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Abstract

We study the low rank regression problgns M x + , wherex andy ared; and

d, dimensional vectors respectively. We consider the extreme high-dimensional
setting where the number of observatioris less tharl; + d,. Existing algorithms

are designed for settings wheras typically as large asank(M )(d; + d,). This

work provides an ef cient algorithm which only involves two SVD, and establishes
statistical guarantees on its performance. The algorithm decouples the problem by
rst estimating the precision matrix of the features, and then solving the matrix
denoising problem. To complement the upper bound, we introduce new techniques
for establishing lower bounds on the performance of any algorithm for this problem.
Our preliminary experiments con rm that our algorithm often out-performs existing
baselines, and is always at least competitive.

1 Introduction

We consider the regression problgn¥ M x + in the high dimensional setting, whexe2 R is

the vector of featurey, 2 R% is a vector of responsel] 2 R% 94 are the learnable parameters,
and N(O; 214, 4,)isanoise term. High-dimensional setting refers to the case where the number
of observation® is insuf cient for recovery and hence regularization for estimation is neces2a@ry [

33, 11]. This high-dimensional model is widely used in practice, such as identifying bioma#drs [
understanding risks associated with various dised<€e$], image recognition38, 17], forecasting
equity returns in nancial markets [36, 44, 31, 7], and analyzing social networks [52, 39].

We consider the “large feature size” setting, in which the number of featlyrissexcessively large

and can be even larger than the number of observatiofihis setting frequently arises in practice
because it is often straightforward to perform feature-engineering and produce a large number of
potentially useful features in many machine learning problems. For example, in a typical equity
forecasting modeln is around 3,000 (i.e., using 10 years of market data), whereas the number

of potentially relevant features can be in the order of thousaBgls2f4, 26, 12]. In predicting

the popularity of a user in an online social netwankis in the order of hundreds (each day is an
observation and a typical dataset contains less than three years of data) whereas the feature size can
easily be more than 10k [40, 5, 43].

Existing low-rank regularization techniques (e.@27,[33, 29 ) are not optimized for the large feature

size setting. These results assume that either the features possess the so-called restricted isometry
property B, or their covariance matrix can be accurately estima8&} [Therefore, their sample
complexityn depends on eitheath, or the smallest eigenvalue valug;, of x's covariance matrix.

For example, a mean-squared error (MSE) result that appeargdim ¢f the formO ﬂ;d—”

n
Whenn d;= 2, this result becomes trivial because the foregast0 produces a comparable
MSE. We design an ef cient algorithm for the large feature size setting. Our algorithm is a simple
two-stage algorithm. LeX 2 R™ 91 be a matrix that stacks together all features ¥ngd R" %
be the one that stacks the responses. In the rst stage, we run a principal component analysis (PCA)
onX to obtain a set of uncorrelated featuéesin the second stage, we run another PCA to obtain a

low rank approximation o£ 7Y and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on using PCA to
process features, a widely used practice for “dimensionality reductidh2p, 20]. PCA is known

to be effective to orthogonalize features by keeping only the subspace explaining large variations.
But its performance can only be analyzed under the so-called factor naigidd]. We show the

ef cacy of PCA withoutthe factor model assumption. Instead, PCA should be interpreted as a robust
estimator ofx's covariance matrix. The empirical estimatr= %XX T in the high-dimensional
setting cannot be directly used becanse d; dp, but it exhibits an interesting regularity: the
leading eigenvectors @ are closer to ground truth than the remaining ones. In addition, the number
of reliable eigenvectors grows as the sample size grows, so our PCA procedure projects the features
along reliable eigenvectors adgnamicallyadjusts?'s rank to maximally utilize the raw features.
Under mild conditions on the ground-truth covariance mafrixof x, we show that it is always
possible to decomposeinto a set of near-independent features and a set of (discarded) features that
have an inconsequential impact on a model's MSE.



When features are transformed into uncorrelated oesur original problem becomgs= Nz+

which can be reduced to a matrix denoising problég} fnd be solved by the second stage. Our
algorithm guarantees that we can recover all singular vectdss whose associated singular values

are larger than a certain thresholdThe performance guarantee can be translated into MSE bounds
parametrized by commonly used variables (though, these translations usually lead to looser bounds).

For example, whell''s rank isr, our result reduces the MSE fro@('(d1+d2)) to O(rd2 +n ©
for a suitably small constait The improvement is most pronounced when ds.

We also provide a new matching lower bound. Our lower bound assertsalzdgorithmcan recover
a fraction of singular vectors df whose associated singular values are smaller thanvhere
is a “gap parameter”. Our lower bound contribution is twofold. First, we introduce a notion of

“local minimax”, which enables us to de ne a lower bound parametrized by the singular values of
N . This is a stronger lower bound than those delivered by the standard minimax framework, which
are often parametrized by the rankf N [27]. Second, we develop a new probabilistic technique
for establishing lower bounds under the new local minimax framework. Roughly speaking, our
techniques assemble a large collection of matrices that share the same singular Vdlumg afe far

from each other, so no algorithm can successfully distinguish these matrices with identical spectra.

2 Preliminaries

Notation. LetX 2 R" 9 andY 2 R" 9 be data matrices with theiirth rows representing the
i-th observation. For matriR, we denote its singular value decompositiorAas UA A(VA)T

andP,(A), UA AVAT isthe rankr approximation obtained by keeping the topingular values
and the corresponding singular vectors. When the context is clear, we drop the supArseriptise

U; ;andV (U, ,andV,)instead. Both(A)and # are used to refer tbth singular value of
A. We use MATLAB notation when we refer to a speci ¢ row or column, e\j;, is the rst row of

V andV-1 is the rst column.kAkg, kAk,, andkAk are Frobenius, spectral, and nuclear norms
of A. In general, we use boldface upper case (X{to denote data matrices and boldface lower
case (e.gx) to denote one sample. Regular fonts denote other matrice<C LetE[ xx '] and
C-= %XTX be the empirical estimate & . LetC =V  (V )T be the eigen-decomposition of
the matrixC , and ; IR ¢, Obe the diagonal entries of . Letfu;uz;:::u-gbe

an arbitrary set of column vectors, aBdan(fuq;u,;:::;u-g) be the subspace spanned by it. An
event happens with high probability means that it happens with probability n °, where 5 is an
arbitrarily chosen large constant and is not optimized.

STEP-1-PCA-X(X) STEP-2-PCA-DENOISEZ, ;Y)
1 [U; ;V]=svd(X) 1 N7 12Ty
2 = l( DHEE 2 Absolute value thresholding.
3 Gap thresholding. 3 is a sujtable constant; is std.d)f the noise.
4 =n °® isatunable parameter. N _ X "
5 ky= maxfkl Sk kel G 4 ke=max kz: i, (N+) n
6 k, - diagonal matrix comprised ¢f igi k,. 5 return sz(l\’L)
7 Uk, Vi, ki leading columns ob) andV .
8 "=( ) %VKT ADAPTIVE-RRR(X;Y)
1 1
9 2, =" U= X T). 1 [2+;7= STEP-1-PCA-A(X).
10 return f2,;"g. 2 Py, (N,)= STEP-2-PCA-DENOISHZ, ; V).

3 return M = Py, (N, )"
Figure 1: Our algorithm (ADAPTIVE-RRR) for solving the regressiogn= M x +
Our model. We consider the modegl = Mx + , wherex 2 R% is a multivariate Gaussian,

y2R% M 2R% % and N(O; ?lg4, 4,). We can relax the Gaussian assumptiong @md
for most results we develop. We assume a PAC learning framework, i.e., we observe a sequence

f(xi;yi)g n of independent samples and our goal is to ndMnthat minimizes the test error
Ex.y [kMx M xk3]. We are speci cally interested in the setting inwhigh n  d;.

The key assumption we make to circumventdhe n issue is that the features are correlated. This
assumption can be justi ed for the following reasofi¥In practice, it is dif cult, if not impossible, to



construct completely uncorrelated featur@y.Whenn  dj, it is not even possible testwhether

the features are uncorrelated.[(iii) When we indeed know that the features are independent, there
are signi cantly simpler methods to design models. For example, we can build multiple models
such that each model regresses on an individual featurge ahd then use a boosting/bagging
method [20, 42] to consolidate the predictions.

The correlatedness assumption implies that the eigenvalu€s decays The only (full rank)
positive semide nite matrices that have non-decaying (uniform) eigenvalues are the identity matrix
(up to some scaling). In other words, wh&n has uniform eigenvalues, has to be uncorrelated.

We aim to design an algorithm that workgen whenhe decay is slow, such as whef{C ) has a
heavy tail. Speci cally, our algorithm assumegs are bounded by a heavy-tail power law series:

Assumption 2.1. The ;(C ) seriessatises;{(C ) c¢ i ' foraconstancand! 2.

We do notmake functional form assumptions ops. This assumption also covers many benign
cases, such as whéh has low rank or its eigenvalues decay exponentially. Many empirical studies
report power law distributions of data covariance matri@84, 50, 13]. Next, we make standard
normalization assumptionEkxk3 = 1, kM k» = 0(1),and 1. Remark that we assume
only the spectral norm dfl is bounded, while its Frobenius norm can be unbounded. Also, we
assume the noise  1is suf ciently large, which is more important in practice. The case when

is small can be tackled in a similar fashion. Finally, our studies avoid examining excessively
unrealistic cases, so we assudie d3. We examine the setting where existing algorithms fail to
deliver non-trivial MSE, so we assume tmat rd; d3.

3 Upper bound

Our algorithm (see Fig. 1) consists of two stefgep 1. Producing uncorrelated features.We run

a PCA to obtain a total number &f orthogonalized features. S&8gepr-1-PCA-Xin Fig. 1. Let

the SVD ofX beX = U ( V)T. Letk, be a suitable rank chosen by inspecting the gapé'sf
singular values (Line 5 i8TEP-1-PCA-X). 2, = nUy, is the set of transformed features output
by this step. The subscript in 2. re ects that a dimension reduction happens so the number of

columns inZ, is smaller than that iX . Compared to standard PCA dimension redugtion, there are
two differences(i) We use the left leading singular vectors)6of(with a re-scaling factor n) as the
output, whereas the PCA reduction outplig (X ). (ii) We design a specialized rule to chodge
whereas PCA usually uses a hard thresholding or other ad-hoc Bikgs2. Matrix denoising. We

run a second PCA on the matX, )T , %21 Y . The rankk; is chosen by a hard thresholding rule

(Line 4 in STEP-2-PCA-DENOISE). Our nal estimator isPy, (K. )", where™= ( ,) 2V is
computed in $SEP-1-PCA-X(X).

3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding the
statistical structure of the problem. We shall realize that applying PCA on the feahowekl not

be viewed as removing noise from a factor model, or nding subspaces that maximize variations
explained by the subspaces as suggested in the standard liteP&tutg j6]. Instead, it implicitly
implements a robust estimator fols precision matrix, and the design of the estimator needs to be
coupled with our objective of forecastiyg thus resulting in a new way of choosing the rank.

Design motivation: warm up. We rst examine a simpli ed probleny = Nz+ , where variables
in z are assumed to be uncorrelated. Assuahred; = d, in this simpli ed setting. Observe that

1 1 1 1 1

ZZ'Y = ZZT@ZNT+E)=(=Z"Z)NT+ ZZTE lg, gNT+ ZZTE=NT + E; (1)

n n n n n

whereE is the noise term anH can be approximated by a matrix with independent zero-mean noises.

Solving the matrix denoising problemEg. 1 implies that when we compuf€ Y , the problem
reduces to an extensively studied matrix denoising problegn2fl]. We include the intuition for
solving this problem for completeness. Theﬁigiﬁl is overlaid with a noise matrik. E will elevate

all the singular values dfl T by an order of = d=n. We run a PCA to extract reliable signals: when



the singular value of a subspace is P d=n, the subspace contains signi cantly more signal than
noise and thus we keep the subspace. Similarly, a subspace associated a singular valuasn
mostly contains noise. This leads to a hard thresholﬁiigalgorithm thafidets P, (NT + E),
wherer is the maximum index such that(NT + E) ¢ d=nfor some constart. In the general

settingy = M x + , x may not be uncorrelated. But when we et () %(V )T x, we see that
E[zz"] = |. This means knowin@ suf ces to reduce the original problem to a simpli ed one.
Therefore, our algorithm uses Step 1 to estintateandZ, and uses Step 2 to reduce the problem to
a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation.In step 1, while we plan to estimate
C , our algorithm runs a PCA oX . We observe that empirical covariance matix %X T™X =

%V() 2(V)T, i.e.,C's eigenvectors coincide witX 's right singular vectors. When we use the
empirical estimator to construgt we obtainz =~ n() (V)"x. When we apply this map to

every training point and assemble the new feature matrix, we exact®/ get nXV() 1= " nu.
It means that usin@ to construct: is the same as running a PCASTEP-1-PCA-X with k; = d;.

Whenk; < d;, PCA uses a low rank approxima-
tion of C as an estimator fa€ . We now explain

why this is effective. First, note th& is very far
fromC whenn d, therefore it is dangerous to
directly plug inC to nd 2. Second, an interesting
regularity ofC exists and can be best explained by

a picture. In Fig. 2, we plot the pairwise angles
between eigenvectors &f and those o€ from a
synthetic dataset. Columns are sorted byGh&
eigenvalues in decreasing order. Whi&nandC
coincide, this plot would look like an identity ma-
trix. WhenC andC are unrelated, then the plot
behaves like a block of white Gaussian noise. We
observe a pronounced pattern: the angle matrix can be roughly divided into two sub-blocks (see
the red lines in Fig. 2). The upper left sub-block behaves like an identity matrix, suggesting that
the leading eigenvectors &f are close to those @& . The lower right block behaves like a white
noise matrix, suggesting that the “small” eigenvector€ afre far from those o€ . Whenn grows,

one can observe the upper left block becomes larger and this the eigenveconslib$equentially

get stabilized. Leading eigenvectors are rst stabilized, followed by smaller ones. Our algorithm
leverages this regularity by keeping only a suitable number of reliable eigenvector€ framie
ensuring not much information is lost when we throw away those “small” eigenvectors.

Figure 2: The angle matrix betwee@ andC .

Implementing the rank selection. We rely on three interacting building blocks:

1. Dimension-free matrix concentratiorfirst, we need to nd a concentration behavior@for

n d; to decoupled; from the MSE bound. We utilize a dimension-free matrix concentration
inequality B5](also replicated as Lemma 3) . Roughly speaking, the concentration behaves as
kC Ck, n z.This guarantees that; (C) i(C)Hj n %by standard matrix perturbation
results [25].

2. Davis-Kahan perturbation resultHowever, the pairwise closeness of thés does not imply the
eigenvectors are also close. WheglC ) and .1 (C ) are close, the corresponding eigenvectors
in C can be “jammed” together. Thus, we need to identify an iridexwhich ;(C ) i+1(C)
exhibits signi cant gap, and use a Davis-Kahan result to showRhé&E) is close toP; (C ). On

the other hand, the map (, ( ) %(V )T) we aim to nd depends on the square root of inverse
() z, so we need additional manipulation to argue our estimate is cldse jo %(V )T

3. The connection between gap and tail Finally, the perforrpance of our procedure is also
characterized by the total volume of signals that are discarded, iig., i(C ), wherek; is the
location that exhibits the gap. The question becomes whether it is possible to idektifyhat
simultaneously exhibits a large gap and ensures the tail after it is well-controlled, e.g., the sum of
the tail isO(n ©) for a constant. We develop a combinatorial analysis to show that #lisays
possibleto nd such a gap under the assumption thafC ) is bounded by a power law distribution

with exponent 2. Combining all these three building blocks, we have:



Proposition 1. Let and be two tunable parameters such that ! (log® n=pm and 3=1().
]

Assumethat; ci °. Consider runningSTEP-1-PCA-Xin Fig. 1, with high probability, we have
(i) Leading elgenvectors/values are closigere exists a unlgary matriy/ and a constant; such

that kV, ( kl)% Vi, C k) WK G o (i) Small tail: ;i ¢ i for a constant;.
Prop. 1 implies that our estimae = '( x) is suf ciently close toz = (x), up to a unitary

transform. We then execu&repr-2-PCA-DeENOISEtO reduce the problem to a matrix denoising
one and solve it by hard-thresholding. Let us refeyte Nz + , wherez is a standard multivariate

Gaussian antll = MV ( )% as theorthogonalized fornof the problem. While we do not directly
observez, our performance is characterized by spectra structuke. of

Theorem 1. Consider runningADAPTIVE-RRRIn Fig. 1 onn independent samplgg;y) from
the modely = Mx + , wherex 2 R% andy 2 R%. LetC = E[xx"]. Assume thafi)

kM k» = 0O(1), and(ii) x is a multivariate Gaussian witkxk, = 1. In addition, 1(C )< 1
andforalli, ;(C) c=i' fora constant, and(iii) N (0; 21g,), where minf ;1g.
Let = ! (log® n:pm, 3=1(),and be a suitably large constant. Lgt= Elﬁ be the
orthogonalized form of the problem. Letbe the largest index such that! > %2 Let¢ be
our testing forecast. With high probability over the training data: |
X Sy 22 r— .
E[ky yKkj] (M)?+o0 —a T O 5 +0 =@ )

s
The expectation is over the randomness of the test data.

Theorem 1 also implies that there exists a way to parametrazed such thatE[k9  yk3]
~ 2 2
(M2+o0 dZT + O(n ©°) for some constarty. We next interpret each termin (2).

>

P
Terms

(N)2+0 - dznz ® are typical for solving a matrix denoising problefif + E(

NT + E): we can extract signals associated witHeading singular vectors ™ ,so .. ( N)?2
starts ai >~ . For each direction V\ae extract, we need to pay a noise term of o?dén%z, leading

>

N 2 2 1 . .
d+ . TermsO - + O @ come from the estimations error &f

to the termO
produced from Prop. 1, consisting of both estimation errorG & leading eigenvectors and the

error of cutting out a tail. We pay an exponent;lpbn both terms (e.g.,5 T in Prop. 1 becomes
T ) because we used Cauchy-Schwarz (CS) twice. One is used in running matrix denoising

algorithm with inaccurate. ; the other one is used to bound the impact of cutting a tail. It remains
open whether two CS is can be circumvented.

Sec. 4 explains how Thm 1 and the lower bound imply the algorithm is near-optimal. Sec. 5 compares
our result with existing ones under other parametrizationsyardg(M ).

3.2 Analysis

We now analyze our algorithm. Our analysis consists of three steps. In step 1, we prove Proposition 1.

In step 2, we relat&T Y with the product produced by our estim&€Y . In step 3, we prove
Theorem 1.

3.2.1 Step 1. PCA for the features (proof of Proposition 1)

This section proves Proposition 1. We shall rst show that the algorithm always terminates. We have
the following lemma.

Lemma 1. Letf ;g 4 be asequence such thatI i =1, ci ' for some constart,
! 2,and 1< 1.Dene ;= ; i+1 fori 1. Let o be a suf ciently large number, anci
andc;, are two suitable constants. Lebe any number such that “¢. Let be any parameter such
that < 1. There exigts an such tha((i) Gap is suf ciently large: | ¢ (= )+

and (i) tail sumissmall: ; ; i ©C=



We remark that Lemma 1 will also be able to show patrt (ii) of Proposition 1 (this will be explained
below). This lemma also corresponds to the “connection between gap and tail” building block referred
in Section 3.1.

P
Proof of Lemma 1De ne the functionh(t) = tc=i! = °3tT otl) (by Euler—Maclaurin formula),
whereo(1) is a function oft
Next, let us de ne
8 9
< X =
ii1=min i : i 1 h(CrT) 1
g g
< X 1 =
i=min i : i 1 = h(CrI) 1

P
Roughly speaking, we want to identify ansuch that ; ; iissmallerthart h "7 T butisas
close to it as possible. We can interpirgin a similar manneri;;i, 1 because of the assumption
1< 1

P
We can verify that; <™ 7 1 because R 1 h "7 1 . We can similarly verify that
i, <c4 T T for some constard;. Now using
X (cs + o(1))"
i 1 5
i i+l
X

i 1 (c3+0(1))"

We may use an averaging argement and show that there exist24dm + 1;i, + 1] such that

- (cg+ 0(2))" (cs + 0(1))"
s io i1 C4\ﬁ
Cs T 1= Cq !!71;
Notethatsss © T 2c ' because <! 1. Next, using that- c¢=", we have
b es « 7
"2 2} £
S = i3 +( ig+l i3)+ +( ) ) l) c=" . (3)

This implies one of |, g+ )it (0 +) is at leasty ° m1=". In other words, there
existsan 2 [iz+1; ] suchthat ; i+ 3 (mx+1). Finally, we can check that

X X c

: i hoT 2 (4)
i iz
O
We apply Lemma 1 by setting! ! 1. Thereisa parémetérthat we can tune, such that it
is always possible to ndan where ;| ¢’ (™ and ;; i 1 ¢ ¢ Y. Forany
1 !
= 0o(1) (a function ofn), we can set = 1 =T |n addition, ik i=0 =T . This

also proves the second part of the Proposition.
It remains to prove part (i) of Proposition 1. It consists of three steps.

Step 1. Dimension-free Chernoff bound for matric®ée rst give a bound orkC ~ Ck;, which
characterizes the tail probability by using the rst and second moments of random vectors. This is
the key device enabling us to meaningfully recover signals even wherd; .



Lemma 2. Recall thatC = E[xxT]andC = :XTX. Forany > 0,
PrlkC Ck. ] (@2n?®exp( n ?=(log*n))+ n 1°: (5)
The exponent 10 is chosen arbitrarily and is not optimized.

Proof of Lemma 2We use the following speci ¢ form of Chernoff bound ([35])

Lemma 3. Letzq, z5;:::;z, beii.d. random vectors such thiat; k a.s. anokE[ziziT]k
Then for any > 0,
2 3
4 1 X T T 5 2 n?
Pr o ziz; E[zz] (2n°) exp 16 2+8 2 (6)

i n 2

We aim to use Lemma 3 to show Lemma 2 and weset X;. But the >-norm ofz;'s are unbounded

so we need to use a simple coupling technique to circumvent the problem. Speci catfyblet
suitable constant and de ne

z ifjzij colog?n

2T 0 otherwise. (7)
By using a standard Chernoff bound, we have
. 1
Pr[9i : z 6 z] W: (8)
P
Let us writeC = % ., ziE . Weset = g log?nand = (1) inLemma 3. One can see that
h | n 2 1
PfkC Ck» ] Pr (kC Ck, ) _(C6C) 2n2exp — + == (9)
log* n nio
O
Step 2. Davis-Kahan boundlhe above analysis gives us thk&  Ck; . We next show that
the rst a few eigenvectors o€ are close to those @ .
Lemma4. Let =! '%9% and 3= ( ). Considering runningSTEP-1-PCA-Xin Fig. 1. Let
P =V, (V)" andP = V,V,.WherkC Ck, kP Pk, Z:
Proof. Recall that ,; ,;:::; 4, arethe eigenvalues @ . Letalso 1; 2;:::; 4, bethe eigen-
values ofC. De ne
S;=[ «x, =101] and S;=[0; «,+1 + =10} (10)
The constant 10 is chosen in an arbitrary manner. Bedeise Ck, , we know thatS; contains
1110 and thatS; contains | ;5005 4, [29]. Using the Davis-Kahan Theorerd], we get
kC Cky, 2
kP Pk » o8 (11)
O

We also need the following building block.

Lemmab5. [47] Let A andB ben n positive semide nite matrices with the same rankloEet
X andY be of full column rank such tha¢X T = A andY Y™ = B. Let be the smallest non-zero
eigenvalue oB . Then there exists a unitary mati¥ 2 RY 9 such that

P p___
oW vk, A Ble( KAk + T KBKa),




Step 3. Commuting the unitary matriRoughly speaking, Lemma 4 and Lemma 5 show that there
exists a unitary matri¥V such thakVy, W Vi, k, is close td0. Standard matrix perturbation result

1
also shows thaty, and |, are close. This gives us the, W | ? andV, ( ;) z are close,

whereas we need thdf, kl%W andV., ( y,) z are close. The unitary matrW is not in the right
place. This is a standard technical obstacle for analyzing PCA based techdigus; P8]. We
develop the following lemma to address the issue.

Lemma 6. LetU;; U, ben  d matrices such that)y U; = U5 U, = |. LetS;, S, be diagonal
matrices with strictly positive entries, and Mt 2 RY 9 be a unitary matrix. Then,

KUISIW  UpS;k kUWUP  UpU3 k

1 1
kU:S;, "W U,S, "k minf (Sy)i g minf(Sy)i g minf (Sz)i g

Proof. Observe that,
UiS; W U,S, 1= UsS tW(SU; W2 S1UT)ULS, T+ UiUT UsS, B ULUS UsS, L

The result then follows by taking spectral norms of both sides, the triangle inequality and the
sub-multiplicativity of the spectral norm.

Results from Step 1 to Step 3 suf ce to prove the rst part of Proposition 1. First, we use Lemma 4
and Lemma 5 (adopted from [47]) to get that

Vi, (e )FW Vi ()Pl 2 (12)

Next, observe that «,; , = (). By applying Lemma 6, witi; = V| andS; = ( kl)%,
Uz = Vi, andS; = ()2, we obtain

1
2

1
KVi, WV, §1k2+ kP Pk, ¢

N

1
W Vkl ki 2k2 3

ka1 k1

This completes the proof of Proposition 1.

3.2.2 Step 2. AnalysisoZTY

Proposition 2. Consider runningADAPTIVE-RRRIn Fig. 1 to solve the regression problgm=
Mx + . Let2, be the output of the rst stag8TEP-1-PCA-X. LetW be the unitary matrix
speci ed in Proposition 1. Left, = 2TY . We have with high probability (over the training data),

N7 =W'NT + B + Er;

where
r

kE k, 2:2 % and kErke = O(= 3):

The rest of this Section proves Proposition 2. Recall that ZNT + E is the orthogonalized
form of our problem. Let us splél =[N, ;N ], whereN. 2 R% Kk: consists of thé; leading
columns ofN andN 2 RY (4 ki) consists of the remaining columns. Similarly,zet [z, ;z ],
wherez, 2 R" X1 andz 2 R" (& K |etZ =[Z+;Z ], whereZ, 2 R" Xt andZ 2

R" (4 ki) Finally, when we refer to estimated features of an individual instance produced from
Step 1, we use. .

We haveY = Z,NJ +Z NT + E. We let
+ :2+ WTZ+
+ = 2+ Z: W,



wherek .k, = O(= %) andk .ky= O(pﬁ= 3). We have
1 1
ﬁ21\( == .+ Z.W)T(Z:NT+Z NT + E)
—wWTINT T 17 7, LTt 1, LToT
= WINS+WT =ZIZ, dy, i N+ SWTZIZ NT+ “WTZIE
1
+ = TZ«NJ+Z NT+E):
We shall let
NI =W'NT + E (13)
where

E=E+B+B+E+E

1
E.=W'T EzIz+ e, k, NJ

1
= ﬁWTzIz NT

1
E3:EWTZIE
1
E4:ﬁ IE
1
B = — TZ«NJ+Z NT):

We next analyze each term. We aim to nd bounds in either spectral norm or Frobenius norm. In
some cases, it suf ces to ugg k, rank(E) to upper boundE ke . So we bound onlyg 's spectral

norm. On the other hand, in the case of analy#ggwve can get a tight Frobenius norm bound but
we cannot get a non-trivial spectral bound.

From time to time, we will label the dimension of matrices in complex multiplication operations to
enable readers to do sanity checks.

Bounding E;. We use the following Lemmas.
Lemma?7. LetZ 2 R" ki wherek; < n. Leteach entry o be an independent standard Gaussian.
We have ( r_)

10lon . ki

1
A 4 — 14
n max: =5 n (14)

Proof of Lemma 7 We rely on the Lemma [41]:

Lemma8. LetS2 R" K (n>k) be a random matrix so that ea@y; is an independent standard
Gaussian random variable. Let,ax (S) be the maximum singular value 8fand i, (S) be the
minimum singular value of it. We have

p

> po _ p_
Pr[p n k t min (S) max (S) n+ k+t] 1 2 exp( t?=2): (15)
Np __ 0 P
We sett =max —-;log”n . Let us start with considering the casgt > log® n. We have

p— p—
mn(ZTZ) n 22 nky+1:20ky n 22 nkg: (16)
and
T p— p—
max(Z'Z) n+2:2 nky+1:21%k; n+4 nky: a7
p
The case% log? n can be analyzed in a similar fashion so that we can get
r__
%ZTZ I max ﬂor?z—nﬂ % ; (18)

O
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Therefore, we have

) ( r_)

r__
10| k 10| k
0pIN ;B Tk max 20N, K

kE k
ko max -

Bounding E;. Observe thaE[kZ NTk2]= nkNTk2. Also,

T T 2 Ty = T2 .
E[kl{ZZ} ra llElZ} k2jzZ NT]= kikz NTKZ:

ki nn (di ki) (d; ki) d
Therefore,
E[ZTZ NT]= kinkN Tke: (19)

We next bounkN kg .

Lemma 9. LetN be the learnable parameter in normalized fohn= [N, ;N ], whereN., 2
RY% ki gndN 2 RY% (4 ki) andk, is determined bysTEP-1-PCA-X. We havekN kg =

o T = ol).

Proof of Lemma 9.Recall that

Nl 9 (23

2 didy dig, o g,

Welet =[ ,; ],where , 2R% kiand 2R% (& ki) WehaveN = MV ( )z.
Therefore,

, 2 1
KN K2 kMK G () =0 = o) (20)

Here, we used the assumptiki k, = O(1) and the last equation holds because of Proposition 1.
O

By (19), (20), and a standard Chernoff bound, we have whp |
r !

r _
kBEk, KE ke 2 %kN ke = 0 ﬁ

BoundingEs. We have the following Lemma.

Lemma 10. LetZ 2 R™ Xt so that each entry i is an independent standard Gaussian and
E 2 R" 9% sothat each entry i is an independent Gaussiah(0; 2). For suf ciently largen,
ki, andd,, wherek;  d,, we have

1 P— P
%ZTE %:%( ki+ do):

q__
Proof of Lemma 10Let t = max @8%;4 ‘;—1 . By Lemma 7, with high probability

kizTz Ik t. This implies that the eigenvaIHes Bf Z are all within the ranga(1  t).
Note thatfor0< < 1=3,if 2 [1 ;§+ ],then” 2 [1 2;1+2 ]. Thisimplies that the
singular values of are within the range n(1  2t).

Let Z:pﬁ: | + Z,wherek Zk 2t. We have

z
Lte-vz po WH)TE = vIg+ ) UY)T e
n n n n
_ z z\7 E Z Z.1zy\T,E .
= |YZ} fg{z_} p—=+V (Us) FFﬁ (21)
Ki Ki'k, n I{Zd
n 2

11



Using the fact that the CBIumns b are orthonormal vector¥, is a unitary matrix, anét, orsz,
we see tha¥/ % (U%)TE=" n is a matrix with i.i.d. Gaussian entries with standard deviatior n.

LetB = VZ(U?)TE= andB =(U?%)TE= . Then, from (21), we have
%ZTE:FFH B+V? ?B (22)

The entries irB (B’) are all i.i.d Gaussian. By MarcheBko-Paﬁtar's Iawp(and tfbe nite sample bound
c il i

of it [41]), we have with high probabilitkBk;kBk = = ky +  d, + o k; + ~ dy). Therefore,
with high probability:

1

1e 11
n

P— P —
P=( kit dp):
) n

Lemma 10 implies that
.1 P— P —
kEsk 497( ky+ do):
Bounding E;. We have

1 d2 d2 d2
21— T 21— 2 _ —
E[KEkE]= SEk [EKi]= —k k=0 25 =o =

da

Using a Chernoff bound, we have wRzkr = 0 72 .

Bounding Bs. Becausdss = = T(ZNT), we have
KEsk2 ni2k TICKZNTKZ :
Using a simple Chernoff bound, we have whp,
kZNTkZ2  2nkMxk3 2nkM k3kxk3 2 n:
This implieskBsk2 O —zn? 2 = O —
We may let

E=EBE+E+EB+EK
Er = B

We can check that

kB ko KE 1ky + kEsks + kEsko + kEgk>

K : p— p—
max %Og—nwﬁ +0 % +i917( ki+ d))+ o %
r
2:2 %
n

Also, we can see th&Er ke = kEske = O( = 2). This completes the proof for Proposition 2.
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3.2.3 Step 3. Analysis of our algorithm's MSE

Let us recall our notation:
1.z=( ) (V) xand , =2, WTz,.
2. We leth] = 2TY be the output of 8ep-1-PCA-X in Fig. 1.

3. All singular vectors if, whose associated singular values ?1—2 are kept.

q__
Let * be the largest index such that'* ?1—2 One can see that our testing forecast is

Py, (N} )2, . Therefore, we need to bouel, [kPy, (N, )2, N zk2].
q_
By Proposition 2, we havl, = (WTNT + E_ + Er)7; wherekE k, 2:2 ‘ﬂ]—z andkEr kg =

O( = %) whp. LetE, E + Er.We have
P, (N« W + EN)2, = P, (NsW + ET)(WTz, + )
P ,(N«W + ENDWTW(W Tz, + )
= Pr((N +EY ) MYt (Wt + )
f 1R TR T e,
=Py, Ny +(WE)T (z+ + W ,):

1

LetEa: (WE)T, B = (WE)", B = (WEr)",and 2 = W .. We still havekE’k,
22 % andkBEke = O( = 3).

We ne>r<]t have |

E, kPy,(N:)2,  Nzk3
h i

:Ez (sz(N+ +E(§Z+ N+Z+)+ sz(N++E%9 N z 2

h i h i
R AR R T TR
|

{z b {z }

1 ’ 2

r—h —h

! i

+2 E; (Po(Ne +E92 Niz.) . E, Po(N.+E9? Nz
(Cauchy Schwarz for random variables)

p

= 1+ 2+2 1 28

We rst bound ; (the easierterz]rm). We have ]
i
2=E; PN, +E9)° Nz 2
h [ i
2E, P, (N.+E)? 2 +2E Nz .
h i

We rstboundE;, Py,(N. + E9) 0 ; . We consider two cases.

q__

Case 1. max(N+) > 5 %2 In this case, we observe thbﬁkz 2:2 ?1—2 + (I)(l).
This implies thakN., + E%, = O(kN.kz) = O(1). Therefore E, Py,(N+ + E9 ¢ i
K(N, + E9 9k2 = O(k 2K2).

q— q—
Case 2. max(N+) 5 dn—z. In this casekN, + E%, dn—z This impliesPy, (N+ +

E% 2 =0 (i.e., the projectioP, () will not keep any subspace).

13



h i

This case also implieE, Py,(N+ + E9 2

2 =0= 0k 2K3)

o1

Next, we haveE[KN z k3]= kN k2 =0 T .
Therefore,
2

=0 —+ T
2= 0 —

Next, we move to bound h i
E: (P(Ns+E92, Niz.) 5o

We shall construct an orthonormal basisRf? and use the basis to “measure the mass”. Let
us describe this simple idea at high-level rst. 1Vo; Vg, be a basis foR% and let

A 2 R% ki be an arbitrary matrix. We haweAk? = = | kv Ak3. The meaning of this equality

is that we may apply a change of basis on the columifs afd the “total mass” oA should remain
unchanged after the basis change. Our orthonormal basis consists of three groups of vectors.

Group 1. fU:';“i+ gfori °,where’ isthe number of {(N*) such that (N ") dn:

Group 2. The subspace i8pan(f Uﬁ? O «,) thatis orthogonal té U:';\i|+ g -. Letusreferto these

We have

kPi,(N+ + EY N, k2

X N, T 2
= Ui (Pi(Ns +E)  Ny) Term 1
. N 2
"X
+ kol (P,(N: + E)  N.)K5 Term 2
ixs
+ kil (Pi,(N+ + B9 N.)K3 Term 3

ir

To understand the reason we perform such grouping, we can imagine making a decision for an
(overly) simpli ed problem for each direction in the basis: consider a univariate estimation problem
y= + with beingthe signal, N(0; ?) being the noise, anylbeing the observation. Let us
consider the case we observe only one sample. Now when , we can usg as the estimator and

E[(y )?= 2. This high signal-to-noise setting corresponds to the vectors in Group 1.

Wheny 3 ,wehave 2=E[(y )?] (3 1)?> 2=4 2 Ontheotherhand[(y )?]= 2.
This means if we usg as the estimator, the forecast is at least better than trivial. The median signal-
to-noise setting corresponds to the vectors in group 2.

Wheny , we can simply us§ = 0 as the estimator. This low signal-to-noise setting corresponds
to vectors in group 3.

In other words, we expecii) In term 1, signals along each direction of vectors in grqugl can
be extracted. Each direction also paysZaterm, which in our setting corresponds to ?1—2
Therefore, the MSE can be bounded®§ 2 2d,=n). (ii) In terms 2 and 3, we do at least (almost)
as well as the “trivial forecast)(= 0). There is also an error produced by the estimator error from
2., and the tail error produced from cutting out featuresTe&1-PCA-X in Fig. 1.

Now we proceed to execute this idea.

14
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