Memory Based Trajectory-conditioned Policies
for Learning from Sparse Rewards

This supplementary material provides details of DTSIL algorithm in Appendix A & B. In Appendix C,
G, and H, we clarify the details for the experiments. We compare DTSIL with the previous work in
Appendix D. We also discuss how robust DTSIL is against the hyperparameter choices (Appendix E)
and different types of stochasticity of the environment (Appendix C and F).

Contents
A Detailed Description of DTSIL Algorithm 2
A.l1 DTSIL Full Algorithm . . . . . . ... .. ... ... ... .. ... 2
A.2 Algorithm of Sampling Demonstrations . . . . . . . .. ... ... ... ..... 2
A.3 Algorithm of Updating Trajectory Buffer. . . . . . . ... ... ... ... ... 3
A.4 DTSIL Algorithm on Environments with Highly Random Initial States . . . . . . . 4
B Additional Implementation Details 6
B.1 Imitation Reward . . . . . .. . . .. . .. ... 6
B.2 Trajectory-Conditioned Policy . . . .. ... ... ... . ...... . ..... 6
B.3 Buffer Organization . . . . . . . ... ... .. ... 7
C Additional Experimental Details 8
C.1 Apple-Gold Domain with Random Initial States . . . . . . ... ... ... .... 8
C.2 Atari Montezuma’s Revenge with Random Initial Delay . . . . . . .. .. ... .. 8
C.3 Atari with Sticky Action . . . . . . . ... L 9
C.4 Robotics Navigation Task with Highly Random Initial States . . . . . .. ... .. 10
C.5 Robotics Manipulation Task with Highly Random Initial States . . . . . . ... .. 10
C.6 DeepSea . . . . . . . . 11
C.7 MujocoMaze . . . . . . . .. e 12
C.8 Montezuma’s Revenge with Learned State Representation . . . . . ... ... .. 13
C.9 Apple-Gold domain with Highly Random Structure . . . . . . ... .. ... ... 13
D Comparison with Learning Diverse Policies by SVPG 14
Effects of Hyperparameters 15
E.1 Hyperparameter At . . . . . . . . . . e e e 15
E.2 Hyperparameter & . . . . . . . . . . . ... e e e e 16
Effect of Stochasticity in Environments 17
G Hyperparameters 18
H Environment Setting 19

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



A Detailed Description of DTSIL Algorithm

A.1 DTSIL Full Algorithm

In Algorithm 1, we describe the full algorithm of our proposed method DTSIL.

Algorithm 1 Diverse Self-Imitation Learning with Trajectory-Conditioned Policy (DTSIL)

Initialize parameter ~for the trajectory-conditioned policy  (atje<t; Ot; 9)
Initialize the trajectory buffer D ; # Store diverse past trajectories
Initialize set of transitions in the current episode E ; # Store current episode trajectory
Initialize set of on-policy samples F  ; # Store data for on-policy PPO update
Initialize demonstration trajectory g ;
for each iteration i from 1 to | do
for each step t do
Observe st = fo¢; etg and choose an action a¢ (atje<t; 0t; 9)
Execute action a¢ in the environment to get I't; Ot+1; €t+1
Store transition E~ E [ f(0¢; e¢; ac; re)g
# Positive reward if agent follows demonstration g
# No reward after agent completes g and then takes random exploration
Determine r?™™ by comparing €<t+1 with g
Store on-policy sample F F [ (0¢;et;at; 0;r
end for
if St+1 is terminal then
D  UpdateBuffer(D; E)
Clear current episode trajectory E ;
g SampleDemo(D, i, )
end if

PTSIL)

r LR # Perform PPO update using on-policy samples
Clear on-policy samples F ;
r LSt # Perform supervised learning updates using samples from D for J times
end for

(Eq. 1)

(Alg. 3)
(Alg. 2)
(Eq. 2)

(Eq. 3)

A.2  Algorithm of Sampling Demonstrations

In Algorithm 2, we summarize how to sample the demonstrations from the trajectory buffer for
exploration or exploitation. Considering the current iteration ¢ and the total number of iterations I,
we set the probability of sampling demonstration for exploitation to learn good behavior as { and the

probability of sampling demonstration for explorationas 1 .

Algorithm 2 Sample Demonstration Trajectories

Input: the trajectory buffer D = fe 7 nM) (@ 7@ 52 g
Input: current iteration ¢, total number of iterations I.

# With probability Il run the exploitation mode; with probability 1 ~ §, run the exploration

mode )
if random number ~ U/[0, 1] is smaller than | then

# sample one of the top-K trajectories reaching the near-optimal score in the buffer

g Teq, e1, , €jgjd for all (o, e, ag, 1t) 2 rhest
else
Calculate probability distribution p [%, %, ]
p %
Sample (e, 7,n) Categorical(D, p)
g Teg, e, , €jgjd for all (o, ex, ar,1t) 2 7
end if
return g




A.3 Algorithm of Updating Trajectory Buffer

In Algorithm 3, we summarize how to process the newly collected episode and update the diverse
trajectories in the trajectory buffer.

Algorithm 3 Update Trajectory Buffer

Input: the trajectory buffer D = F(e®, 7 n M) (@ 72 n@) g
Input: the current episode E = (0g, eg, ag,70), (01, €1,01,71), ,(oT,er,at,r7)9
Input: the threshold § for high level state embedding
# Consider all the states in E
for each step t do
# Consider state s¢ and partial episode 7 + = (0o, €0, @0, 70),  , (0t, €t, at, 7t)d
if there exists (e®, 7 n(9) 2 D where ke® ek < § then
# Compare partial episode 7 ¢ with stored trajectory 79
if 7 ¢ has higher total reward or reaches the same total reward with less steps then

T(k) T t= f(OO,@(),Cl(),T()),(01,61,@1,7"1), 7(Otaetaatart)g
e et
end if
nK n® 11
else
D D [(6{7’7' t;]-) where 7 t :f(00a€07a077.0)7(Olaelvalvrl)v 7(0t7€t7at77)t)g
end if
end for
return D




A.4 DTSIL Algorithm on Environments with Highly Random Initial States

DTSIL can successfully deal with the moderate degree of stochasticity such as the random initial
delay and the sticky action on Atari games. In the environments with a highly random initial state
distribution, such as the robotics navigation task where the agent is randomly placed in the house,
we modify DTSIL algorithm to store the trajectories not only considering the ending state but also
considering the start state. The modi cation of DTSIL method is summarized in Algorithm 5 and 4.

For each episode, we sample the demonstration with a start state similar to the current episode, so
that the demonstration could appropriately lead the agent to the state of interest.

Algorithm 4 Sample Demonstration Trajectories for DTSIL in Environments with Highly Random
Initial State Distribution

Input: the trajectory buffeb = f (e, ;e @;n®); (2, ;6@ @;n@); g

Cstart end ’
Input: current iteratiom, total number of iterationk, the state state of the current episede

# With probabilityll, run the exploitation mode; with probabilityl IL run the exploration
mode
if random number U[O; 1]is smaller thar} then
# sample one of the top-K trajectories reaching the near-optimal score in the buffer, with a
similar start state a®
g f ep;er; ,eggforall (o;e;ar) 2 best \whereke, ek <
else
# sample one of the less frequently visited trajectories in the buffer, with a similar start state
ase
Calculate probability distributiop ~ [p2—; p2—; ]

n@® ' pn@"’
for each stored trajectoryt’) do
ifkel), ek  then
Pi
end if
end for
e
Sample(€start ;€ena; ;N)  CategoricalD; p)
g f esen; eggforall(o;e;a;r) 2
end if
return g

Figure 1: A diagram showing how to organize the buffer on environments with a highly random initial state
distribution.



Additionally, we update the buffer considering trajectory concatenation to help exploration and
exploitation of the good experiences. As illustrated in Figure 1, the agent occasionally collects a
good trajectory fronmeg to er, whereer is a good state with positive reward. We can concatenate the

stored trajectory fronazgte)lrt to egn)d and the trajectory from; to er if e and gn)d are similar with

each other. Therefore, the new concatenated traject(irg. trajectoryegte)lrt to egn)d and trajectory

e to er) could roughly lead the agent starting fraa&gart to er achieving positive reward.

Algorithm 5 Update Trajectory Buffer for DTSIL in Environments with Highly Random Initial State
Distribution
Input: the trajectory buffed = f(e2  :e® . ©:n®); (2 @ . @:n@); g

Estart + €end 1 Estart end'

Input: the current episode = f (0g; €; ao; ro); (01;€1;a1;r1); ;(or;er;ar;rr)g
Input: the threshold for high level state embedding

# Consider all the states it
for each step do
# Consider states; and partial episode = f(0p; eo ao;ro); (o e ar)g
if there existgel, ;) : ();n®) 2 D wherekell), k< andkelX) ek< then
# Compare partial episode ; with stored trajectory (%)
if ¢ has higher total reward or reaches the same total reward with lesstbips
(k) t = f(00;€0;a0;T0); (0r;€1581;11);  ;(0r; €@ rt)g
(k)

a0
Estart €
end if

nk  n) 41

else
D D[ (es&; t;1)where = f(00;€0;a0;r0);(01;€1;81;r1); (O €;a;rt)g
end if
end for
# If the current episode is with positive reward (which we rarely encounter in the long-horizon,
sparse reward tasks), we consider concatenating the partial trajectqry of the current
episode with trajectories from other start states

if |, ri > Othen
for each start stateﬁ.tart different fromep do

if there existgell), ;el): ():n)) 2 D wherekel), ek< then .
# Consider a new trajectory concatenating ) and .t with esg = eg{;,t and
€end = €1

if the new concatenated trajectorys novel or it's better that the stored trajectory with

start statezsegtgrt and end stater then
add the concatenated trajectoryinto the buffer
end if
end if
end for
end if
return D

Experiments on the robotics tasks in Section 4.3.3 in the main text and Appendix C.4 & C.5 show the
advantage of our method over the baselines in such challenging environments.



Figure 2: An example showing the updatesiofjiven t = 4. At each step, we check the state embedding

e+1 to nd similar state embedding), satisfyingers1 €3, (i.e. keisa €0k < ) and determine the
reward according to Eq. 1. After completing the demonstration, the policy would perform random exploration
until the episode terminates because the reward is alwage O (

B Additional Implementation Details

B.1 Imitation Reward

Given a demonstration trajectogy= fe3; €f; ;e’ |9, we provide reward signals for imitating
g and train the policy to maximize rewards. At the beginning of an episode, the indéxhe
lastly visited state embedding in the demonstration is initialized as 1. At each steq, if
the agent's new stat®.,; has an embedding.; and it is the similar enough to any of the next
t state embeddings starting from the last visited state embe@flimgthe demonstration (i.e.,
ker+1 eﬂok < whereu<u® u+ t),thenitreceives a positive imitation rewarf, and the
index of the last visited state embedding in the demonstration is updated as®. This encourages
the agent to visit the state embeddings in the demonstration in a soft-order so that the agent could
possibly edit or augment the demonstration when executing a new trajectory. The demonstration
plays a role to guide the agent to the region of interest in the state embedding space. In summary, the
agent receives a rewar@™'" de ned as

orsi_ F(r)+r™ ifubu<u® u+ t suchthakelo e.k<
t 0 otherwise

@)

wheref () is a monotonically increasing function (e.g., clippin@)[ Figure 2 illustrates the updates
of u during an episode when the agent visits a state whose embedding is close to state embeddings in
the trajectonyg.

To investigate how well the trajectory-conditioned policy imitates the diverse demonstrations, we
de ne the success ratio f% to measure the portion of demonstration imitated, wheisethe index

of the last visited state embeddinggnvhen the agent's current episode terminates. We report the
success ratio for the experiments in the following section C. On Apple-Gold domain, the average
success ratio of the imitation increases as training goes on and eventually becomes close to 1.0, which
indicates the trajectory-conditioned policy could successfully follow any given demonstration from
the buffer.

B.2 Trajectory-Conditioned Policy

In the trajectory-conditioned policy (Figure 3), we rst encode the input stat@r €”) with a
fully-connected layer with 64 units. Next, a RNN with gated recurrent units (GRU) computes the
featureh; (or h?) with 128 units. The attention weight is calculated based on the Bahdanau
attention mechanisni]. The concatenation of the attention readauthe hidden feature of agent's
current statdn;, and the feature from the observationis used to predict (a;je ¢;0;; g) with a
linear layer.

During training, our algorithm begins with an empty bufizr We initialize the demonstration as a

list of zero vectors. With such an input demonstration, the agent performs the random exploration
to collect trajectories to Il the buffeb. In practice, when we accumulate more and more diverse
trajectories in the buffer, the sampled demonstration trajecory f €J; € ;ejggjg could be
lengthy. We present a part of the demonstration as the input into the policy, similarly to translating



Figure 3: Architecture of the trajectory-conditioned policy (Repeat of Figure 2 Right in the main text.)

a paragraph sentence by sentence. Speci cally, we rstifgdite; ;edg(m | gj)into the
policy. When the index of the agent's last visited state embedding in the demonstré@ongs
tofm t+1; ;mg, we think that the agent has accomplished this part of the demonstration,
and switch to the next pafed;el,, ;  ;eJ, ., 9. We repeat this process until the last part of the
demonstration. If the last pared; €2, ; ;ejggj gislessthamm +1 steps long, we pad the sequence
with zero vectors.

B.3 Buffer Organization

In DTSIL algorithm, we set a thresholdto cluster similar state embeddings. In our experiments, the
state embeddings mostly include the agent's location information and cumulative positive reward.
If the "y distance between two state embeddings is smaller than the threshekl consider

these two state embeddings are similar enough. Such a condition is considered when updating
the buffer with a new trajectory and providing the imitation reward to encourage following the
demonstration. Across different environments, the agent moves in the state embedding space with
different ranges. On the Apple-Gold domain, the agent moves withif al13 discrete grid. On

Atari games, the agent navigates around many rooms, and each room is shov@4in 84 screen.

On robotics navigation task, the agent may walk around a oor with coordigtez in the ranges

[ 7:5;0:5] [ 2;2:5] [0;1]. To make it easier to set a proper value dor various environments,

we normalize the ranges so that each dimension of the agent's location coordinate haq@; égdnge

so we can set the hyper-parameterround 0.1 for all environments. The speci ¢ value dior

each experiment is described in the following sections and the ablative study abaliscussed in
Appendix E.2.

We do not limit the size of buffeD, but the memory cost of DTSIL algorithm is still control-
lable in practice. For each entfg(); ():n()) 2 D, the most memory consuming part is

() = f(0g;en;0;r0); (01;€1;81;r1); g. We notice that in the stored trajector{}’, the state
embedding; (e.g. agent's location and cumulative reward) only needs small memory size, while
the raw observation; (e.g. RGB screen frame) is more expensive to store. Fortunatetythe
demonstration trajectory is only useful in the supervised learning part. Therefore, we only store the
o in trajectory ()| if the ending state(!) is rarely visited. In such cases, supervised learning is
greatly helpful to train the agent to imitate the demonstration trajectbhand explore around the
rarely visited state(!). Otherwise, we do not sto in the trajectory (), if the ending state()
has a high number of visitation count. The stelté could be frequently visited by the policy, so
we do not need to leverage supervised learning objective to push the agéhtind thus we can
save the memory by not storirg in the trajectory (). We report the memory cost for each of our
experiments in the following sections.






	Detailed Description of DTSIL Algorithm
	DTSIL Full Algorithm
	Algorithm of Sampling Demonstrations
	Algorithm of Updating Trajectory Buffer
	DTSIL Algorithm on Environments with Highly Random Initial States

	Additional Implementation Details
	Imitation Reward
	Trajectory-Conditioned Policy
	Buffer Organization

	Additional Experimental Details
	Apple-Gold Domain with Random Initial States
	Atari Montezuma's Revenge with Random Initial Delay
	Atari with Sticky Action
	Robotics Navigation Task with Highly Random Initial States
	Robotics Manipulation Task with Highly Random Initial States
	Deep Sea
	Mujoco Maze
	Montezuma's Revenge with Learned State Representation
	Apple-Gold domain with Highly Random Structure

	Comparison with Learning Diverse Policies by SVPG
	Effects of Hyperparameters
	Hyperparameter t
	Hyperparameter 

	Effect of Stochasticity in Environments
	Hyperparameters
	Environment Setting

