
Counterfactual Predictions under Runtime
Confounding

Supplementary Material

Amanda Coston
Heinz College & Machine Learning Department

Carnegie Mellon University
acoston@cs.cmu.edu

Edward H. Kennedy
Department of Statistics

Carnegie Mellon University
edward@stat.cmu.edu

Alexandra Chouldechova
Heinz College

Carnegie Mellon University
achould@cmu.edu

A Details on Proposed Learning Procedure

We describe a joint approach to learning and evaluating the TCR, PL, and DR prediction methods
in Algorithm 6. This approach efficiently makes use of the need for both prediction and evaluation
methods to estimate the propensity score ⇡.

Algorithm 6 Cross-fitting procedure to learn and evaluate the TCR, PL, and DR prediction methods
Input: Data samples {(Vj , Zj , Aj , Yj)}4n

j=1

Randomly divide training data into four partitions W1, W2, W3, W4 where W1 = {(V 1
j , Z1

j , A
1
j , Y

1
j )}n

j=1 (and similarly for W2,
W3, W4).
for (p, q, r, s) 2 {(1, 2, 3, 4), (4, 1, 2, 3), (3, 4, 1, 2), (2, 3, 4, 1)} do

Stage 1: On Wp, learn µ̂p(v, z) by regressing Y ⇠ V, Z | A = a.
On Wq , learn ⇡̂q(v, z) by regressing I{A = a} ⇠ V, Z

Stage 2: On Wr , learn ⌫̂r
DR by regressing

⇣ I{A=a}
⇡̂q(V,Z) (Y � µ̂p(V, Z)) + µ̂p(V, Z)

⌘
⇠ V

On Wr and Wq , learn ⌫̂r
PL by regressing µ̂p(V, Z) ⇠ V

On Wr , Wq , and Wp, learn ⌫̂r
TCR by regressing Y ⇠ V | A = a

Evaluate for m in { TCR, PL, DR }:
On Wq , learn ⌘̂q

m(v, z) by regressing (Y � ⌫̂r
m(V ))2 ⇠ V, Z | A = a

On Ws, for j = 1, ...n compute �s
m,j =

I{Aj=a}
⇡̂q(Vj,Zj)

((Yj � ⌫̂r
m(Vj))

2 � ⌘̂q
m(Vj , Zj)) + ⌘̂q

m(Vj , Zj)

Output prediction models: ⌫̂DR(v) = 1
4

4X

j=1

⌫̂DR,j(v)); ⌫̂PL(v) = 1
4

4X

j=1

⌫̂PL,j(v) ; ⌫̂TCR(v) = 1
4

4X

j=1

⌫̂TCR,j(v)

Output error estimate confidence intervals: for m in { TCR, PL, DR }:

MSEm =
⇣

1
4n

4X

i=1

nX

j=1

�i
m,j

⌘
± 1.96

r
1

4n
var(�m)

B Proofs and derivations

In this section we provided detailed proofs and derivations for all results in the main paper.

11



B.1 Derivation of Identifications of µ and ⌫

We first show the steps to identify µ(v, z):

µ(v, z) = E[Y a | V = v, Z = z]

E[Y a | V = v, Z = z] = E[Y a | V = v, Z = z,A = a]

= E[Y | V = v, Z = z,A = a]

The first line applies the definition of µ.. The second line follows from training ignorability (Condi-
tion 2.1.1). The third line follows from consistency (Condition 2.1.3).

Next we show the identification of ⌫(v):

⌫(v) = E[Y a | V = v]

E[Y a | V = v] = E[E[Y a | V = v, Z = z] | V = v]

= E[E[Y a | V = v, Z = z,A = a] | V = v]

= E[E[Y | V = v, Z = z,A = a] | V = v]

The first line applies the definition of ⌫ from Section 2. The second line follows from iterated
expectation. The third line follows from training ignorability (Condition 2.1.1). The fourth line
follows from consistency (Condition 2.1.3).

Note that we can concisely rewrite the last line as E[µ(V, Z) | V = v] since we have identified µ.

B.2 Proof that TCR method underestimates risk under mild assumptions on a risk
assessment setting

Proof. In Section 3.1 we posited that the TCR method will often underestimate risk in a risk
assessment setting. We demonstrate this for the setting with a binary outcome Y 2 {0, 1}, but
the logic extends to settings with a discrete or continuous outcome. We assume larger values of
Y are adverse i.e. Y = 0 is desired and Y = 1 is adverse. The decision under which we’d like
to estimate outcomes is the baseline decision A = 0. We start by recalling runtime confounding
condition (2.1.2): P(A = 0 | V, Y 0 = 1) 6= P(A = 0 | V, Y 0 = 0). Here we further refine this
by assuming we are in the common setting where treatment A = 1 is more likely to be assigned to
people who are higher risk. Then P(A = 1 | V, Y 0 = 1) > P(A = 1 | V, Y 0 = 0). Equivalently
P(A = 0 | V, Y 0 = 1) < P(A = 0 | V, Y 0 = 0). By the law of total probability,

P(A = 0 | V ) = P(A = 0 | V, Y 0 = 1)P(Y 0 = 1 | V ) + P(A = 0 | V, Y 0 = 0)P(Y 0 = 0 | V )

Assuming P(Y 0 = 1 | V ) > 0, this implies

P(A = 0 | V, Y 0 = 0) > P(A = 0 | V ) (2)

By Bayes’ rule,

P(A = 0 | V, Y 0 = 0) = P(Y 0 = 0 | V,A = 0)
P(A = 0 | V )

P(Y 0 = 0 | V )

Using this in the LHS of Equation 2 and dividing both sides of Equation 2 by P(A = 0 | V ), we get

P(Y 0 = 0 | V,A = 0)

P(Y 0 = 0 | V )
> 1

Equivalently E[Y 0 | V,A = 0] < E[Y 0 | V ].

B.3 Derivation of Proposition 3.1 (confounding bias of the TCR method)

We recall Proposition 3.1:
Under runtime confounding, a model that perfectly predicts !(v) has pointwise confounding bias
b(v) = !(v)� ⌫(v) =

Z

Z
µ(v, z)

⇣
p(z | V = v,A = a)� p(z | V = v)

⌘
dz 6= 0 (3)

12



Proof. By iterated expectation and the definition of expectation we have that

!(v) =

Z

Z
E[Y | V = v, Z = z,A = a] p(z | V = v,A = a)dz

=

Z

Z
µ(v, z)p(z | V = v,A = a)dz

In the identification derivation above we saw that ⌫(v) = E[µ(V, Z) | V = v]. Using the definition
of expectation, we can rewrite ⌫(v) as

=

Z

Z
µ(v, z)p(z | V = v)dz

Therefore the pointwise bias is

!(v)� ⌫(v) =

Z

Z
µ(v, z)

⇣
p(z | V = v,A = a)� p(z | V = v)

⌘
dz (4)

We can prove that this pointwise bias is non-zero by contradiction. Assuming the pointwise bias
is zero, we have !(v) = ⌫(v) =) Y a ? A | V = v which contradicts the runtime confounding
condition 2.1.2.

We emphasize that the confounding bias does not depend on the treatment effect. This approach is
problematic whenever treatment assignment depends on Y a to an extent that is not measured by V ,
even for settings with no treatment effect (such as selective labels setting [21, 20]).

B.4 Proof of Proposition 3.2 (error of the TCR method)

We can decompose the pointwise error of the TCR method into the estimation error and the bias of
the TCR target.

Proof.

E[(⌫(v)� ⌫̂TCR(v))
2] = E[

⇣
(⌫(v)� !(v)) + (!(v)� ⌫̂TCR(v))

⌘2
]

 2

 
E[(⌫(v)� !(v))2] + E[(!(v)� ⌫̂TCR(v))

2]

!

. (⌫(v)� !(v))2 + E[(!(v)� ⌫̂TCR(v))
2]

= b(v)2 + E[(!(v)� ⌫̂TCR(v))
2]

Where the second line is due to the fact that (a + b)2  2(a2 + b2). In the third line, we drop the
expectation on the first term since there is no randomness in two fixed functions of v.

B.5 Proofs of Proposition 3.3 and Theorem 3.1 (error of the PL and DR methods)

We begin with additional notation needed for the proofs of the error bounds. For brevity let W =
(V,Z,A, Y ) indicate a training observation. The theoretical guarantees for our methods rely on
a two-stage training procedure that assumes independent training samples. We denote the first-
stage training dataset as W1 := {W 1

1 ,W
1
2 ,W

1
3 , ...W

1
n} and the second-stage training dataset as

W2 := {W 2
1 ,W

2
2 ,W

2
3 , ...W

2
n}. Let Ên[Y | V = v] denote an estimator of the regression function

E[Y | V = v]. Let L ⇣ R denote L . R and R . L.
Definition B.1. (Stability conditions) The results assume the following two stability conditions from
[17] on the second-stage regression estimators:
Condition B.1.1. Ên[Y | V = v] + c = Ên[Y + c | V = v] for any constant c
Condition B.1.2. For two random variables R and Q, if E[R | V = v] = E[Q | V = v], then

E
"⇣

Ên[R | V = v]� E[R | V = v]
⌘2
#
⇣ E

"⇣
Ên[Q | V = v]� E[Q | V = v]

⌘2
#

13



B.5.1 Proof of Proposition 3.3 (error of thePL method)

The theoretical results for our two-stage procedures rely on the theory for pseudo-outcome regression
in Kennedy [17] which bounds the error for a two-stage regression on the full set of confounding
variables. However, our setting is different since our second-stage regression is on a subset of
confounding variables. Therefore, Theorem 1 of Kennedy [17] does not immediately give the error
bound for our setting, but we can use similar techniques in order to get the bound for our V-conditional
second-stage estimators.

Proof. As our first step, we define an error function. The error function of the PL approach is r̂PL(v)

= E[µ̂(V, Z) | V = v,W1]� ⌫(v)

= E[µ̂(V, Z) | V = v,W1]� E[µ(V, Z) | V = v]

= E[µ̂(V, Z)� µ(V, Z) | V = v,W1]

The first line is our definition of the error function (following [17]). The second line uses iterated
expectation, and the third lines uses the fact that W1 is a random sample of the training data. Next
we square the error function and apply Jensen’s inequality to get

r̂PL(v)
2 =

⇣
E[µ̂(V, Z)� µ(V, Z) | V = v,W1]

⌘2
 E

h⇣
µ̂(V, Z)� µ(V, Z)

⌘2
| V = v,W1

i

Taking the expectation over W1 on both sides, we get

E[r̂PL(v)
2 | V = v]  E

"
E
h⇣

µ̂(V, Z)� µ(V, Z)
⌘2

| V = v,W1
i
| V = v

#

= E
"⇣

µ̂(V, Z)� µ(V, Z)
⌘2

| V = v

#

Next, under our stability conditions(§ B.1), we can apply Theorem 1 of Kennedy [17] (stated in the
next section for reference) to get the pointwise bound

E
"⇣
⌫̂PL(v)� ⌫(v)

⌘2
#
.E
"⇣
⌫̃(v)� ⌫(v)

⌘2
#
+ E

"⇣
µ̂(V, Z)� µ(V, Z)

⌘2
| V = v

#

Theorem 1 of Kennedy also implies a bound on the integrated MSE of the PL approach:

E k⌫̂PL(v)� ⌫(v)k2 . E k⌫̃(v)� ⌫(v)k2 +
Z

V
E
h
(µ̂(V, Z)� µ(V, Z))2 | V = v

i
p(v)dv

B.5.2 Theorem for Pseudo-Outcome Regression (Kennedy)

The proofs of Proposition 3.3 and Theorem 3.1 rely on Theorem 1 of Kennedy [17] which we restate
here for reference. In what follows we provide the proof for Theorem 3.1.
Theorem B.1 (Kennedy). Recall that W1 denotes our n first-stage training data samples. Let
f̂(w) := f̂(w;W1) be an estimate of the function f(w) using the training data W1. Denote an
independent sample as W . The true regression function is m(v) := E[f(W ) | V = v]. Denote
the second stage regression as m̂(v) := Ên[f̂(W ) | V = v]. Denote its oracle equivalent (if we had
access to Y a) as m̃(v) := Ên[f(W ) | V = v]. Under stability conditions(§ B.1) on the regression
estimator Ên, we have the following bound on the pointwise MSE:

E
h⇣

m̂(v)�m(v)
⌘2i

. E
h⇣

m̃(v)�m(v)
⌘2i

+ E
h
r̂(v)2

i

where r̂(v) describes the error function r̂(v) := E[f̂(W ) | V = v,W1] �m(v). This implies the
following bound for the integrated MSE:

E km̂(v)�m(v)k2 . E km̃(v)�m(v)k2 +
Z

E
⇥
r̂(v)2

⇤
p(v)dv

14



B.5.3 Proof of Theorem 3.1 (error of the DR method)

Here we provide the proof for our main theoretical result which bounds the error of our proposed DR
method.

Proof. As for the PL error bound above, the first step is to derive the form of the error function for
our DR approach. For clarity and brevity, we denote the measure of the expectation in the subscript.

r̂DR(v) = EW |V=v,W1

"
I{A = a}
⇡̂(v, Z)

(Y � µ̂(v, Z)) + µ̂(v, Z)

#
� ⌫(v)

= EZ,A|V=v,W1

"
EW |A=a,V=v,Z=z,W1

"
I{A = a}
⇡̂(v, Z)

(Y � µ̂(v, z)) + µ̂(v, z)

##
� ⌫(v)

= EZ,A|V=v,W1

"
EY |A=a,V=v,Z=z,W1

"
I{A = a}
⇡̂(v, Z)

(Y � µ̂(v, z))

#
+ µ̂(v, Z)

#
� ⌫(v)

= EZ,A|V=v,W1

"
I{A = a}
⇡̂(v, Z)

(EY |A=a,V=v,Z=z,W1 [Y ]� µ̂(v, Z)) + µ̂(v, Z)

#
� ⌫(v)

= EW |V=v,W1

"
I{A = a}
⇡̂(v, Z)

(µ(v, Z)� µ̂(v, Z)) + µ̂(v, Z)

#
� ⌫(v)

= EZ|V=v,,W1

"
EW |V=v,Z=z,W1

"
I{A = a}
⇡̂(v, Z)

(µ(v, z)� µ̂(v, z)) + µ̂(v, z)

##
� ⌫(v)

= EZ|V=v,W1

"
P(A = a | V = v, Z = z)

⇡̂(v, Z)
(µ(v, Z)� µ̂(v, Z)) + µ̂(v, Z)

#
� ⌫(v)

= EZ|V=v,W1

"
⇡(v, Z)

⇡̂(v, Z)
(µ(v, Z)� µ̂(v, Z)) + µ̂(v, Z)

#
� ⌫(v)

= EZ|V=v,W1

"
⇡(v, Z)

⇡̂(v, Z)
(µ(v, Z)� µ̂(v, Z)) + µ̂(v, Z)� µ(v, Z)

#

= E
"
(µ(v, Z)� µ̂(v, Z))(⇡(v, Z)� ⇡̂(v, Z))

⇡̂(v, Z)
| V = v,W1

#

Where the first line holds by definition of the error function r̂ and the second line by iterated
expectation. The third line uses the fact that conditional on Z = z, V = v,A = a, then the only
randomness in W is Y (and therefore µ̂ is constant). The fourth line makes use of the (I{A = a})
term to allow us to condition on only A = a ( since the term conditioning on any other a0 6= a will
evaluate to zero). The fifth line applies the definition of µ.
The sixth line again uses iterated expectation and the seventh makes use of the fact that conditional
on Z, the only randomness now is in A and that W1 is an independent randomly sampled set. The
seventh line applies the definition of ⇡(v, z) = P(A = 1 | V = v, Z = z) which since A 2 {0, 1} is
equal to E[A | V = v, Z = z]. The eight line uses iterated expectation and the fact that W1 is an
independent randomly sampled set to rewrite ⌫(v) = EZ|V=v,W1 [µ(v, Z)]. The ninth line rearranges
the terms.

By Cauchy-Schwarz and the positivity assumption,

r̂DR(v)  C
p

E[(µ(v, Z)� µ̂(v, Z))2 | V = v,W1]
p
E[(⇡(v, Z)� ⇡̂(v, Z))2 | V = v,W1]

for a constant C.

Squaring both sides yields

r̂2DR(v)  C2 E[(µ(v, Z)� µ̂(v, Z))2 | V = v,W1] E[(⇡(v, Z)� ⇡̂(v, Z))2 | V = v,W1]

15



If ⇡̂ and µ̂ are estimated using separate training samples, then taking the expectation over the
first-stage training sample W1 yields:

E[r̂2DR(v)]  C2 E[(µ(v, Z)� µ̂(v, Z))2] | V = v] E[(⇡(v, Z)� ⇡̂(v, Z))2] | V = v]

Applying Theorem 1 of Kennedy [17] gets the pointwise bound:

E
"⇣
⌫̂DR(v)� ⌫(v)

⌘2
#
. E

"⇣
⌫̃(v)� ⌫(v)

⌘2
#

+ E
h
(⇡̂(V, Z)� ⇡(V, Z))2 | V = v

i
E
h
(µ̂(V, Z)� µ(V, Z))2 | V = v

i

and the bound on integrated MSE of the DR approach:
E k⌫̂DR(v)� ⌫k2 . E k⌫̃(v)� ⌫(v)k2

+

Z

V
E
h
(⇡̂(V, Z)� ⇡(V, Z))2 | V = v

i
E
h
(µ̂(V, Z)� µ(V, Z))2 | V = v

i
p(v)dv

B.6 Efficient influence function for DR method

We provide the efficient influence function of the DR method. The efficient influence function
indicates the form of the bias-correction term in the DR method. The efficient influence function
�(A, V, Z, Y ) for parameter  (V ) := E[Y a | V ] = E[E[Y | V, Z,A = a] | V ] is

�(A, V, Z, Y ) =
I{A = a}
⇡(V, Z)

(Y � µ(V, Z)) + µ(V, Z)�  (V )

C Synthetic experiment details and additional results

In this section we present details on the synthetic experiments and present additional results. We
present the random forests graphs omitted from the main paper, results on calibration-type curves
that show where the errors are distributed, and experiments on our evaluation procedure.

C.1 Experimental details

More details on data-generating process We designed our data-generating process in order to
simulate a real-world risk assessment setting. We consider both V and Z to be risk factors whose
larger values indicate increased risk and therefore we construct µ to increase with V and Z. Our
goal is to assess risk under the null (or baseline) treatment as per [10], and we construct ⇡ such that
historically the riskier treatments were more likely to get the risk-mitigating treatment and the less
risky cases were more likely to get the baseline treatment.

We now provide further details on the choices of coefficients and variance parameters. In the first
set of experiments presented in the main paper, we simulate Vi from a standard normal, and in the
uncorrelated setting (where ⇢ = 0) we also simulate Zi from a standard normal. In the correlated
setting, we sample Zi from a normal with mean ⇢Vi and variance 1 � ⇢2 so that the Pearson’s
correlation coefficient between Vi and Zi is ⇢ and so that the variance in Zi = 1. We simulate
µ to be a sparse linear model in V and Z with coefficients of 1 when ⇢ = 0. When ⇢ 6= 1, the
coefficients are set to kv

kv+⇢kz
so that the L1 norm of the ⌫ coefficients equals kv for all values of

⇢. Without this adjustment, changing ⇢ would impact error by also changing the signal-to-noise
ratio in ⌫. We simulate the potential outcome Y a to be conditionally Gaussian and the choice of
variance 1

2n kµ(V, Z)k22 yields a signal-to-noise ratio of 2. The specification for ⌫ follows from
the marginalization of µ over Z. The propensity score ⇡ depends on the sigmoid of a sparse linear
function in V and Z that uses coefficients 1p

kv+kz
in order to satisfy our positivity condition.

We use d = 500, n = 1000, kv = 25, and 0  kz  45 to simulate a sparse high-dimensional
setting with many measured variables in the training data, of which only 5%-15% are predictive of
the outcomes. In one set of experiments, we vary the value of kz to assess impact of various levels
of confounding on performance. In other experiments, where we vary ⇢ or the dimensionality of V
(dV), we use kz = 20 so that V has slightly more predictive power than the hidden confounders Z.

16



Hyperparameters Our LASSO presents are presented for cross-validated hyperparameter selection
using the glmnet package in R. The random forests results use 1000 trees and default mtry and
splitting parameters in the ranger package in R.

Training runs Defining a training run as performing a learning procedure such as LASSO, for
a given hyperparameter selection and given simulation, the TCR method trains in one run, the PL
method trains in two runs, and the DR method trains in three runs. For a given simulation, the exact
number of runs depends on the hyperparameter tuning. Since we only ran random forests (RF) for
the default parameters, the TCR method with RF trained in one run, the PL method with RF trained
in two runs, and the DR method with RF trained in three runs. The LASSO results using cv.glmnet
were tuned over  100 values of �; the TCR method with LASSO trained in  100 runs, the PL
method with LASSO trained in  200 runs, and the DR method with LASSO trained in  300 runs.

Sample size and error metrics For experiments in the main paper, we trained on n = 1000
datapoints. We test on a separate set of n = 1000 datapoints and report the estimated mean squared
error (MSE) on this test set using the following formula:

1

n

nX

i=1

(⌫(Vi)� ⌫̂(Vi))
2

Computing infrastructure We ran experiments on an Amazon Web Serivces (AWS) c5.12xlarge
machine. This parallel computing environment was useful because we ran thousands of simulations.
The traintime of each simulation, entailing the LASSO and RF experiments, took 1.8 seconds. In
practice for most real-world decision support settings, our method can be used in standard computing
environments; relative to existing predictive modeling techniques, our method will require  3X the
current train time. Our runtime depends only on the regression technique used in the second stage
and should be competitive to existing models.

C.2 Random forest results

Figure 3 presents the results when using random forests for the first and second stage estimation in
the uncorrelated V-Z setting. Figure 3a was provided in the main paper, and we include it here again
for ease of reference. Figure 3b shows how method performance varies with dV. At low dV, the TCR
method does significantly better than the two counterfactually valid approaches. This suggests that
the estimation error incurred by the PL and DR methods outweighs the confounding bias of the TCR
method.

C.3 Evaluation experiments

To empirically assess our proposed doubly-robust evaluation procedure, we generated one sample of
training data with n = 1000, d = 500, dV = 200, kv = 25, and kz = 30 as well as a "ground-truth"
test set with n = 10, 000. We trained the TCR, PL, and DR methods on the training data and
estimated their true performance on the large test set. The true prediction error

1

n

nX

i=1

�
Y a
i � ⌫̂(Vi)

�2

was 77.53, 74.12, and 72.68 respectively for the TCR, PL and DR methods. We then ran 100
simulations where we sampled a more realistically sized test set of n = 2000. In each simulation we
performance the evaluation procedure to estimate prediction error on the observed data. The MSE
estimator with 95% CI covered the true MSE 94 times for the DR approach and 93 times for the
PL. 81% of the simulations correctly identified the DR procedure as having the lowest error, 14%
suggested that the PL procedure had the lowest error and 5% suggested that the TCR had the lowest
error.

For additional experimental results on using doubly-robust evaluation methods for predictive models,
we recommend [10].

17



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

12

16

−0.5 0.0 0.5 1.0
ρVi,Zi

E[
(ν
(V
)−

ν̂(
V)
)2
]

● ● ●TCR PL DR

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

22

24

26

28

30

0 10 20 30 40 50
kz

E[
(ν
(V
)−

ν̂(
V)
)2
]

●

●

● ●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●
●

10

20

30

40

0 5 10 15 20 25 30 35 40 45
kz

(a) Random forests

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

10

20

30

40

50 100 150 200 250 300 350 400 450
dv

(b) Random forests

Figure 3: (a) MSE as we vary kz using random forests to learn ⇡̂, µ̂, ⌫̂TCR, ⌫̂PL, ⌫̂DR for ⇢ = 0,
dV = 400 and kv = 25.
(b) MSE against dV using random forests and ⇢ = 0, kv = 25 and kz = 20.
Error bars denote 95% confidence intervals.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

12

16

−0.5 0.0 0.5 1.0
ρVi,Zi

E[
(ν
(V
)−

ν̂(
V)
)2
]

● ● ●TCR PL DR

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

22

24

26

28

30

0 10 20 30 40 50
kz

E[
(ν
(V
)−

ν̂(
V)
)2
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30

31

32

33

34

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
ρ

(a) Random forests

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

26

28

30

0 5 10 15 20 25 30 35 40 45
kz

(b) Random forests

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

22

24

26

28

30

50 100 150 200 250 300 350 400 450
dv

(c) Random forests

Figure 4: (a) MSE against correlation ⇢Vi,Zi for kz = 20, kv = 25, and dV = 400. For all methods,
error decreases with ⇢  0.5, at which point the error does not change with increasing ⇢. (b) MSE
as we increase kz for ⇢ = 0.25, kv = 25, and dV = 400. Compare to Figure 3a; the weak positive
correlation reduces MSE, particularly for kv < i  kz when Vi is only a correlate for the confounder
Zi but not a confounder itself. (c) MSE against dV for ⇢ = 0.25, kz = 20, and kv = 25. As with the
uncorrelated setting (3b), the DR and TCR methods are better able to take advantage of low dV than
the PL method.
Error bars denote 95% confidence intervals.

18



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

12

16

−0.5 0.0 0.5 1.0
ρVi,Zi

E[
(ν
(V
)−

ν̂(
V)
)2
]

● ● ●TCR PL DR

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−5

0

5

−5 0 5

ν̂(V)

ν(
V)

(a) LASSO

●

●

●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

● ●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

−10 −5 0 5 10
ν(V)

(ν
(V
)−

ν̂(
V)
)2

method
●

●

●

BTR
PL
DR

(b) LASSO

Figure 5: (a) Calibration plot for LASSO regressions with p = 400, q = 100, kz = 20 and kv = 25.
A well-calibrated model will track the dotted y = x line. Our DR model is the best calibrated. As
expected from its confounding bias, the TCR method underestimates risk for all predicted values.
Interestingly the PL and DR methods also underestimate risk for higher predicted risk values.
(b) Squared error against true risk ⌫(V ) for LASSO regressions with p = 400, q = 100, kz = 20 and
kv = 25. All models have highest error on the riskiest cases (those with large values of ⌫(V )); this is
particularly pronounced for the TCR model, suggesting that the TCR model would make misleading
predictions for the highest risk cases.

C.4 Calibration-styled analysis of the error

Above we analytically showed that in a standard risk assessment setting the TCR method underes-
timates risk. We empirically demonstrate this in Figure 5 where the calibration curve (Figure 5a)
shows that TCR underestimates risk for all predicted values. Figure 5b plots the squared error against
true risk ⌫(V ), illustrating that errors are extremely large for high-risk individuals, particularly for
the TCR model. This highlights a danger in using confounded approaches like the TCR model: they
make misleading predictions about the highest risk cases. In high-stakes settings like child welfare
screening, this may result in dangerously deciding to not investigate the cases where the child is at
high risk of adverse outcomes [10]. The counterfactually valid PL and DR models mitigate this to
some effect, but future work should investigate why the errors are still large on high-risk cases and
propose procedures to further mitigate this.

D Real-world experiment details and additional results

In this section we elaborate on the details of our evaluation of the methods on a real-world child
welfare screening task.

D.1 Child welfare dataset details

We use a dataset of over 30,000 calls to the child welfare hotline in Allegheny County, Pennsylvania.
Each call contains more than 1000 features, including information on the allegations in the call as
well as county records for all individuals associated with the call. The call features are categorical
variables describing the allegation types and worker-assessed risk and danger ratings. The county
records include demographic information such as age, race and gender as well as criminal justice,
child welfare, and behavioral health history. The outcome we wish to predict is whether the family
would be offered services if the case were screened in for investigation.

19



D.2 Child welfare experimental details

We perform the first stage regressions using random forests to allow us to flexibly estimate the
nuisance function ⇡ and µ. For the second stage regressions, we use LASSO to yield interpretable
prediction models.

Hyperparameters The first stage random forest regressions use 500 trees and the default mtry and
splitting parameters in the ranger package in R. For our LASSO second stage regressions, we use
cross-validation in the glmnet package in R to select the LASSO penalty parameters.

Training runs Each of the two nuisance function estimations in the first stage trains in one run.
The LASSO cross-validation using cv.glmnet tunes over  100 values of �. Therefore, the TCR
method trains in  100 runs, the PL method with LASSO trains in  101 runs, and the DR method
with LASSO trains in  102 runs.

Sample size and error metrics The dataset consists of 30,000 calls involving over 70,000 unique
children. We partitioned the children into train and test partitions using a graph partitioning procedure
that ensured that all siblings were contained within the same partition to avoid the contamination
problem discussed in [9]. In order to enable more precise estimation of the counterfactual outcomes
in this real-world setting, we perform a 1:2 train-test split such that the train split contains 27000
unique children and the test split contains 50000 unique children. We use the evaluation procedure in
§ 4 to obtain estimates of the MSE with confidence intervals.

Computing infrastructure All real-world experiments were run on a MacBook Pro with an 8-core
i9 processor and 16 GB of memory. Each first stage regression trained in 15 seconds. Each second
stage regression trained in 4.5 minutes.

D.3 Modeling human decisions

Algorithmic tools used in decision support settings often estimate the likelihood of an event (outcome)
under a proposed decision. This is the setting for which our method is tailored. By contrast, another
paradigm trains algorithms to predict the human decision. We present here the results of such an
algorithm when evaluated against the downstream outcome of interest (services offered). To train
this model, we used the historical screening decision as the outcome. We allowed this model to
access all confounders (both V and Z, as if we did not have runtime confounding), yet this approach
achieves a significantly higher MSE of 0.3207 with 95% confidence interval (0.3143, 0.3271). It
should not be surprising that a model trained on human decisions performs worse than models trained
on downstream outcomes when we are evaluating against the downstream outcomes. This highlights
the importance of using downstream outcomes in decision support settings when the goal is related to
the downstream outcome e.g. to mitigate the risk of a downstream outcome or to prioritize cases that
will benefit from the decision treatment.

References
[1] Michelle Alexander. The new Jim Crow: Mass incarceration in the age of colorblindness. The

New Press, 2020.

[2] Susan Athey and Stefan Wager. Efficient policy learning. arXiv preprint arXiv:1702.02896,
2017.

[3] Tim Bezemer, Mark CH De Groot, Enja Blasse, Maarten J Ten Berg, Teus H Kappen, Annelien L
Bredenoord, Wouter W Van Solinge, Imo E Hoefer, and Saskia Haitjema. A human (e) factor in
clinical decision support systems. Journal of medical Internet research, 21(3):e11732, 2019.

[4] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1721–1730. ACM, 2015.

20



[5] Sourav Chatterjee. Assumptionless consistency of the lasso. arXiv preprint arXiv:1303.5817,
2013.

[6] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment and causal
parameters. The Econometrics Journal, 2018.

[7] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment and
structural parameters, 2018.

[8] Victor Chernozhukov, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val. Generic machine
learning inference on heterogenous treatment effects in randomized experiments. Technical
report, National Bureau of Economic Research, 2018.

[9] Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithianathan.
A case study of algorithm-assisted decision making in child maltreatment hotline screening
decisions. In Conference on Fairness, Accountability and Transparency, pages 134–148, 2018.

[10] Amanda Coston, Alan Mishler, Edward H Kennedy, and Alexandra Chouldechova. Counter-
factual risk assessments, evaluation, and fairness. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pages 582–593, 2020.

[11] Maria De-Arteaga, Riccardo Fogliato, and Alexandra Chouldechova. A case for humans-
in-the-loop: Decisions in the presence of erroneous algorithmic scores. arXiv preprint
arXiv:2002.08035, 2020.

[12] Alan J Dettlaff, Stephanie L Rivaux, Donald J Baumann, John D Fluke, Joan R Rycraft, and
Joyce James. Disentangling substantiation: The influence of race, income, and risk on the
substantiation decision in child welfare. Children and Youth Services Review, 33(9):1630–1637,
2011.

[13] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

[14] Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In Advances in
Neural Information Processing Systems, pages 9269–9279, 2018.

[15] Danielle Leah Kehl and Samuel Ari Kessler. Algorithms in the criminal justice system: Assess-
ing the use of risk assessments in sentencing. 2017.

[16] Edward H Kennedy. Semiparametric theory and empirical processes in causal inference. In
Statistical causal inferences and their applications in public health research, pages 141–167.
Springer, 2016.

[17] Edward H Kennedy. Optimal doubly robust estimation of heterogeneous causal effects. arXiv
preprint arXiv:2004.14497, 2020.

[18] Amir E Khandani, Adlar J Kim, and Andrew W Lo. Consumer credit-risk models via machine-
learning algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010.

[19] Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization
methods for treatment choice. Econometrica, 86(2):591–616, 2018.

[20] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan.
Human decisions and machine predictions. The Quarterly Journal of Economics, 133(1):
237–293, 2018.

[21] Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan.
The selective labels problem: Evaluating algorithmic predictions in the presence of unobserv-
ables. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 275–284, 2017.

21



[22] Zachary Lipton, Julian McAuley, and Alexandra Chouldechova. Does mitigating ml’s impact
disparity require treatment disparity? In Advances in Neural Information Processing Systems,
pages 8125–8135, 2018.

[23] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Fairness through causal
awareness: Learning causal latent-variable models for biased data. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pages 349–358. ACM, 2019.

[24] Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, and
Joris M Mooij. Domain adaptation by using causal inference to predict invariant conditional
distributions. In Advances in Neural Information Processing Systems, pages 10846–10856,
2018.

[25] Maggie Makar, Adith Swaminathan, and Emre Kıcıman. A distillation approach to data efficient
individual treatment effect estimation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4544–4551, 2019.

[26] J Neyman. Sur les applications de la theorie des probabilites aux experiences agricoles: essai
des principes (masters thesis); justification of applications of the calculus of probabilities to
the solutions of certain questions in agricultural experimentation. excerpts english translation
(reprinted). Stat Sci, 5:463–472, 1923.

[27] James Robins, Lingling Li, Eric Tchetgen, Aad van der Vaart, et al. Higher order influence
functions and minimax estimation of nonlinear functionals. In Probability and statistics: essays
in honor of David A. Freedman, pages 335–421. Institute of Mathematical Statistics, 2008.

[28] James M Robins. Marginal structural models versus structural nested models as tools for causal
inference. In Statistical models in epidemiology, the environment, and clinical trials, pages
95–133. Springer, 2000.

[29] James M Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression
models with missing data. Journal of the American Statistical Association, 90(429):122–129,
1995.

[30] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients
when some regressors are not always observed. Journal of the American statistical Association,
89(427):846–866, 1994.

[31] James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models
and causal inference in epidemiology, 2000.

[32] Daniel Rubin and Mark J van der Laan. Extending marginal structural models through local,
penalized, and additive learning. 2006.

[33] Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions.
Journal of the American Statistical Association, 100(469):322–331, 2005.

[34] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[35] Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. In
Advances in Neural Information Processing Systems, pages 1697–1708, 2017.

[36] Vira Semenova and Victor Chernozhukov. Estimation and inference about conditional average
treatment effect and other structural functions. arXiv preprint arXiv:1702.06240, 2017.

[37] Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect:
generalization bounds and algorithms. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3076–3085. JMLR. org, 2017.

[38] Vernon C Smith, Adam Lange, and Daniel R Huston. Predictive modeling to forecast student
outcomes and drive effective interventions in online community college courses. Journal of
Asynchronous Learning Networks, 16(3):51–61, 2012.

22



[39] Adarsh Subbaswamy and Suchi Saria. Counterfactual normalization: Proactively addressing
dataset shift and improving reliability using causal mechanisms. Uncertainty in Artificial
Intelligence, 2018.

[40] Adarsh Subbaswamy, Peter Schulam, and Suchi Saria. Preventing failures due to dataset shift:
Learning predictive models that transport. arXiv preprint arXiv:1812.04597, 2018.

[41] Sarah Tan, Rich Caruana, Giles Hooker, and Yin Lou. Distill-and-compare: Auditing black-box
models using transparent model distillation. In Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society, pages 303–310, 2018.

[42] Administration U.S. Department of Health & Human Services. Child maltreat-
ment, 2018. URL https://www.acf.hhs.gov/cb/research-data-technology/
statistics-research/child-maltreatment.

[43] Mark J Van Der Laan and Sandrine Dudoit. Unified cross-validation methodology for selection
among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample
oracle inequalities and examples. 2003.

[44] Mark J van der Laan and Alexander R Luedtke. Targeted learning of an optimal dynamic
treatment, and statistical inference for its mean outcome. 2014.

[45] Mark J Van der Laan, MJ Laan, and James M Robins. Unified methods for censored longitudinal
data and causality. Springer Science & Business Media, 2003.

[46] Mark J Van der Laan, MJ Laan, and James M Robins. Unified methods for censored longitudinal
data and causality. Springer Science & Business Media, 2003.

[47] Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged
information. Neural networks, 22(5-6):544–557, 2009.

[48] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical Association, 113(523):1228–1242,
2018.

[49] Jiaming Zeng, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3):
689–722, 2017.

[50] Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and Marie Davidian. A robust method for
estimating optimal treatment regimes. Biometrics, 68(4):1010–1018, 2012.

[51] Wenjing Zheng and Mark J van der Laan. Asymptotic theory for cross-validated targeted
maximum likelihood estimation. UC Berkeley Division of Biostatistics Working Paper Series,
2010.

[52] Michael Zimmert and Michael Lechner. Nonparametric estimation of causal heterogeneity
under high-dimensional confounding. arXiv preprint arXiv:1908.08779, 2019.

23


