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1 Bounds at Subsequent Iterations

The main paper provides a brief overview of nested Monte Carlo bounds. We give a more detailed
derivation of those specific bounds here and discuss alternative bounds in Sec. 3. We begin with
notation elements that are used throughout. Let Dr be the outcomes of past experiments at stage
r. We further assume samples of the latent variables X = {xn}n=1:N , drawn from updated beliefs,
xn ∼ p(x | Dr), and data samples Y = {yn}n=1:N , drawn from the forward model of the candidate
experiment, yn ∼ pa(y | xn). We can obtain upper and lower bounds at subsequent stage r as
follows.

1.1 Upper bound on MI

By Jensen’s inequality, we can lower bound log-evidence log p(y | Dr) through any unbiased
estimator of p(y | Dr),

log p(y | Dr) = logE[p̂(y | Dr)] ≥ E [log p̂(y | Dr)] . (1)

A simple choice is a Monte Carlo estimate: p̂(y | Dr) = 1
M

∑M
j=1 p(y | xj) using samples

xj ∼ p(x | Dr). Directly plugging the bound on log-evidence in Eqn. (1) into the expression for MI
yields an upper bound:

I(X;Y | Dr) = E
[
log

p(y | x0)

p(y | Dr)

]
≤ E

[
log

p(y | x0)
1
M

∑M
j=1 p(y | xj)

]
, U (2)

where the expectation is with respect to the joint distribution x0, y ∼ p(x, y | Dr) and marginal
distribution xj ∼ p(x | Dr). We can readily estimate the bound using existing samples, as xn, yn are
drawn from the joint and xj 6=n arises from the marginal,

u =
1

N

N∑
n=1

log
p(yn | xn)

1
N−1

∑
j 6=n p(yn | xj)

. (3)

1.2 Lower bound on MI

We can upper bound log-evidence log pa(y | Dr) using the estimator proposed by [7],

log p(y | Dr) ≤ E

log
1

M + 1

M∑
j=0

p(y | xj)

 (4)
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where x0 ∼ p(x | y,Dr) and x1:M ∼ p(x,Dr). We can bound log p(yn | Dr) using existing samples
by noting xn ∼ p(x | yn,Dr) and x\n ∼ p(x,Dr). Plugging the upper bound on log-evidence from
Eqn. (4) into the expression for MI yields the following lower bound

I(X;Y | Dr) ≥ E

[
log

p(y | x0)
1

M+1

∑M
j=0 p(y | xj)

]
, L (5)

where x0 ∼ p(x | Dr), y ∼ p(y | x0) and x1:M ∼ p(x | Dr). We can estimate the bound from
samples as,

l =
1

N

N∑
n=1

log
p(yn | xn)

1
N

∑N
j=1 p(yn | xj)

(6)

where xn ∼ p(x | Dr) and yn ∼ p(y | xn).

2 Practical Considerations for Using Bound Estimates

While the bounds holds in expectation, unbiased estimates of the bounds may not hold. Practically,
we recommend adding a multiple of the empirical standard deviation to the upper (and subtracting
from the lower) bound estimate to account for the variability arising from estimation of the bounds,
e.g.

û = u + 2σu (7)

where we use two standard deviations in our experiments. The standard deviation can be estimated
by noting the bound estimate is the average of N samples, each with sample variance σ2

u,1. Thus,
when i.i.d. samples are used, the estimator variance is given as σ2

u = 1
N σ

2
u,1. We estimate the single

sample variance with σ2
u,1 = 1

N−1

∑N
n=1((ua)n − ūa)2 where (ua)n , log p(yn|xn)

1
N−1

∑
m 6=n p(yn|xm)

and

ūa , 1
N

∑N
n=1(ua)n. The above derivations can be readily extrapolated to obtain the empirical lower

bound standard deviation σl .

3 Alternative Bounds in BOEDIR

While the analysis and experiments in the main discussion of Bayesian Optimal Experimental Design
with Iterative Refinement (BOEDIR) make use of specific sample-based bounds, the framework is
compatible with any bounds that support iterative refinement. As stated in the introduction (and
elsewhere), there are alternatives, one of which we expound upon now. There exist several forms
of upper and lower bounds, including purely sample-based bounds [9, 6], purely variational bounds
[4], or hybrid bounds that fit a variational distribution to samples from the target distribution [2, 3].
Mechanisms for refinement vary depending on the form of the bound; drawing additional samples
may be used to refine both sample-based and hybrid bounds while performing additional steps of
gradient descent or broadening the variational class may refine the hybrid and variational forms. We
discuss possible refinement mechanisms and costs associated with hybrid bounds next.

3.1 Hybrid Sample-Variational Bounds on MI

For brevity, we drop reference to the dataset D of observed outcomes from previous rounds of
experimental design in sequential BOED but its impact on these bounds is similar to that for purely
sample-based bounds discussed previously in Sec. 1. For the lower bound, we consider the adaptive
contrastive estimate (ACE) of expected information gain developed in [3]. It is defined as,

LACE = E

log
p(y | x0)

1
M+1

∑M
m=0

p(xm)p(y|xm)
qφ(xm|y)

 ≤ I(X;Y ) (8)

where x0 ∼ p(x | y), x1:M ∼ qφ(x | y) and the expectation is taken over {y, x0:M} ∼
p(y, x0)

∏M
m=1 qφ(xm | y). The variational distribution qφ with variational parameters φ approxi-

mates p(x | y). This lower bound is increasing with M and becomes arbitrarily tight as M → ∞,
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making it amenable to iterative refinement through additional samples from qφ. Since the expectation
is often not available in closed form, an unbiased estimate is obtained as,

lACE =
1

N

N∑
n=1

log
p(yn | xn,0)

1
M+1

∑M
m=0

p(xn,m)p(yn|xn,m)
qφ(xn,m|yn)

(9)

where (yn, xn,0) ∼ p(y, x) and {xn,m}Mm=1 ∼ qφ(x | yn).

For the upper bound, we consider the variational nested Monte Carlo (VNMC) estimator from [2]
given as,

UV NMC = E

log
p(y | x0)

1
M

∑M
m=1

p(xm)p(y|xm)
qφ(xm|y)

 ≥ I(X;Y ) (10)

where x0 ∼ p(x | y), x1:M ∼ qν(x | y) and the expectation is taken over {y, x0:M} ∼
p(y, x0)

∏M
m=1 qφ(xm | y). The variational distribution qν is again an approximation to the posterior

p(x | y). This bound also lends itself to iterative refinement as it decreases with M and becomes
tight as M →∞. An unbiased estimate is obtained as,

uV NMC =
1

N

N∑
n=1

log
p(yn | xn,0)

1
M

∑M
m=1

p(xn,m)p(yn|xn,m)
qφ(xn,m|yn)

(11)

where (yn, xn,0) ∼ p(y, x) and {xn,m}Mm=1 ∼ qφ(x | yn).

Note that little additional computation is necessary to obtain both upper and lower bounds. The
bounds differ by a single sample in the denominator and both variational distributions qφ, qν are
approximations to the same distribution p(x | y), allowing a single variational distribution to be
learned and used for both bounds, qφ = qν .

Rather than learning a separate approximation to p(x | yn) for each sample yn, both works use the
ideas of amortized variational inference to learn an inference network that takes in yn and outputs
distribution qφ(x | yn). The inference network can be learned using stochastic gradient descent with
computational cost O(N +M).

3.2 Refinement Mechanisms and Costs

The bound estimates in Eqns. (9) and (11) are consistent as both M,N →∞. Increasing N reduces
the variance of the bound estimator whereas increasing M reduces the bias. When the bound estimate
accounts for the variance of the estimate as in Eqn. (7), increasing either sample count serves to
decrease the upper bound uV NMC and increase the lower bound lACE . We now outline the costs
associated with these different refinement mechanisms. Note that both mechanisms can be included
as options in the framework; our algorithm (MU) would assign different value and costs to each
refinement option and weigh them accordingly to select a refinement procedure on a design.

Suppose we maintain a set of joint posterior samples X0, observation samples Ya and variational
samples Xa,1:Ma . Let Na = |Ya|. Refinement of design a through increasing Na by η samples
(N ′a = Na + η) requires η additional observation samples to be drawn, each with cost cy. Posterior
samples, each with cost cp, need only be drawn if the updated observation sample counts exceed
the existing posterior sample count, N ′a ≥ |X |. An additional Ma variational samples must be
drawn per new observation sample yn: {xn,m}Ma

m=1 ∼ qφ(xn,m | yn), each with cost cv. Note that
possibly many variational samples must be drawn, but each is often considerably less computationally
expensive than posterior sampling, cv � cp; however in aggregate it can become comparable for
Ma sufficiently large. Only X0 is shared across designs and acts as overhead cost. Lastly the bound
evaluation itself is bilinear in N,M with cost cbound(N ′a,Ma) = d0 + d1N

′
a + d2Ma + d3N

′
aMa.

The net cost for refining a by increasingN is cNa = ηcp∗1N ′a≥|X|+ηMacv+ηcy+cbound(N ′a,Ma).

If we consider increasing Ma instead of Na, we do not require any new observation samples nor
posterior samples. We incur the cost of drawing ηNa new variational samples and evaluating the
bound. The net cost for refining a by increasing M is then cMa = ηNacv + cbound(Na,M

′
a).

When the bound estimate is dominated by the variance term in Eqn. 7, the gain from increasing M
is reduced relative to increasing N through the estimated change to lower and upper bounds under
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each refinement procedure. Conversely, when the bound estimate is dominated by the bias term, the
gain from increasing M is increased relative to N . Our approach can incorporate these differences in
costs and expected improvements to the guarantee g∗ across refinement procedures as well as across
arms to select refinements that have high expected marginal utility.

4 Knapsack Problem and Heuristic

The main paper referenced our marginal utility (MU) being an adaptation of the greedy knapsack
heuristic. We now make that relationship explicit.

Let Ω be the set of all items, where each item i has value vi and weight wi. The 0 − 1 knapsack
problem maximizes over subsets t the total value of items subject to a weight (budget) constraint W :

max
t∈{0,1}|Ω|

|Ω|∑
i=1

tivi

s.t.

|Ω|∑
i=1

tiwi ≤W

This optimization problem is known to be NP-hard [5]. A simple greedy approximation algorithm
iteratively adds the item with highest value-per-unit-weight (marginal utility) until the weight limit is
reached. Note that this greedy approach is optimal for the ‘fractional’ knapsack problem wherein
items can be broken up arbitrarily to include a fraction of its weight and value.

For our setting, we would like to identify designs (items) that, when refined, will yield the greatest
improvement in the highest performance guarantee g∗ (net value). To apply greedy knapsack, we
need to specify costs and values for each item. The refinement of each design has a known cost, ca
but unknown, random value. As discussed in the main paper, we propose to assign value based on an
estimated change to g∗.

Relation to knapsack problem While we use the greedy knapsack heuristic of selecting items
with high cost-to-weight ratio, our problem does not naturally correspond to the typical knapsack
formulation as the item cost and value depends on the items already included in the knapsack (selected
for refinement) and their observed outcomes (updated lower and upper bounds). The cost for refining
design k may be reduced if prior inclusion of design j incurred the overhead cost of posterior
sampling. The value of refining the design with second highest upper bound has value dependent on
the upper bounds of other designs and is increased if the highest upper bound has previously been
refined and its updated upper bound decreases significantly.

Relation to existing bandits problems with knapsack policies There exists work in the bandits
literature that considers variable costs for each arm with budget constraints and incorporate a knapsack
policy [1, 8]. However, these works consider the cumulative regret setting whereas our problem is
concerned with the performance/reward of a final selection which is better represented as simple
regret. Furthermore, as mentioned in the main paper, our problem differs from standard bandit
problems altogether as unbiased observations of the rewards are not available.

5 Additional Gaussian Experiment Results

We give additional comparisons against BOED baseline and against alternative refinement algorithms
within BOEDIR.

5.1 Comparison against BOED baselines: Additional budgets and relative costs

We compare our approach against two proxies bed-lb, bed-ub in the standard proxy-based BOED
framework. Fig. 1 presents the results for various relative posterior costs, budgets, and the three
motifs discussed in the main paper. Our approach often achieves comparable performance to the
better of the proxies while also providing a performance guarantee.
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Figure 1: Performance Against Proxy-based Baseline for Various Relative Posterior Costs. Median and
quartiles from 50 random trials of realized performance for three motifs. We compare our approach (mu) against
two proxies, bed-lb and bed-ub, in the standard BOED framework subject to the same budgets. Top-bottom:
Relative posterior sampling cost varies from [0.1, 1, 10, 100] to that of observation sampling. Budgets Cmax of
[250, 250, 500, 1000] (left-column) and [500, 500, 1000, 2000] (right-column) for the respective posterior costs.

5.2 Comparison against alternative refinement algorithms: Performance guarantees

Fig. 2 shows the performance guarantees provided when iteratively refining bounds subject to a
maximum budget. The resulting trends are very similar to the case wherein we examine the cost
subject to a target performance guarantee.

As before, with scarce high rewards (top row of Fig. 2), all algorithms for refinement selection perform
similarly as few designs merit refinement. As the distribution of MI provides increasing number
of designs meriting consideration, it becomes increasingly challenging to provide a performance
guarantee as it requires sufficient refinement of the bounds for those designs. This is evident in the
decreasing guarantee broad and even more so with abundant. However, we find that our approach mu
allocates resources in a cost-effective way to achieve higher performance guarantees when subject to
the same budget.

As the relative posterior costs (overhead) increases (left to right) in the plots, we find the two baselines,
ae and lucb, swap in terms of their relative performance. lucb performs better when overhead costs
are negligible whereas ae performs when overhead is especially costly. We find that our approach,
taking into account these costs, performs equal (in scarce) or better than the two baseline across cost
structures.
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Figure 2: Performance Guarantee Vs Budget as Overhead Cost Increases for Three Motifs. Median and
quartiles from 50 random trials of performance guarantees at each budget level. Posterior sampling costs vary
from [0.1, 1, 10, 100] (left-right) to that of observation sampling. Motifs are: scarce mostly uninformative
(top-row), broad similarly informative (middle-row), and abundant mostly informative (bottom-row). Baselines
ae and lucb perform well at low and high posterior costs respectively whereas mu performs well across cost
ratios. All require equally little computation in scarce as loose bounds suffice to identify many designs as poor.
As more designs yield high information, additional computation is required to refine bounds sufficiently to
achieve the target performance guarantee.

6 Description of Tracking Model in Experimental Results

The generative model for multi-object tracking is given as

p (z) ∝ I (z) , p (x | z) =
∏
k,t

N
(
xtk | f(x(t−1)k), Q

)
, p (s | x, z) =

∏
n,t

N (stn | h(xtztn), E)

where xtk is the latent state for target k at time t, stn is the nth sensor observation at t, ztn = k is the
association of stn to target k, and Q, E are dynamics and sensor covariances. I(z) is the constraint
that each target receives exactly one association at each time t. We use linear dynamics and sensor
models f , h.

Incorporation of sensor data results in a multi-modal posterior p(x | s) that we sample from. In
Fig. 3 we illustrate four different assignments of sensor observations to targets, each corresponding
to a different mode in the posterior (out of 24 possible modes). Each round r of BOED seeks
to identify an annotation that maximizes information about the target state, Ia(x; y | s). Each
design a maps to the specification of two sensor observations st1n1

, st2n2
. The annotator reports

whether these sensor data arise from the same underlying object with error probability pannot:
pa((t1,n1),(t2,n2))(y | z) = pannot for y = 1(zt1n1

= zt2n2
). Useful annotations resolve track

ambiguities to reduce the number of modes remaining in the posterior.
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Figure 3: Multiple Modes in Target Posterior. Four different matches of entering to exiting objects at
‘entanglement’ events. Each corresponds to a mode of the posterior over target states. Annotations can help
resolve such ambiguities and reduce the number of modes.
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