 5}\right\}, 2\right\}$ and using the bound $\frac{2 c}{t} \sqrt{\frac{\delta}{\epsilon}} \leq \frac{2 c}{\sqrt{300 \epsilon^{2}}} \sqrt{\frac{\delta}{\epsilon}} \leq \frac{c \sqrt{\delta}}{8 \epsilon^{3 / 2}}$.

Remark. The stipulation that $\delta \leq \frac{e^{-16 m}}{4 c^{2} m^{2}} \epsilon$ in the statement of Lemma 11 is made simply to yield a clean statement. It should be evident from the proof that other values of δ also yield analogous bounds on the Rademacher complexity. For example, we can allow δ to be as large as $\frac{e^{-\left(4 m t \Re_{m}(\mathcal{H})+2 \sqrt{2} m t^{3 / 2}\right)}}{4 c^{2} m^{2}} \epsilon$ for the value of t in the proof above and retain the exact same bound.

B. 6 Proof of Lemma 5

Lemma 5. Suppose $\left\|P_{S}-P_{S^{\prime}}\right\|_{1} \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point. For some $\mu \geq 0$, define the sample-dependent set of distributions as $Q_{S, \mu}:=\left\{Q: \mathrm{D}\left(Q \| P_{S}\right) \leq \mu\right\}$, and the corresponding family to be $\mathcal{Q}_{m, \mu}=\left(\mathcal{Q}_{S, \mu}\right)_{S \in \mathcal{Z}^{m}}$. Then $\mathcal{Q}_{m, \mu}$ is β-stable for $\beta=\min \left\{\frac{\epsilon d_{\infty}}{\sqrt{2 \mu}}, \sqrt{\frac{\epsilon d_{\infty}}{2}}\right\}$, where $d_{\infty}:=\sup _{S, S^{\prime}, Q \in \mathcal{Q}_{S, \mu}}\left\|\frac{Q}{P_{S^{\prime}}}\right\|_{\infty}$.

Proof. Consider an arbitrary $Q \in \mathcal{Q}_{S, \mu}$.
Case (1): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right) \leq \mu$.
In this case, $Q \in \mathcal{Q}_{S^{\prime}, \mu}$, so we choose $Q^{\prime}=Q$, and thus $\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}}=0$.

Case (2): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)>\mu$.
We consider $Q^{\prime}=\lambda Q+(1-\lambda) P_{S^{\prime}}$, for $\lambda=\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}<1$. We show that $Q^{\prime} \in \mathcal{Q}_{S^{\prime}, \mu}$ as follows:
$\mathrm{D}\left(Q^{\prime} \| P_{S^{\prime}}\right)=\mathrm{D}\left(\lambda Q+(1-\lambda) P_{S^{\prime}} \| P_{S^{\prime}}\right) \leq \lambda \mathrm{D}\left(Q \| P_{S^{\prime}}\right)+(1-\lambda) \mathrm{D}\left(P_{S^{\prime}} \| P_{S^{\prime}}\right)=\mathrm{D}\left(Q \| P_{S}\right) \leq \mu$,
where the inequality is by the convexity of relative entropy.
We can upper bound $\left\|Q^{\prime}-Q\right\|_{\text {TV }}$ in two different ways.
One way is to directly upper bound the TV distance as follows:

$$
\begin{aligned}
\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & =\left\|\lambda Q+(1-\lambda) P_{S^{\prime}}-Q\right\|_{\mathrm{TV}} \\
& =(1-\lambda)\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}} \\
& =\left[1-\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}\right]\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}} \\
& =\left[\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)\right] \frac{\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}}}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)} \\
& \leq \frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}
\end{aligned}
$$

(Pinsker's inequality).

Alternatively, we can upper bound the TV distance by upper bounding the KL divergence as follows:

$$
\begin{aligned}
\mathrm{D}\left(Q \| Q^{\prime}\right) & =\mathrm{D}\left(Q \| \lambda Q+(1-\lambda) P_{S^{\prime}}\right) \\
& \leq(1-\lambda) \mathrm{D}\left(Q \| P_{S^{\prime}}\right) \\
& =\left[1-\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}\right] \mathrm{D}\left(Q \| P_{S^{\prime}}\right) \\
& =\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) \\
\Longrightarrow\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & \leq \sqrt{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{2}}
\end{aligned}
$$

We upper bound the common term $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)$ as follows:

$$
\begin{array}{rlr}
\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) & =\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{Q(h)}{P_{S^{\prime}}(h)}\right]-\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{Q(h)}{P_{S}(h)}\right] \quad \text { (def. of relative entropy) } \\
& =\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{P_{S}(h)}{P_{S^{\prime}}(h)}\right] \\
& \leq \underset{h \sim Q}{\mathbb{E}}\left[\frac{P_{S}(h)}{P_{S^{\prime}}(h)}-1\right] & \quad \text { (log } x \leq x-1) \\
& =\sum_{h \in \mathcal{H}} Q(h)\left[\frac{P_{S}(h)}{P_{S^{\prime}}(h)}-1\right] \\
& =\sum_{h \in \mathcal{H}} \frac{Q(h)}{P_{S^{\prime}}(h)}\left[P_{S}(h)-P_{S^{\prime}}(h)\right] \\
& \leq\left\|\frac{Q}{P_{S^{\prime}}}\right\|_{\infty}\left\|P_{S}-P_{S^{\prime}}\right\|_{1} \\
& \leq \epsilon d_{\infty}\left(\frac{Q}{P_{S^{\prime}}}\right) &
\end{array}
$$

where $d_{\infty}(f):=\|f\|_{\infty}$.
Putting this together, we obtain:

$$
\begin{aligned}
\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & \leq \min \left\{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}, \sqrt{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{2}}\right\} \\
& \leq \min \left\{\frac{\epsilon}{\sqrt{2 \mu}} d_{\infty}\left(\frac{Q}{P_{S^{\prime}}}\right), \sqrt{\frac{\epsilon}{2} d_{\infty}\left(\frac{Q}{P_{S^{\prime}}}\right)}\right\} .
\end{aligned}
$$

For convenience, define $d_{\infty}:=\sup _{S, S^{\prime}, Q \in Q_{S, \mu}} d_{\infty}\left(\frac{Q}{P_{S^{\prime}}}\right)$.
Thus, if we define $\beta:=\min \left\{\frac{\epsilon}{\sqrt{2 \mu}} d_{\infty}, \sqrt{\frac{\epsilon}{2} d_{\infty}}\right\}$, then the family $\mathcal{Q}_{m, \mu}$ is β-uniformly stable.

B. 7 Proof of Lemma 6

Lemma 6. Suppose $\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point. For some $\mu \geq 0$, define the sample-dependent set of distributions as $Q_{S, \mu}:=\left\{Q: D\left(Q \| P_{S}\right) \leq \mu\right\}$, and the corresponding family to be $\mathcal{Q}_{m, \mu}=\left(\mathcal{Q}_{S, \mu}\right)_{S \in \mathcal{Z}^{m}}$. Then $\mathcal{Q}_{m, \mu}$ is β-stable for $\beta=\min \left\{2 \epsilon, \frac{\epsilon}{\sqrt{2 \mu}}, \sqrt{\frac{\epsilon}{2}}\right\}$.

Proof. This follows from Lemmas 12 and 13.
Lemma 12. If $\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point, then $\mathcal{Q}_{m, \mu}$ is β-uniformly stable with $\beta=\min \left\{\frac{\epsilon}{\sqrt{2 \mu}}, \sqrt{\frac{\epsilon}{2}}\right\}$.

Proof. Consider an arbitrary $Q \in \mathcal{Q}_{S, \mu}$.

Case (1): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right) \leq \mu$.
In this case, $Q \in \mathcal{Q}_{S^{\prime}, \mu}$, so we choose $Q^{\prime}=Q$, and thus $\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}}=0$.

Case (2): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)>\mu$.
We consider $Q^{\prime}=\lambda Q+(1-\lambda) P_{S^{\prime}}$, for $\lambda=\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}<1$. We show that $Q^{\prime} \in Q_{S^{\prime}, \mu}$ as follows:
$\mathrm{D}\left(Q^{\prime} \| P_{S^{\prime}}\right)=\mathrm{D}\left(\lambda Q+(1-\lambda) P_{S^{\prime}} \| P_{S^{\prime}}\right) \leq \lambda \mathrm{D}\left(Q \| P_{S^{\prime}}\right)+(1-\lambda) \mathrm{D}\left(P_{S^{\prime}} \| P_{S^{\prime}}\right)=\mathrm{D}\left(Q \| P_{S}\right) \leq \mu$,
where the inequality is by the convexity of relative entropy.
We can upper bound $\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}}$ in two different ways.
One way is to directly upper bound the TV distance as follows:

$$
\begin{aligned}
\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & =\left\|\lambda Q+(1-\lambda) P_{S^{\prime}}-Q\right\|_{\mathrm{TV}} \\
& =(1-\lambda)\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}} \\
& =\left[1-\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}\right]\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}} \\
& =\left[\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)\right] \frac{\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}}}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)} \\
& \leq \frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}
\end{aligned}
$$

(Pinsker's inequality).

Alternatively, we can upper bound the TV distance by upper bounding the KL divergence as follows:

$$
\begin{aligned}
\mathrm{D}\left(Q \| Q^{\prime}\right) & =\mathrm{D}\left(Q \| \lambda Q+(1-\lambda) P_{S^{\prime}}\right) \\
& \leq(1-\lambda) \mathrm{D}\left(Q \| P_{S^{\prime}}\right) \\
& =\left[1-\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}\right] \mathrm{D}\left(Q \| P_{S^{\prime}}\right) \\
& =\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) \\
\Longrightarrow\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & \leq \sqrt{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{2}}
\end{aligned} \quad \text { (convexity of relative entropy) }
$$

We upper bound the common term $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)$ as follows:

$$
\begin{aligned}
\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) & =\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{Q(h)}{P_{S^{\prime}}(h)}\right]-\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{Q(h)}{P_{S}(h)}\right] \quad \text { (def. of relative entropy) } \\
& =\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{P_{S}(h)}{P_{S^{\prime}}(h)}\right] \\
& \leq \mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right)
\end{aligned}
$$

Putting this together, we obtain:

$$
\begin{aligned}
\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & \leq \frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}<\frac{D_{\infty}\left(P_{S} \| P_{S^{\prime}}\right)}{\sqrt{2 \mu}} \leq \frac{\epsilon}{\sqrt{2 \mu}} . \\
\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}} & \leq \min \left\{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}, \sqrt{\frac{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)}{2}}\right\} \\
& \leq \min \left\{\frac{\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right)}{\sqrt{2 \mu}}, \sqrt{\frac{D_{\infty}\left(P_{S} \| P_{S^{\prime}}\right)}{2}}\right\} \\
& \leq \min \left\{\frac{\epsilon}{\sqrt{2 \mu}}, \sqrt{\frac{\epsilon}{2}}\right\} .
\end{aligned}
$$

So if we define $\beta:=\min \left\{\frac{\epsilon}{\sqrt{2 \mu}}, \sqrt{\frac{\epsilon}{2}}\right\}$, then the family $\mathcal{Q}_{m, \mu}$ is β-uniformly stable.
Lemma 13. If $\mathrm{D}_{\infty}\left(P_{S} \| P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point, then $\mathcal{Q}_{m, \mu}$ is β-uniformly stable with $\beta=2 \epsilon$.

Proof. For convenience, we measure stability using the total variation distance rather than ℓ_{1}, and then present the final bound in terms of ℓ_{1} stability.

Consider an arbitrary $Q \in \mathcal{Q}_{S, \mu}$.

Case (1): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right) \leq \mathrm{D}\left(Q \| P_{S}\right)$.
In this case, $Q \in Q_{S^{\prime}, \mu}$, so we choose $Q^{\prime}=Q$, and thus $\left\|Q^{\prime}-Q\right\|_{\mathrm{TV}}=0$.

Case (2): $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)>\mathrm{D}\left(Q \| P_{S}\right)$.
We consider $Q^{\prime}=\lambda Q+(1-\lambda) P_{S^{\prime}}$, for $\lambda=\frac{\mathrm{D}\left(Q \| P_{S}\right)}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}<1$. We show that $Q^{\prime} \in Q_{S^{\prime}, \mu}$ as follows:
$\mathrm{D}\left(Q^{\prime} \| P_{S^{\prime}}\right)=\mathrm{D}\left(\lambda Q+(1-\lambda) P_{S^{\prime}} \| P_{S^{\prime}}\right) \leq \lambda \mathrm{D}\left(Q \| P_{S^{\prime}}\right)+(1-\lambda) \mathrm{D}\left(P_{S^{\prime}} \| P_{S^{\prime}}\right)=\mathrm{D}\left(Q \| P_{S}\right) \leq \mu$,
where the inequality is by the convexity of relative entropy.
Next we will upper bound $\mathrm{D}\left(Q^{\prime} \| P_{S}\right)$. For this we will use the fact that $\mathrm{D}\left(P_{S} \| P_{S^{\prime}}\right) \leq 2 \epsilon^{2}$. This fact is from [Popescu et al.] and we provide an alternate proof in Lemma 14 below. Given the lemma we have

$$
\begin{align*}
\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) & =\underset{h \sim Q}{\mathbb{E}}\left[\log \frac{P_{S}(h)}{P_{S^{\prime}}(h)}\right] \\
& =\underset{h \sim P}{\mathbb{E}}\left[\log \frac{P_{S}(h)}{P_{S^{\prime}}(h)}\right]+(\underset{h \sim Q}{\mathbb{E}}-\underset{h \sim P}{\mathbb{E}})\left[\log \frac{P_{S}(h)}{P_{S^{\prime}}(h)}\right] \\
& \leq \mathrm{D}\left(P_{S}, P_{S^{\prime}}\right)+\epsilon\|Q-P\|_{\mathrm{TV}} \\
& \leq 2 \epsilon^{2}+\epsilon\left\|Q-P_{S}\right\|_{\mathrm{TV}} \\
& \leq 2 \epsilon^{2}+\epsilon \sqrt{\frac{\mathrm{D}\left(Q \| P_{S}\right)}{2}} . \text { (Pinsker's inequality) } \tag{21}
\end{align*}
$$

Next we show that Q and Q^{\prime} are close in total variation distance. We consider two cases:
Case a: $\mathrm{D}\left(Q \| P_{S}\right) \leq 2 \epsilon^{2}$. Using convexity of $\mathrm{D}(Q \|$.$) we have$

$$
\begin{aligned}
\mathrm{D}\left(Q \| Q^{\prime}\right) & \leq(1-\lambda) \mathrm{D}\left(Q \| P_{S^{\prime}}\right) \\
& =\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) \\
& \leq 2 \epsilon^{2}+\epsilon \sqrt{\frac{\mathrm{D}\left(Q \| P_{S}\right)}{2}}[\text { from (21)] } \\
& \leq 3 \epsilon^{2} .
\end{aligned}
$$

Using Pinsker's inequality we can conclude that $\left\|Q-Q^{\prime}\right\|_{\mathrm{TV}} \leq 2 \epsilon$.
Case b: $\mathrm{D}\left(Q \| P_{S}\right)>2 \epsilon^{2}$. We have

$$
\begin{aligned}
\left\|Q-Q^{\prime}\right\|_{\mathrm{TV}} & =(1-\lambda)\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}} \\
& =\left(\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right) \frac{\left\|Q-P_{S^{\prime}}\right\|_{\mathrm{TV}}}{\mathrm{D}\left(Q \| P_{S^{\prime}}\right)}\right. \\
& \leq\left(\mathrm{D}\left(Q \| P_{S^{\prime}}\right)-\mathrm{D}\left(Q \| P_{S}\right)\right) \frac{1}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}
\end{aligned}
$$

[from Pinsker's inequality and the fact that $\mathrm{D}\left(Q \| P_{S^{\prime}}\right)>\mathrm{D}\left(Q \| P_{S}\right)$]

$$
\begin{aligned}
& \leq \frac{2 \epsilon^{2}}{\sqrt{2 \mathrm{D}\left(Q \| P_{S^{\prime}}\right)}}+\frac{\epsilon}{2}[\text { from (21) }] \\
& \leq 2 \epsilon\left[\text { since } \mathrm{D}\left(Q \| P_{S}\right)>2 \epsilon^{2}\right]
\end{aligned}
$$

Lemma 14. If $\mathrm{D}_{\infty}\left(P_{S}, P_{S^{\prime}}\right) \leq \epsilon$ for all $S, S^{\prime} \in \mathcal{Z}^{m}$ differing by exactly one point, then $\mathrm{D}\left(P_{S} \|\right.$ $\left.P_{S^{\prime}}\right) \leq 2 \epsilon^{2}$.

Proof. Suppose $\mathrm{D}_{\infty}\left(P_{S}, P_{S^{\prime}}\right) \leq \epsilon$ and $\mathrm{D}_{\infty}\left(P_{S^{\prime}}, P_{S}\right) \leq \epsilon$. Then,

$$
\begin{aligned}
\mathrm{D}\left(P_{S} \| P_{S^{\prime}}\right)+\mathrm{D}\left(P_{S^{\prime}} \| P_{S}\right) & =\underset{x \sim P_{S}}{\mathbb{E}}\left[\log \frac{P_{S}(x)}{P_{S^{\prime}}(x)}\right]+\underset{x \sim P_{S^{\prime}}}{\mathbb{E}}\left[\log \frac{P_{S^{\prime}}(x)}{P_{S}(x)}\right] \\
& =\underset{x \sim P_{S}}{\mathbb{E}}\left[\log \frac{P_{S}(x)}{P_{S^{\prime}}(x)}+\log \frac{P_{S^{\prime}}(x)}{P_{S}(x)}\right]+\underset{x \sim P_{S^{\prime}} P_{S}}{\mathbb{E}}\left[\log \frac{P_{S^{\prime}}(x)}{P_{S}(x)}\right] \\
& =\epsilon \sum_{x}\left|P_{S^{\prime}}(x)-P_{S}(x)\right| \quad\left(\text { since } \mathrm{D}_{\infty}\left(P_{S}, P_{S^{\prime}}\right), \mathrm{D}_{\infty}\left(P_{S^{\prime}}, P_{S}\right) \leq \epsilon\right) \\
& =\epsilon \sum_{P_{S}(x)>0} P_{S}(x)\left|\frac{P_{S^{\prime}}(x)}{P_{S}(x)}-1\right| . \quad\left(P_{S}(x)=0 \text { implies } P_{S^{\prime}}(x)=0\right)
\end{aligned}
$$

Next, since both $\mathrm{D}_{\infty}\left(P_{S^{\prime}}, P_{S}\right)$ and $\mathrm{D}_{\infty}\left(P_{S}, P_{S^{\prime}}\right)$ are bounded by ϵ, we have

$$
\begin{aligned}
\left|\frac{P_{S^{\prime}}(x)}{P_{S}(x)}-1\right| & \leq \max \left(e^{\epsilon}-1,1-e^{-\epsilon}\right) \\
& \leq e^{\epsilon}-1
\end{aligned}
$$

Hence we can conclude that

$$
\begin{aligned}
\mathrm{D}\left(P_{S} \| P_{S^{\prime}}\right)+\mathrm{D}\left(P_{S^{\prime}} \| P_{S}\right) & \leq \epsilon\left(e^{\epsilon}-1\right) \sum_{P_{S}(x)>0} P_{S}(x) \\
& \leq \epsilon\left(e^{\epsilon}-1\right) \\
& \leq 2 \epsilon^{2}
\end{aligned}
$$

B. 8 Proof of Lemma 7

Lemma 7. Suppose $\left\|P_{S}-P_{S^{\prime}}\right\|_{1} \leq \epsilon$ for all $S, S^{\prime} \in Z^{m}$ differing by exactly one point. For some $\mu \geq 0$, define the sample-dependent set of distributions as $Q_{S, \mu}:=\left\{Q:\left\|Q-P_{S}\right\|_{1} \leq \mu\right\}$, and the corresponding family to be $\mathcal{Q}_{m, \mu}=\left(\mathcal{Q}_{S, \mu}\right)_{S \in \mathcal{Z}^{m}}$. Then $\mathcal{Q}_{m, \mu}$ is β-stable for $\beta=\frac{\epsilon}{2}$.

Proof. For convenience, we do the computations using the total variation distance rather than ℓ_{1}.
Since $\left\|P_{S}-P_{S^{\prime}}\right\|_{\mathrm{TV}} \leq \frac{\epsilon}{2}$, there exists a coupling C_{1} of P_{S} and $P_{S^{\prime}}$ such that if $\left(X, X^{\prime}\right) \sim C_{1}$, we have $\mathbb{P}\left[X \neq X^{\prime}\right] \leq \frac{\epsilon}{2}$. Similarly, since $\left\|P_{S}-Q\right\|_{\mathrm{TV}} \leq \frac{\mu}{2}$, there exists a coupling C_{2} of P_{S} and Q such that if $(X, Y) \sim C_{2}$, we have $\mathbb{P}[X \neq Y] \leq \frac{\mu}{2}$. Now construct a coupling C_{3} as follows. First, sample $X \sim P_{S}$. Then, sample $X^{\prime} \sim C_{1}$ conditioned on X, and independently, sample $Y \sim C_{2}$ conditioned on X. Set

$$
Y^{\prime}= \begin{cases}X^{\prime} & \text { if } X=Y \\ Y & \text { otherwise }\end{cases}
$$

Let Q^{\prime} be the distribution of Y^{\prime}. Note that $\mathbb{P}[X=Y] \geq 1-\frac{\mu}{2}$, so $\mathbb{P}\left[Y^{\prime}=X^{\prime}\right] \geq 1-\frac{\mu}{2}$, which implies that $\left\|P_{S^{\prime}}-Q^{\prime}\right\|_{\mathrm{TV}} \leq \frac{\mu}{2}$. Furthermore, by a union bound, we have
$\mathbb{P}\left[Y^{\prime}=Y\right]=\frac{\mu}{2}+\mathbb{P}\left[X^{\prime}=X=Y\right] \geq \frac{\mu}{2}+1-\left(\mathbb{P}[X \neq Y]+\mathbb{P}\left[X \neq X^{\prime}\right]\right) \geq \frac{\mu}{2}+1-\left(\frac{\mu}{2}+\frac{\epsilon}{2}\right)=1-\frac{\epsilon}{2}$.
So, $\left\|Q-Q^{\prime}\right\|_{\mathrm{TV}} \leq \frac{\epsilon}{2}$.

