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Abstract

How can we plan efficiently in real time to control an agent in a complex environ-
ment that may involve many other agents? While existing sample-based planners
have enjoyed empirical success in large POMDPs, their performance heavily relies
on a fast simulator. However, real-world scenarios are complex in nature and
their simulators are often computationally demanding, which severely limits the
performance of online planners. In this work, we propose influence-augmented
online planning, a principled method to transform a factored simulator of the entire
environment into a local simulator that samples only the state variables that are
most relevant to the observation and reward of the planning agent and captures
the incoming influence from the rest of the environment using machine learning
methods. Our main experimental results show that planning on this less accurate
but much faster local simulator with POMCP leads to higher real-time planning
performance than planning on the simulator that models the entire environment.

1 Introduction

We consider the online planning setting where we control an agent in a complex environment that
is partially observable and may involve many other agents. When the policies of other agents are
known, the entire environment can be modeled as a Partially Observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998), and traditional online planning approaches can be applied. While
sample-based planners like POMCP (Silver and Veness, 2010) have been shown effective for large
POMDPs, their performance relies heavily on a fast simulator to perform a vast number of Monte
Carlo simulations in a step. However, many real-world scenarios are complex in nature, making
simulators that capture the dynamics of the entire environment extremely computationally demanding
and hence preventing existing planners from being useful in practice. Towards effective planning in
realistic scenarios, this work is motivated by the question: can we significantly speed up a simulator
by replacing the part of the environment that is less important with an approximate learned model?

We build on the multi-agent decision making literature that tries to identify compact representations
of complex environments for an agent to make optimal decisions (Becker et al., 2003, 2004; Petrik
and Zilberstein, 2009; Witwicki and Durfee, 2010). These methods exploit the fact that in many
structured domains, only a small set of (state) variables, which we call local (state) factors, of the
environment directly affects the observation and reward of the agent. The rest of the environment can
only impact the agent indirectly through their influence on the local factors. For example, Figure 1a
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Figure 1: Left: Controlling a single agent in the Grab A Chair game with 4 other agents. Right:
Dynamic Bayesian Network for the influence-augmented local model.

shows a game called Grab A Chair, in which there are N agents that, at every time step, need to
decide whether they will try to grab the chair on their left or right side. An agent can only secure a
chair if that chair is not targeted by the other neighboring agent. At the end of every step, each agent
only observes whether it obtains the chair, without knowing the decisions of others. Additionally,
there is a noise on observation, i.e., a chance that the agent gets an incorrect observation. In this game,
it is clear that to the planning agent, whose goal is to obtain a chair at as many steps as possible,
the decisions of neighboring agents 2 and 5 are more important than those of agents 3 and 4 as the
former directly determine if the planning agent can secure a chair. In other words, only agents 2 and
5 directly influence agent 1’s local decision making, while agents 3 and 4 may only do so indirectly.

To utilize this fact, we propose influence-augmented online planning, a principled method that
transforms a factored simulator of the entire environment, called global simulator, into a faster
influence-augmented local simulator (IALS). The IALS simulates only the local factors, and concisely
captures the influence of the external factors by predicting only the subset of them, called source
factors, that directly affect the local factors. Using off-the-shelf supervised learning methods, the
influence predictor is learned offline with data collected from the global simulator. Our intuition is
that when planning with sample-based planners, the advantage that substantially more simulations
can be performed in the IALS may outweigh the simulation inaccuracy caused by approximating the
incoming influence. In this paper, we investigate this hypothesis, and show that this approach can
indeed lead to improved online planning performance.

In detail, our planning experiments with POMCP show that, by replacing the global simulator with
an IALS that learns the incoming influence with a recurrent neural network (RNN), we achieve
matching performance while using much less time. More importantly, our real-time online planning
experiments show that planning with the less accurate but much faster IALS yields better performance
than planning with the global simulator in a complex environment, when the planning time per step is
constrained. In addition, we find that learning an accurate influence predictor is more important for
good performance when the local planning problem is tightly coupled with the rest of the environment.

2 Background

2.1 POMDP

A Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998) models the
interactive process of an agent making decisions and receiving feedback in an environment with
limited observation. Formally, a POMDP is a tupleM = (S,A, T ,R,Ω,O, b0, γ) where S, A, Ω
are the set of environment states, actions and observations. The transition function T : S×A → ∆(S)
determines the distribution over the next state St+1 given the previous state St and action At, where
∆(S) denotes the space of probability distributions over S. On transition, the agent receives a reward
Rt ∼ R(St+1, At) and a new observation Ot+1 ∼ O(St+1, At). A policy π is a behavioral strategy
that maps an action-observation history ht = {s0, o1, . . . , at−1, ot} to a distribution over actions. The
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belief state bt ∈ ∆(S) is a sufficient statistic of the history ht, representing the distribution over St
conditioned on ht, with b0 being the initial belief and known. The value function V π(ht) measures the
expected discounted return from ht by following π afterwards, V π(ht) = Eπ[

∑∞
k=0 γ

kRt+k|Ht =
ht], where γ ∈ [0, 1] is the discount factor, with the optimal value function V ∗(ht) = maxπ V

π(ht)
measuring the maximally achievable value from ht. The optimal value of a POMDPM is defined as
V ∗M = V ∗(b0) = maxπ Eπ[

∑∞
t=0 γ

tRt].

In structured domains, the state space S of a POMDP can be factorized into a finite set of state vari-
ables S = {S1, . . . ,SN}, whose conditional independence between each other and the observation
and reward variables can be utilized to construct a more compact representation of the POMDP called
Dynamic Bayesian Network (DBN) (Boutilier et al., 1999). For convenience, we use the notation St
to refer to both the set of state variables and the joint random variable over them.

2.2 Sample-based Online Planning in POMDPs

Many real-world decision making problems are so complex that finding a policy that performs well in
all situations is not possible. In such cases, online planning methods which aim to find a local policy
π(·|ht) that maximizes V π(ht) when observing a history ht can lead to better performance. In fully
observable case, sample-based planning methods that evaluate actions by performing sample-based
lookahead in a simulator have been shown effective for large problems with sample complexity
irrelevant to the state space size (Kearns et al., 2002). Monte Carlo Tree Search (MCTS) is a popular
family of sample-based planning methods (Coulom, 2006; Kocsis and Szepesvári, 2006; Browne
et al., 2012) that implement a highly selective search by building a lookahead tree and focusing the
search on the most promising branches during the planning process.

POMCP proposed by Silver and Veness (2010) extends MCTS to large POMDPs, addressing both the
curse of dimensionality and the curse of history with Monte Carlo simulation in a generative simulator
G that samples transitions. To avoid the expensive Bayesian belief update, POMCP approximates the
belief state with an unweighted particle filter. Similar to MCTS, POMCP maintains a lookahead tree
with nodes representing the simulated histories h that follow the real history ht. To plan for an action,
POMCP repeatedly samples states from the particle pool B(ht) at the root node. By simulating a
state to the end, with actions selected by the UCB1 algorithm (Auer et al., 2002) inside the tree and
a random policy during the rollout, the visited nodes are updated with the simulated return and the
tree is expanded with the first newly encountered history. When the planning terminates, POMCP
executes the action at with the highest average return and prunes the tree by making the history
ht+1=htatot+1 the new root node. Notably, POMCP shares the simulations between tree search and
belief update by maintaining a pool of encountered particles in every node during the tree search.
This way, when ht+1 is made the new root node, B(ht+1) becomes the new estimated belief state.

2.3 Influence-Based Abstraction

Influence-Based Abstraction (IBA) (Oliehoek et al., 2012) is a state abstraction method (Li et al.,
2006) which abstracts away state variables that do not directly affect the observation and reward of
the agent, without a loss in the value. In the following, we provide a brief introduction on IBA and
refer interested readers to Oliehoek et al. (2019) for more details.

Given a factored POMDP, which we call the global model Mglobal = (S,A, T ,R,Ω,O, b0, γ),
IBA splits the set of state variables that constitute the state space S into two disjoint subsets, the set
of local state variables X that include at least the parent variables of the observation and reward
variables and the set of non-local state variables Y = S\X .

IBA then defines an influence-augmented local model (IALM)MIALM, where the non-local state
variables Y are marginalized out. To define the transition function T IALM on only the local state
variables X , IBA differentiates the local state variables Xdest ⊆ X that are directly affected by
the non-local state variables, called influence destination state variables, from those that are not
X¬dest = X\Xdest. In addition, IBA defines the non-local state variables Y src ⊆ Y that directly
affect X as influence source state variables. In other words, the non-local state variables Y influences
the local state variablesX only through Y src affectingXdest as shown in Figure 1b. Since abstracting
away Y0, . . . , Yt−1 creates a dependency of Y src

t on the history of local states and actions, the state
SIALM
t needs to include both the local state Xt = (X¬destt , Xdest

t ) and the so-called d-separation set
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Dt, which encodes the relevant parts of the local history. Given this, T IALM is defined as follows:

T IALM(SIALM
t+1 |SIALM

t , At) = Pr(Xt+1, Dt+1|Xt, Dt, At)

= Pr(X¬destt+1 |Xt, At)1(Dt+1 = d(Xt, At, Xt+1, Dt)) Pr(Xdest
t+1 |Xt, Dt, At)

= Pr(X¬destt+1 |Xt, At)1(Dt+1 = d(Xt, At, Xt+1, Dt))
∑
ysrct

I(ysrct |Dt) Pr(Xdest
t+1 |Xt, y

src
t , At)

where 1(·) is the indicator function and the notation I is introduced as the influence predictor,
I(ysrct |Dt) = Pr(ysrct |Dt). The function d selects those variables that are relevant to predict the
influence sources Y srct . In this paper, we set d(Xt, At, Xt+1, Dt)) = Dt ∪ {At−1, Xt}. That is,
even though in general it is possible to condition on the history of a subset of local states and actions,
we just use the entire history of local states and actions for simplicity (see Suau et al. (2020) for an
exploitation of this aspect of IBA in the context of Deep RL). The IALM is then formally defined
asMIALM = (SIALM,A, T IALM,R,Ω,O, b0, γ) where the observation function O, reward functionR
and the initial belief b0 remain unchanged because of the definition of the local state variables X .
Theorem 1 in Oliehoek et al. (2019) proves that this is a lossless abstraction by showing the optimal
value of the IALM matches that of the global model, V ∗MIALM

= V ∗Mglobal
.

3 Influence Augmented Online Planning

While IBA results in an IALMMIALM that abstracts away non-local state variables Y in a lossless
way, it is not useful in practice because computing the distribution I(Y src

t |Dt) exactly is in general
intractable. Our approach trades off between the time spent before and during the online planning, by
approximating I(Y src

t |Dt) with a function approximator Îθ learned offline. The learned influence
predictor Îθ will then be integrated with an accurate local simulator Glocal to construct an influence-
augmented local simulator (IALS) that only simulates the local state variables X but concisely
captures the influence of the non-local state variables Y by predicting the influence source state
variables Y src with Îθ. During the online planning, the integrated IALS will be used to replace the
accurate but slow global simulator to speed up the simulations for the sample-based online planners.

Our motivation is that by simulating the local transitions that directly decide the observation and
reward of the agent with an accurate local simulator, the simulation inaccuracy caused by approximat-
ing the distribution I(Y src

t |Dt) with Îθ can be overcome by the advantage that simulations can be
performed significantly faster in the IALS, which is essential to sample-based planners like POMCP
(Silver and Veness, 2010), leading to improved online planning performance in realistic scenarios
with limited planning time. Our overall approach, influence-augmented online planning, is presented
in Algorithm 1, followed by our method to learn an approximate influence predictor with recurrent
neural networks (RNNs) (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) and integrate it with a
local simulator to form a plannable IALS for sample-based planners.

3.1 Learning Approximate Influence Predictor Offline with RNNs

The dependency of I(Y src
t |Dt) on the d-separation setDt renders it infeasible to be computed exactly

online or offline. In this work we learn an approximate influence predictor offline with RNNs by
formalizing it as a supervised sequential classification problem.

For planning with horizonH, we need to predict the conditional distribution over the influence source
state I(Y src

t |Dt) for t = 1 toH−1. We do not need to predict I(Y src
0 |D0) as it is the initial belief

over the influence source state. As RNNs require the input size to be constant for every time step,
we drop the initial local state X0 from Dt so that the input to RNNs at time step t is {At−1, Xt}
and the target is Y src

t . If there exists a distribution from which we can sample a dataset D of input
sequence DH−1 and target sequence (Y src

1 , . . . , Y src
H1

), then this is a classic sequential classification
setup that can be learned by training a RNN Îθ to minimize the average empirical KL divergence
between I(·|Dt) and Îθ(·|Dt) with stochastic gradient descent (SGD) (Ruder, 2016), which yields a
cross-entropy loss in practice. While we leave the question on how can we collect the dataset D in a
way that maximizes the online planning performance for future investigation, in this paper we use a
uniform random policy to sample D from the global simulator Gglobal.
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Algorithm 1: Influence-Augmented Online Planning
input :a real environment env
input :a global simulator Gglobal and a local simulator Glocal
input :an exploratory policy πexplore
input :a sample-based planner planner with a termination condition T , e.g., a fixed time limit
input :a planning horizonH
Offline Influence Learning

Collect a dataset D of input sequences DH−1=(Ai−1, Xi)
H−1
i=1 and target sequences

(Y src
i )H−1i=1 by interacting with the global simulator Gglobal using the policy πexplore;

Train an approximate influence predictor Îθ on the dataset D by minimizing the average
empirical KL Divergence between I(·|Dt) and Îθ(·|Dt) ;

Online Planning with a sample-based planner
Integrate the local simulator Glocal and the learned influence predictor Îθ into an IALS GθIALM;
for t = 0, . . . ,H−1 do

plan for an action until T is met: at = planner.plan(GθIALM, T );
execute the action in the real environment: ot+1 = env.act(at) ;
process the new observation: planner.observe(ot+1)

end

3.2 Integrating the Local Simulator and RNN Influence Predictor for Online Planning

To plan online in a POMDP, sample-based planners like POMCP (Silver and Veness, 2010) require a
generative simulator that supports sampling the initial states and transitions. As shown in Figure 1b,
to sample a transition in the IALS GθIALM, we need to first sample an influence source state Y src

t and
then sample the local transitions in the local simulator Glocal. While in the original formulation of
IBA, Îθ(Y src

t |Dt) conditions on the d-separation set Dt which grows with actions At and new local
states Xt+1 at every time step, we avoid feeding the entire Dt into RNNs for every prediction of
Y src
t by taking the advantage of RNNs whose hidden state Zt is a sufficient statistic of the previous

inputs. As a result, we use SIALM
t = (Xt, Y

src
t , Zt) as the state of the IALS in practice. The transition

sIALMt+1 , ot+1, rt+1 ∼ GθIALM(sIALMt , at) can then be sampled in two steps:

• sample the next local state, observation and reward: xt+1, ot+1, rt ∼ Glocal(xt, ysrct , at)

• sample the next RNN hidden state and influence source state : zt+1, ysrct+1 ∼ Îθ(·|zt, at, xt+1)

The initial state SIALM
0 of the IALS can be easily sampled by first sampling a full state s ∼ b0 and

then extracting the local state and the influence source state (x0, y
src
0 ) from s.

4 Experiments

We perform online planning experiments with the POMCP planner (Silver and Veness, 2010) to
answer the following questions: when learning approximate influence predictors with RNNs,

• can planning with an IALS be faster than planning with the global simulator while achieving
similar performance, when the same number of simulations are allowed per planning step?

• can planning with an IALS yield better performance than planning with the global simulator,
when the same amount of planning time is allowed per planning step?

Experimental Setup

Our codebase was implemented in C++, including a POMCP planner and several benchmarking
domains 1. We ran each of our experiments for many times on a computer cluster with the same
amount of computational resources. To report results, we plot the means of evaluation metrics with
standard errors as error bars. Details of our experiments are provided in the supplementary material.

1available at https://github.com/INFLUENCEorg/IAOP
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(a) Average return (b) Average simulation time per step (seconds)

Figure 2: Performance of POMCP with different simulators in Grab A Chair games of various sizes.
While the IALS with GRU influence predictor achieves matching returns with the global simulator,
the simulation is significantly faster in scenarios with many other agents.

Grab A Chair

The first domain we use is the Grab A Chair domain mentioned in Section 1. In our setting, the
other agents employ a policy that selects chairs randomly in the beginning and greedily afterwards
according to the frequency of observing to obtain a chair when visiting it.

Our intuition is that the amount of speedup we can achieve by replacing Gglobal with GθIALM depends
on how fast we can sample influence source state variables Y src from the approximate influence
predictor Îθ and the size of hidden state variables Y \Y src we can avoid simulating in GθIALM. We
perform planning with different simulators in games of {5, 9, 17, 33, 65, 129} agents for a horizon of
10 steps, where a fixed number of 1000 Monte Carlo simulations are performed per step.

To obtain an approximate influence predictor Îθ, we sample a dataset D of 1000 episodes from the
global simulator Gglobal with a uniform random policy and train a variant of RNN called Gated
Recurrent Units (GRU) (Cho et al., 2014) on D until convergence. To test if capturing the incoming
influence is essential for achieving good performance when planning on GθIALM, we use an IALS with
a uniform random influence predictor as an additional baseline, denoted as GrandomIALM .

Figure 2a shows the performance of planning with different simulators in scenarios of various sizes.
It is clear that planning on GθIALM achieves significantly better performance than planning on GrandomIALM ,
emphasizing the importance of learning Îθ to capture the influence. While planning on GθIALM can
indeed achieve matching performance with Gglobal as shown by the small differences in their returns,
the advantage of the IALS, its speed, is shown in Figure 2b. In contrast to Gglobal which slows down
quickly because of the growing number of state variables to simulate, the computation time of both
GθIALM and GrandomlyIALM barely increases. This is because those state variables added by more chairs and
agents are abstracted away from the simulations in the IALS with their influence concisely captured
by Îθ in the distribution of the two neighboring agents’ decisions. Note that GθIALM is slower than
Gglobal in scenarios with few agents due to the overheads of feedforward passing in the GRU.

To further investigate how will influence-augmented online planning perform in environments with
different influence strengths, by which we mean the degree to which the local states are affected by
the influence source states, we repeat our experiments above in a variant of the 5-agent Grab A Chair
game where the only difference is that when two agents target the same chair, both of them have the
same probability p ∈ [0, 1] to obtain the chair 2. The intuition is that when p is lower, the influence
from the rest of the environment will be stronger as the decisions of the two neighboring agents will
be more decisive on whether the planning agent can secure a chair. In this case, higher prediction
accuracy on the decisions of the two neighboring agents will be required for the agent to plan a
good action. Figure 3 shows the planning performance with all simulators under decreasing p which

2Note that this leads to a physically unrealistic setting since it is possible that two agents obtain the same chair at
a time step. However, it gives us a way to investigate the impact of the influence strength from the rest of the
environment.
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Figure 3: Performance of POMCP with different simulators in the modified Grab A Chair game
under decreasing p, which implies stronger influence from the rest of the environment. The smaller
performance difference between GθIALM and Gglobal under higher p suggests that learning an accurate
influence predictor is more important to achieve good planning performance when the local planning
problem is more tightly coupled with the rest of the environment.

implies stronger influence strength from the rest of the environment. While the same amount of effort
was put into training the approximate influence predictor Îθ, the performance difference between
planning with GθIALM and Gglobal is smaller under higher p. This suggests that in environments where
the local planning problem is more tightly coupled with the rest of the environment, learning an
accurate influence predictor Îθ is more important to achieve good planning performance.

Real-Time Online Planning in Grid Traffic Control

The primary motivation of our approach is to improve online planning performance in realistic
settings where the planning time per step is constrained. For this reason, we conduct real-time
planning experiments in a more realistic domain called Grid Traffic Control, which simulates a busy
traffic system with 9 intersections, each of which consists of 4 lanes with 6 grids as shown in Figure
4a, with more details provided in the supplementary material.

The traffic lights are equipped with sensors providing 4-bit information indicating if there are vehicles
in the grids around them. While the other traffic lights employ a hand-coded switching strategy that
prioritizes lanes with vehicles before the lights and without vehicles after the lights, the traffic light in
the center is controlled by planning, with the goal to minimize the total number of vehicles in this
intersection for a horizon of 30 steps.

As mentioned in Section 2.2, POMCP approximates the belief update with an unweighted particle
filter that reuses the simulations performed during the tree search. However, in our preliminary
experiments, we observed the particle depletion problem, which occurred when POMCP ran out
of particles because none of the existing particles was evidenced by the new observation. While to
alleviate this problem we use a workaround inspired by Silver and Veness (2010) 3, when particle
depletion still occurs at some point during an episode, the agent employs a uniform random policy.

We train an influence predictor with a RNN and evaluate the performance of all three simulators
GrandomIALM , GθIALM and Gglobal in settings where the allowed planning time is fixed per step. Our hypothesis
is that GθIALM will outperform the Gglobal when the planning time allowed is very constrained because
in that case, the advantage on simulation speed will dominate the disadvantage on simulation accuracy
caused by approximating the influence with Îθ.

Figure 4b demonstrates the ability of the IALS to perform more than twice the number of simulations
that can be performed by the global simulator within the same fixed time. This is directly translated
into the ability of POMCP to plan for more time steps before the particle depletion occurs as shown in
Figure 4c. The more important effect of faster simulation is that our approach performs much better
3While more advanced particle filters like Sequential Importance Resampling can reduce this problem, we chose
to use POMCP in unmodified form to make it easier to interpret the benefits of our approach. Our workaround
is that when the search tree is pruned because of a new observation, we add N/6 additional particles sampled
from the initial belief b0 to the current particle pool where N is the number of remaining particles.
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(a) The Grid Traffic Control domain (b) Number of simulations performed per planning step

(c) Number of steps to go on particle depletion (d) Discounted return

Figure 4: Performance of POMCP with different simulators while allowing different numbers of
seconds per planning step in the Grid Traffic Control domain. While the planning performance of
the IALS with trained influence predictor dominates the global simulator when the planning time is
constrained, the performance difference decreases when more time is allowed.

than planning on the global simulator especially when the planning time is limited. This suggests that
there does exist a trade-off between simulation speed and simulation accuracy that allows planning
on the IALS with an approximate influence predictor to achieve better online performance.

Figure 6 in the supplementary material performs a similar time-constrained evaluation in the Grab A
Chair domain. The finding there is that the advantage of the IALS on the simulation speed is clearer
when the global model of the problem is more complex, in which cases the IALS with an approximate
influence predictor shows a superior performance compared to the global simulator.

5 Related Work

The idea of utilizing offline knowledge learning for improved online planning performance has been
well-studied (Gelly and Silver, 2007, 2011; Silver et al., 2016, 2017, 2018; Anthony et al., 2017).
These approaches can be categorized as 1) learning value functions or policies to guide the tree
search, 2) improving default policy for more informative rollouts, 3) replacing rollouts with learned
value functions and 4) initializing state-action value estimates. Our approach takes a distinct path
by speeding up computationally expensive forward simulations, which allows the planner to sample
more trajectories for each decision.

Closest to our work is the approach by Chitnis and Lozano-Pérez (2020), which exploits exogenous
variables to reduce the state space of the model for more efficient simulation and planning. While
both of the approaches learn a more compact model by abstracting away state variables, exogenous
variables are fundamentally different from the non-local variables that we abstract away. By definition,
exogenous variables refer to those variables that are beyond the control of the agent: they cannot
be affected, directly or indirectly, by the agent’s actions (Boutilier et al., 1999; Chitnis and Lozano-
Pérez, 2020). In contrast, the non-local variables that are abstracted away in IBA (Oliehoek et al.,
2012) can be chosen more freely, as long as they do not directly affect the agent’s observation and
reward. Therefore, the exogenous variables and non-local variables are in general two different sets
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of variables that can be exploited to reduce the state space size. For instance, in the traffic problem
of Figure 4a, there are no exogenous variables as our action can directly or indirectly effect the
transitions at other intersections (by taking or sending vehicles from/to them). This demonstrates that
our approach allows us to reduce the state space of this problem beyond the exogenous variables.

The idea of replacing a computationally demanding simulator with an approximate simulator for
higher simulation efficiency has been explored in many fields under the name of surrogate model,
such as computer animation (Grzeszczuk et al., 1999), network simulation (Kazer et al., 2018), the
simulation of seismic waves (Moseley et al., 2018) and so on. Our work explores this idea in the
context of sample-based planning in structured domains.

Recent works in deep model-based reinforcement learning (Oh et al., 2017; Farquhar et al., 2018;
Hafner et al., 2019; Schrittwieser et al., 2019; Van der Pol et al., 2020) have proposed to learn an
approximate model of the environment by interacting with it, and then plan a policy within the learned
model for better sample efficiency. Our method considers a very different setting, in which we speed
up the simulation for sample-based planning by approximating part of the global simulator, that
is, the influence from the rest of the environment, and retain the simulation accuracy by explicitly
utilizing a light and accurate local simulator.

6 Conclusion

In this work we aim to address the problem that simulators modeling the entire environment is often
slow and hence not suitable for sample-based planning methods which require a vast number of
Monte Carlo simulations to plan a good action. Our approach transforms an expensive factored
global simulator into an influence-augmented local simulator (IALS) that is less accurate but much
faster. The IALS utilizes a local simulator which accurately models the state variables that are most
important to the planning agent and captures the influence from the rest of the environment with an
approximate influence predictor learned offline. Our empirical results in the Grid Traffic Control
domain show that in despite of the simulation inaccuracy caused by approximating the incoming
influence with a recurrent neural network, planning on the IALS yields better online performance
than planning on the global simulator due to the higher simulation efficiency, especially when the
planning time per step is limited. While in this work we collect data from the global simulator with
a random exploratory policy to learn the influence, a direction for future work is to study how this
offline learning procedure can be improved for better performance during online planning.
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Broader Impact

The potential impact of this work is precisely its motivation: making online planning more useful in
real-world decision making scenarios, enabling more daily decisions to be made autonomously and
intelligently, with promising applications including autonomous warehouse and traffic light control.

Unlike simulators constructed by domain experts, which are in general easier to test and debug,
influence-augmented local simulator contains an approximate influence predictor learned from data,
which may fail with rare inputs and result in catastrophic consequences especially when controlling
critical systems. This suggests that extensive testing and regulation will be required before deploying
influence-augmented local simulators in real-world decision making scenarios.
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