
Memory Based Trajectory-conditioned Policies
for Learning from Sparse Rewards

This supplementary material provides details of DTSIL algorithm in Appendix A & B. In Appendix C,
G, and H, we clarify the details for the experiments. We compare DTSIL with the previous work in
Appendix D. We also discuss how robust DTSIL is against the hyperparameter choices (Appendix E)
and different types of stochasticity of the environment (Appendix C and F).

Contents

A Detailed Description of DTSIL Algorithm 2
A.1 DTSIL Full Algorithm . 2
A.2 Algorithm of Sampling Demonstrations . 2
A.3 Algorithm of Updating Trajectory Buffer . 3
A.4 DTSIL Algorithm on Environments with Highly Random Initial States 4

B Additional Implementation Details 6
B.1 Imitation Reward . 6
B.2 Trajectory-Conditioned Policy . 6
B.3 Buffer Organization . 7

C Additional Experimental Details 8
C.1 Apple-Gold Domain with Random Initial States 8
C.2 Atari Montezuma’s Revenge with Random Initial Delay 8
C.3 Atari with Sticky Action . 9
C.4 Robotics Navigation Task with Highly Random Initial States 10
C.5 Robotics Manipulation Task with Highly Random Initial States 10
C.6 Deep Sea . 11
C.7 Mujoco Maze . 12
C.8 Montezuma’s Revenge with Learned State Representation 13
C.9 Apple-Gold domain with Highly Random Structure 13

D Comparison with Learning Diverse Policies by SVPG 14

E Effects of Hyperparameters 15
E.1 Hyperparameter ∆t . 15
E.2 Hyperparameter δ . 16

F Effect of Stochasticity in Environments 17

G Hyperparameters 18

H Environment Setting 19

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A Detailed Description of DTSIL Algorithm

A.1 DTSIL Full Algorithm

In Algorithm 1, we describe the full algorithm of our proposed method DTSIL.

Algorithm 1 Diverse Self-Imitation Learning with Trajectory-Conditioned Policy (DTSIL)

Initialize parameter � for the trajectory-conditioned policy ��(atje≤t; ot; g)
Initialize the trajectory buffer D ; # Store diverse past trajectories
Initialize set of transitions in the current episode E ; # Store current episode trajectory
Initialize set of on-policy samples F ; # Store data for on-policy PPO update
Initialize demonstration trajectory g ;
for each iteration i from 1 to I do

for each step t do
Observe st = fot; etg and choose an action at � ��(atje≤t; ot; g)
Execute action at in the environment to get rt; ot+1; et+1

Store transition E E [f(ot; et; at; rt)g
Positive reward if agent follows demonstration g
No reward after agent completes g and then takes random exploration
Determine rDTSIL

t by comparing e≤t+1 with g (Eq. 1)
Store on-policy sample F F [

�
(ot; et; at; g; r

DTSIL
t)

	
end for
if st+1 is terminal then
D UpdateBuffer(D; E) (Alg. 3)
Clear current episode trajectory E ;
g SampleDemo(D, i, I) (Alg. 2)

end if
� � � �r�LRL # Perform PPO update using on-policy samples (Eq. 2)
Clear on-policy samples F ;
� � � �r�LSL # Perform supervised learning updates using samples from D for J times (Eq. 3)

end for

A.2 Algorithm of Sampling Demonstrations

In Algorithm 2, we summarize how to sample the demonstrations from the trajectory buffer for
exploration or exploitation. Considering the current iteration i and the total number of iterations I ,
we set the probability of sampling demonstration for exploitation to learn good behavior as i

I and the
probability of sampling demonstration for exploration as 1� i

I .

Algorithm 2 Sample Demonstration Trajectories

Input: the trajectory buffer D = fe(1), τ (1), n(1)), (e(2), τ (2), n(2)), � � � g
Input: current iteration i, total number of iterations I .
With probability i

I , run the exploitation mode; with probability 1 � i
I , run the exploration

mode
if random number � U [0, 1] is smaller than i

I then
sample one of the top-K trajectories reaching the near-optimal score in the buffer
g fe0, e1, � � � , ejgjg for all (ot, et, at, rt) 2 τ best

else
Calculate probability distribution p [1p

n(1)
, 1p

n(2)
, � � �]

p pP
j pj

Sample (e, τ, n) � Categorical(D, p)
g fe0, e1, � � � , ejgjg for all (ot, et, at, rt) 2 τ

end if
return g

2

A.3 Algorithm of Updating Trajectory Buffer

In Algorithm 3, we summarize how to process the newly collected episode and update the diverse
trajectories in the trajectory buffer.

Algorithm 3 Update Trajectory Buffer

Input: the trajectory buffer D = f(e(1), τ (1), n(1)), (e(2), τ (2), n(2)), � � � g
Input: the current episode E = f(o0, e0, a0, r0), (o1, e1, a1, r1), � � � , (oT , eT , aT , rT)g
Input: the threshold δ for high level state embedding
Consider all the states in E
for each step t do

Consider state st and partial episode τ�t = f(o0, e0, a0, r0), � � � , (ot, et, at, rt)g
if there exists (e(k), τ (k), n(k)) 2 D where ke(k) � etk < δ then

Compare partial episode τ�t with stored trajectory τ (k)

if τ�t has higher total reward or reaches the same total reward with less steps then
τ (k) τ�t = f(o0, e0, a0, r0), (o1, e1, a1, r1), � � � , (ot, et, at, rt)g
e(k) et

end if
n(k) n(k) + 1

else
D D [(et, τ�t, 1) where τ�t = f(o0, e0, a0, r0), (o1, e1, a1, r1), � � � , (ot, et, at, rt)g

end if
end for
return D

3

A.4 DTSIL Algorithm on Environments with Highly Random Initial States

DTSIL can successfully deal with the moderate degree of stochasticity such as the random initial
delay and the sticky action on Atari games. In the environments with a highly random initial state
distribution, such as the robotics navigation task where the agent is randomly placed in the house,
we modify DTSIL algorithm to store the trajectories not only considering the ending state but also
considering the start state. The modi�cation of DTSIL method is summarized in Algorithm 5 and 4.

For each episode, we sample the demonstration with a start state similar to the current episode, so
that the demonstration could appropriately lead the agent to the state of interest.

Algorithm 4 Sample Demonstration Trajectories for DTSIL in Environments with Highly Random
Initial State Distribution

Input: the trajectory bufferD = f (e(1)
start ; e(1)

end ; � (1) ; n(1)); (e(2)
start ; e(2)

end ; � (2) ; n(2)); � � � g
Input: current iterationi , total number of iterationsI , the state state of the current episodee.

With probability i
I , run the exploitation mode; with probability1 � i

I , run the exploration
mode
if random number� U[0; 1] is smaller thani

I then
sample one of the top-K trajectories reaching the near-optimal score in the buffer, with a
similar start state ase
g f e0; e1; � � � ; ej gj g for all (ot ; et ; at ; r t) 2 � best whereke0 � ek < �

else
sample one of the less frequently visited trajectories in the buffer, with a similar start state
ase
Calculate probability distributionp [1p

n (1)
; 1p

n (2)
; � � �]

for each stored trajectory� (i) do
if ke(i)

start � ek � � then
pi 0

end if
end for
p pP

j pj

Sample(estart ; eend ; �; n) � Categorical(D; p)
g f e0; e1; � � � ; ej gj g for all (ot ; et ; at ; r t) 2 �

end if
return g

Figure 1: A diagram showing how to organize the buffer on environments with a highly random initial state
distribution.

4

Additionally, we update the buffer considering trajectory concatenation to help exploration and
exploitation of the good experiences. As illustrated in Figure 1, the agent occasionally collects a
good trajectory frome0 to eT , whereeT is a good state with positive reward. We can concatenate the
stored trajectory frome(j)

start to e(j)
end and the trajectory fromet to eT if et ande(j)

end are similar with

each other. Therefore, the new concatenated trajectory� (i.e. trajectorye(j)
start to e(j)

end and trajectory

et to eT) could roughly lead the agent starting frome(j)
start to eT achieving positive reward.

Algorithm 5 Update Trajectory Buffer for DTSIL in Environments with Highly Random Initial State
Distribution

Input: the trajectory bufferD = f (e(1)
start ; e(1)

end ; � (1) ; n(1)); (e(2)
start ; e(2)

end ; � (2) ; n(2)); � � � g
Input: the current episodeE = f (o0; e0; a0; r 0); (o1; e1; a1; r 1); � � � ; (oT ; eT ; aT ; rT)g
Input: the threshold� for high level state embedding

Consider all the states inE
for each stept do

Consider statest and partial episode� � t = f (o0; e0; a0; r 0); � � � ; (ot ; et ; at ; r t)g
if there exists(e(k)

start ; e(k)
end ; � (k) ; n(k)) 2 D whereke(k)

start � e0k < � andke(k)
end � et k < � then

Compare partial episode� � t with stored trajectory� (k)

if � � t has higher total reward or reaches the same total reward with less stepsthen
� (k) � � t = f (o0; e0; a0; r 0); (o1; e1; a1; r 1); � � � ; (ot ; et ; at ; r t)g
e(k)

end et

e(k)
start e0

end if
n(k) n(k) + 1

else
D D [(e0; et ; � � t ; 1) where� � t = f (o0; e0; a0; r 0); (o1; e1; a1; r 1); � � � ; (ot ; et ; at ; r t)g

end if
end for
If the current episode is with positive reward (which we rarely encounter in the long-horizon,
sparse reward tasks), we consider concatenating the partial trajectory� t :T of the current
episode with trajectories from other start states
if

P T
i =0 r i > 0 then

for each start statee(j)
start different frome0 do

if there exists(e(j)
start ; e(j)

end ; � (j) ; n(j)) 2 D whereke(j)
end � et k < � then

Consider a new trajectory� concatenating� (j) and � t :T with estart = e(j)
start and

eend = eT
if the new concatenated trajectory� is novel or it's better that the stored trajectory with
start statee(j)

start and end stateeT then
add the concatenated trajectory� into the buffer

end if
end if

end for
end if
return D

Experiments on the robotics tasks in Section 4.3.3 in the main text and Appendix C.4 & C.5 show the
advantage of our method over the baselines in such challenging environments.

5

Figure 2: An example showing the updates ofu, given� t = 4 . At each stept, we check the state embedding
et +1 to �nd similar state embeddingeg

u 0 satisfyinget +1 � eg
u 0 (i.e. ket +1 � eg

u 0k < �) and determine the
reward according to Eq. 1. After completing the demonstration, the policy would perform random exploration
until the episode terminates because the reward is always 0 (e6).

B Additional Implementation Details

B.1 Imitation Reward

Given a demonstration trajectoryg = f eg
0; eg

1; � � � ; eg
jgj g, we provide reward signals for imitating

g and train the policy to maximize rewards. At the beginning of an episode, the indexu of the
lastly visited state embedding in the demonstration is initialized asu = � 1. At each stept, if
the agent's new statest +1 has an embeddinget +1 and it is the similar enough to any of the next
� t state embeddings starting from the last visited state embeddingeg

u in the demonstration (i.e.,
ket +1 � eg

u 0k < � whereu < u 0 � u + � t), then it receives a positive imitation rewardr im, and the
index of the last visited state embedding in the demonstration is updated asu u0. This encourages
the agent to visit the state embeddings in the demonstration in a soft-order so that the agent could
possibly edit or augment the demonstration when executing a new trajectory. The demonstration
plays a role to guide the agent to the region of interest in the state embedding space. In summary, the
agent receives a rewardr DTSIL

t de�ned as

r DTSIL
t =

�
f (r t) + r im if 9u0; u < u 0 � u + � t, such thatkeg

u 0 � et +1 k < �
0 otherwise

(1)

wheref (�) is a monotonically increasing function (e.g., clipping [7]). Figure 2 illustrates the updates
of u during an episode when the agent visits a state whose embedding is close to state embeddings in
the trajectoryg.

To investigate how well the trajectory-conditioned policy imitates the diverse demonstrations, we
de�ne the success ratio asujgj to measure the portion of demonstration imitated, whereu is the index
of the last visited state embedding ing when the agent's current episode terminates. We report the
success ratio for the experiments in the following section C. On Apple-Gold domain, the average
success ratio of the imitation increases as training goes on and eventually becomes close to 1.0, which
indicates the trajectory-conditioned policy could successfully follow any given demonstration from
the buffer.

B.2 Trajectory-Conditioned Policy

In the trajectory-conditioned policy (Figure 3), we �rst encode the input stateet (or eg
i) with a

fully-connected layer with 64 units. Next, a RNN with gated recurrent units (GRU) computes the
featureht (or hg

i) with 128 units. The attention weight� t is calculated based on the Bahdanau
attention mechanism [1]. The concatenation of the attention readoutct , the hidden feature of agent's
current stateht , and the feature from the observation� t is used to predict� (at je� t ; ot ; g) with a
linear layer.

During training, our algorithm begins with an empty bufferD. We initialize the demonstration as a
list of zero vectors. With such an input demonstration, the agent performs the random exploration
to collect trajectories to �ll the bufferD. In practice, when we accumulate more and more diverse
trajectories in the buffer, the sampled demonstration trajectoryg = f eg

0; eg
1; � � � ; eg

jgj g could be
lengthy. We present a part of the demonstration as the input into the policy, similarly to translating

6

Figure 3: Architecture of the trajectory-conditioned policy (Repeat of Figure 2 Right in the main text.)

a paragraph sentence by sentence. Speci�cally, we �rst inputf eg
0; eg

1; � � � ; eg
m g (m � j gj) into the

policy. When the index of the agent's last visited state embedding in the demonstrationu belongs
to f m � � t + 1 ; � � � ; mg, we think that the agent has accomplished this part of the demonstration,
and switch to the next partf eg

u ; eg
u+1 ; � � � ; eg

u+ m g. We repeat this process until the last part of the
demonstration. If the last partf eg

u ; eg
u+1 ; � � � ; eg

jgj g is less thanm +1 steps long, we pad the sequence
with zero vectors.

B.3 Buffer Organization

In DTSIL algorithm, we set a threshold� to cluster similar state embeddings. In our experiments, the
state embeddings mostly include the agent's location information and cumulative positive reward.
If the `1 distance between two state embeddings is smaller than the threshold� , we consider
these two state embeddings are similar enough. Such a condition is considered when updating
the buffer with a new trajectory and providing the imitation reward to encourage following the
demonstration. Across different environments, the agent moves in the state embedding space with
different ranges. On the Apple-Gold domain, the agent moves within a17 � 13 discrete grid. On
Atari games, the agent navigates around many rooms, and each room is shown in an84� 84screen.
On robotics navigation task, the agent may walk around a �oor with coordinatex; y; z in the ranges
[� 7:5; 0:5] � [� 2; 2:5] � [0; 1]. To make it easier to set a proper value of� for various environments,
we normalize the ranges so that each dimension of the agent's location coordinate has a range[0; 1],
so we can set the hyper-parameter� around 0.1 for all environments. The speci�c value of� for
each experiment is described in the following sections and the ablative study about� is discussed in
Appendix E.2.

We do not limit the size of bufferD, but the memory cost of DTSIL algorithm is still control-
lable in practice. For each entry(e(i) ; � (i) ; n(i)) 2 D , the most memory consuming part is
� (i) = f (o0; e0; a0; r 0); (o1; e1; a1; r 1); � � � g. We notice that in the stored trajectory� (i) , the state
embeddinget (e.g. agent's location and cumulative reward) only needs small memory size, while
the raw observationot (e.g. RGB screen frame) is more expensive to store. Fortunately,ot in the
demonstration trajectory is only useful in the supervised learning part. Therefore, we only store the
ot in trajectory� (i) , if the ending statee(i) is rarely visited. In such cases, supervised learning is
greatly helpful to train the agent to imitate the demonstration trajectory� (i) and explore around the
rarely visited statee(i) . Otherwise, we do not storeot in the trajectory� (i) , if the ending statee(i)

has a high number of visitation count. The statee(i) could be frequently visited by the policy, so
we do not need to leverage supervised learning objective to push the agent toe(i) and thus we can
save the memory by not storingot in the trajectory� (i) . We report the memory cost for each of our
experiments in the following sections.

7

	Detailed Description of DTSIL Algorithm
	DTSIL Full Algorithm
	Algorithm of Sampling Demonstrations
	Algorithm of Updating Trajectory Buffer
	DTSIL Algorithm on Environments with Highly Random Initial States

	Additional Implementation Details
	Imitation Reward
	Trajectory-Conditioned Policy
	Buffer Organization

	Additional Experimental Details
	Apple-Gold Domain with Random Initial States
	Atari Montezuma's Revenge with Random Initial Delay
	Atari with Sticky Action
	Robotics Navigation Task with Highly Random Initial States
	Robotics Manipulation Task with Highly Random Initial States
	Deep Sea
	Mujoco Maze
	Montezuma's Revenge with Learned State Representation
	Apple-Gold domain with Highly Random Structure

	Comparison with Learning Diverse Policies by SVPG
	Effects of Hyperparameters
	Hyperparameter t
	Hyperparameter

	Effect of Stochasticity in Environments
	Hyperparameters
	Environment Setting

