
Adaptive Reduced Rank Regression

Qiong Wu∗
William & Mary

Felix M. F. Wong
Independent Researcher†

Yanhua Li
Worcester Polytechnic Institute

Zhenming Liu
William & Mary

Varun Kanade
University of Oxford

Contents

1 Introduction 2

2 Preliminaries 3

3 Upper bound 4

3.1 Intuition of the design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Step 1. PCA for the features (proof of Proposition 1) . . . . . . . . . . . . 6

3.2.2 Step 2. Analysis of ZTY . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.3 Step 3. Analysis of our algorithm’s MSE . . . . . . . . . . . . . . . . . . 13

4 Lower bound 17

4.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Step 1. Partial specification for each column . . . . . . . . . . . . . . . . . 22

4.2.2 Step 2. Random samples from the Cartesian product . . . . . . . . . . . . 23

4.2.3 Step 3. Building up unitary matrices . . . . . . . . . . . . . . . . . . . . . 24

4.2.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Related work and comparison 30

5.1 Missing proof in comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Experiments 31

6.1 Setup of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Equity returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.2 User popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 33
∗ Correspondence to: Qiong Wu <qwu05@email.wm.edu>.
† Currently at Google.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Abstract

We study the low rank regression problem y = Mx + ε, where x and y are d1 and
d2 dimensional vectors respectively. We consider the extreme high-dimensional
setting where the number of observations n is less than d1 +d2. Existing algorithms
are designed for settings where n is typically as large as rank(M)(d1 + d2). This
work provides an efficient algorithm which only involves two SVD, and establishes
statistical guarantees on its performance. The algorithm decouples the problem by
first estimating the precision matrix of the features, and then solving the matrix
denoising problem. To complement the upper bound, we introduce new techniques
for establishing lower bounds on the performance of any algorithm for this problem.
Our preliminary experiments confirm that our algorithm often out-performs existing
baselines, and is always at least competitive.

1 Introduction

We consider the regression problem y = Mx + ε in the high dimensional setting, where x ∈ Rd1 is
the vector of features, y ∈ Rd2 is a vector of responses, M ∈ Rd2×d1 are the learnable parameters,
and ε ∼ N(0, σ2

ε Id2×d2) is a noise term. High-dimensional setting refers to the case where the number
of observations n is insufficient for recovery and hence regularization for estimation is necessary [27,
33, 11]. This high-dimensional model is widely used in practice, such as identifying biomarkers [54],
understanding risks associated with various diseases [19, 6], image recognition [38, 17], forecasting
equity returns in financial markets [36, 44, 31, 7], and analyzing social networks [52, 39].

We consider the “large feature size” setting, in which the number of features d1 is excessively large
and can be even larger than the number of observations n. This setting frequently arises in practice
because it is often straightforward to perform feature-engineering and produce a large number of
potentially useful features in many machine learning problems. For example, in a typical equity
forecasting model, n is around 3,000 (i.e., using 10 years of market data), whereas the number
of potentially relevant features can be in the order of thousands [36, 24, 26, 12]. In predicting
the popularity of a user in an online social network, n is in the order of hundreds (each day is an
observation and a typical dataset contains less than three years of data) whereas the feature size can
easily be more than 10k [40, 5, 43].

Existing low-rank regularization techniques (e.g., [27, 33, 29] ) are not optimized for the large feature
size setting. These results assume that either the features possess the so-called restricted isometry
property [9], or their covariance matrix can be accurately estimated [33]. Therefore, their sample
complexity n depends on either d1 or the smallest eigenvalue value λmin of x’s covariance matrix.
For example, a mean-squared error (MSE) result that appeared in [33]is of the form O

(
r(d1+d2)
nλ2

min

)
.

When n ≤ d1/λ
2
min, this result becomes trivial because the forecast ŷ = 0 produces a comparable

MSE. We design an efficient algorithm for the large feature size setting. Our algorithm is a simple
two-stage algorithm. Let X ∈ Rn×d1 be a matrix that stacks together all features and Y ∈ Rn×d2

be the one that stacks the responses. In the first stage, we run a principal component analysis (PCA)
on X to obtain a set of uncorrelated features Ẑ. In the second stage, we run another PCA to obtain a
low rank approximation of ẐTY and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on using PCA to
process features, a widely used practice for “dimensionality reduction” [10, 22, 20]. PCA is known
to be effective to orthogonalize features by keeping only the subspace explaining large variations.
But its performance can only be analyzed under the so-called factor model [45, 44]. We show the
efficacy of PCA without the factor model assumption. Instead, PCA should be interpreted as a robust
estimator of x’s covariance matrix. The empirical estimator C = 1

nXXT in the high-dimensional
setting cannot be directly used because n � d1 × d2, but it exhibits an interesting regularity: the
leading eigenvectors of C are closer to ground truth than the remaining ones. In addition, the number
of reliable eigenvectors grows as the sample size grows, so our PCA procedure projects the features
along reliable eigenvectors and dynamically adjusts Ẑ’s rank to maximally utilize the raw features.
Under mild conditions on the ground-truth covariance matrix C∗ of x, we show that it is always
possible to decompose x into a set of near-independent features and a set of (discarded) features that
have an inconsequential impact on a model’s MSE.
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When features x are transformed into uncorrelated ones z, our original problem becomes y = Nz+ε,
which can be reduced to a matrix denoising problem [16] and be solved by the second stage. Our
algorithm guarantees that we can recover all singular vectors of N whose associated singular values
are larger than a certain threshold τ . The performance guarantee can be translated into MSE bounds
parametrized by commonly used variables (though, these translations usually lead to looser bounds).
For example, when N ’s rank is r, our result reduces the MSE from O( r(d1+d2)

nλ2
min

) to O( rd2n + n−c)

for a suitably small constant c. The improvement is most pronounced when n� d1.

We also provide a new matching lower bound. Our lower bound asserts that no algorithm can recover
a fraction of singular vectors of N whose associated singular values are smaller than ρτ , where
ρ is a “gap parameter”. Our lower bound contribution is twofold. First, we introduce a notion of
“local minimax”, which enables us to define a lower bound parametrized by the singular values of
N . This is a stronger lower bound than those delivered by the standard minimax framework, which
are often parametrized by the rank r of N [27]. Second, we develop a new probabilistic technique
for establishing lower bounds under the new local minimax framework. Roughly speaking, our
techniques assemble a large collection of matrices that share the same singular values of N but are far
from each other, so no algorithm can successfully distinguish these matrices with identical spectra.

2 Preliminaries

Notation. Let X ∈ Rn×d1 and Y ∈ Rn×d2 be data matrices with their i-th rows representing the
i-th observation. For matrix A, we denote its singular value decomposition as A = UAΣA(V A)T

and Pr(A) , UAr ΣAr V
A
r

T is the rank r approximation obtained by keeping the top r singular values
and the corresponding singular vectors. When the context is clear, we drop the superscript A and use
U,Σ, and V (Ur, Σr, and Vr) instead. Both σi(A) and σAi are used to refer to i-th singular value of
A. We use MATLAB notation when we refer to a specific row or column, e.g., V1,: is the first row of
V and V:,1 is the first column. ‖A‖F , ‖A‖2, and ‖A‖∗ are Frobenius, spectral, and nuclear norms
of A. In general, we use boldface upper case (e.g., X) to denote data matrices and boldface lower
case (e.g., x) to denote one sample. Regular fonts denote other matrices. Let C∗ = IE[xxT] and
C = 1

nX
TX be the empirical estimate of C∗. Let C∗ = V ∗Λ∗(V ∗)T be the eigen-decomposition of

the matrix C∗, and λ∗1 ≥ λ∗2, . . . ,≥ λ∗d1 ≥ 0 be the diagonal entries of Λ∗. Let {u1,u2, . . .u`} be
an arbitrary set of column vectors, and Span({u1,u2, . . . ,u`}) be the subspace spanned by it. An
event happens with high probability means that it happens with probability ≥ 1− n−5, where 5 is an
arbitrarily chosen large constant and is not optimized.

STEP-1-PCA-X(X)

1 [U,Σ, V ] = svd(X)
2 Λ = 1

n (Σ2); λi = Λi,i.
3 � Gap thresholding.
4 � δ = n−O(1) is a tunable parameter.
5 k1 = max{k1 : λk1 − λk1+1 ≥ δ},
6 Λk1 : diagonal matrix comprised of {λi}i≤k1 .
7 Uk1 , Vk1 : k1 leading columns of U and V .
8 Π̂ = (Λk1)−

1
2V T

k1

9 Ẑ+ =
√
nUk1(= XΠ̂T).

10 return {Ẑ+, Π̂}.

STEP-2-PCA-DENOISE(Ẑ+,Y)

1 N̂T
+ ← 1

n Ẑ
T
+Y.

2 � Absolute value thresholding.
3 � θ is a suitable constant; σε is std. of the noise.

4 k2 = max
{
k2 : σk2(N̂+) ≥ θσε

√
d2
n

}
.

5 return Pk2(N̂+)

ADAPTIVE-RRR(X,Y)

1 [Ẑ+, Π̂] = STEP-1-PCA-A(X).
2 Pk2(N̂+) = STEP-2-PCA-DENOISE(Ẑ+,Y).
3 return M̂ = Pk2(N̂+)Π̂

Figure 1: Our algorithm (ADAPTIVE-RRR) for solving the regression y = Mx + ε.

Our model. We consider the model y = Mx + ε, where x ∈ Rd1 is a multivariate Gaussian,
y ∈ Rd2 , M ∈ Rd2×d1 , and ε ∼ N(0, σ2

ε Id2×d2). We can relax the Gaussian assumptions on x and
ε for most results we develop. We assume a PAC learning framework, i.e., we observe a sequence
{(xi,yi)}i≤n of independent samples and our goal is to find an M̂ that minimizes the test error
IEx,y[‖M̂x−Mx‖22]. We are specifically interested in the setting in which d2 ≈ n ≤ d1.

The key assumption we make to circumvent the d1 ≥ n issue is that the features are correlated. This
assumption can be justified for the following reasons: (i) In practice, it is difficult, if not impossible, to
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construct completely uncorrelated features. (ii) When n� d1, it is not even possible to test whether
the features are uncorrelated [4]. (iii) When we indeed know that the features are independent, there
are significantly simpler methods to design models. For example, we can build multiple models
such that each model regresses on an individual feature of x, and then use a boosting/bagging
method [20, 42] to consolidate the predictions.

The correlatedness assumption implies that the eigenvalues of C∗ decays. The only (full rank)
positive semidefinite matrices that have non-decaying (uniform) eigenvalues are the identity matrix
(up to some scaling). In other words, when C∗ has uniform eigenvalues, x has to be uncorrelated.

We aim to design an algorithm that works even when the decay is slow, such as when λi(C∗) has a
heavy tail. Specifically, our algorithm assumes λi’s are bounded by a heavy-tail power law series:
Assumption 2.1. The λi(C∗) series satisfies λi(C∗) ≤ c · i−ω for a constant c and ω ≥ 2.
We do not make functional form assumptions on λi’s. This assumption also covers many benign
cases, such as when C∗ has low rank or its eigenvalues decay exponentially. Many empirical studies
report power law distributions of data covariance matrices [2, 34, 50, 13]. Next, we make standard
normalization assumptions. IE‖x‖22 = 1, ‖M‖2 ≤ Υ = O(1), and σε ≥ 1. Remark that we assume
only the spectral norm of M is bounded, while its Frobenius norm can be unbounded. Also, we
assume the noise σε ≥ 1 is sufficiently large, which is more important in practice. The case when
σε is small can be tackled in a similar fashion. Finally, our studies avoid examining excessively
unrealistic cases, so we assume d1 ≤ d3

2. We examine the setting where existing algorithms fail to
deliver non-trivial MSE, so we assume that n ≤ rd1 ≤ d4

2.

3 Upper bound

Our algorithm (see Fig. 1) consists of two steps. Step 1. Producing uncorrelated features. We run
a PCA to obtain a total number of k1 orthogonalized features. See STEP-1-PCA-X in Fig. 1. Let
the SVD of X be X = UΣ(V )T. Let k1 be a suitable rank chosen by inspecting the gaps of X’s
singular values (Line 5 in STEP-1-PCA-X). Ẑ+ =

√
nUk1 is the set of transformed features output

by this step. The subscript + in Ẑ+ reflects that a dimension reduction happens so the number of
columns in Ẑ+ is smaller than that in X. Compared to standard PCA dimension reduction, there are
two differences: (i) We use the left leading singular vectors of X (with a re-scaling factor

√
n) as the

output, whereas the PCA reduction outputs Pk1(X). (ii) We design a specialized rule to choose k1

whereas PCA usually uses a hard thresholding or other ad-hoc rules. Step 2. Matrix denoising. We

run a second PCA on the matrix (N̂+)T , 1
n Ẑ

T
+Y. The rank k2 is chosen by a hard thresholding rule

(Line 4 in STEP-2-PCA-DENOISE). Our final estimator is Pk2(N̂+)Π̂, where Π̂ = (Λk1)−
1
2V T

k1
is

computed in STEP-1-PCA-X(X).

3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding the
statistical structure of the problem. We shall realize that applying PCA on the features should not
be viewed as removing noise from a factor model, or finding subspaces that maximize variations
explained by the subspaces as suggested in the standard literature [20, 45, 46]. Instead, it implicitly
implements a robust estimator for x’s precision matrix, and the design of the estimator needs to be
coupled with our objective of forecasting y, thus resulting in a new way of choosing the rank.

Design motivation: warm up. We first examine a simplified problem y = Nz+ ε, where variables
in z are assumed to be uncorrelated. Assume d = d1 = d2 in this simplified setting. Observe that

1

n
ZTY =

1

n
ZT(ZNT + E) = (

1

n
ZTZ)NT +

1

n
ZTE ≈ Id1×d1NT +

1

n
ZTE = NT + E , (1)

where E is the noise term and E can be approximated by a matrix with independent zero-mean noises.
Solving the matrix denoising problem. Eq. 1 implies that when we compute ZTY, the problem
reduces to an extensively studied matrix denoising problem [16, 21]. We include the intuition for
solving this problem for completeness. The signalNT is overlaid with a noise matrix E . E will elevate
all the singular values of NT by an order of σε

√
d/n. We run a PCA to extract reliable signals: when
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the singular value of a subspace is� σε
√
d/n, the subspace contains significantly more signal than

noise and thus we keep the subspace. Similarly, a subspace associated a singular value . σε
√
d/n

mostly contains noise. This leads to a hard thresholding algorithm that sets N̂T = Pr(N
T + E),

where r is the maximum index such that σr(NT + E) ≥ c
√
d/n for some constant c. In the general

setting y = Mx + ε, x may not be uncorrelated. But when we set z = (Λ∗)−
1
2 (V ∗)Tx, we see that

IE[zzT] = I . This means knowing C∗ suffices to reduce the original problem to a simplified one.
Therefore, our algorithm uses Step 1 to estimate C∗ and Z, and uses Step 2 to reduce the problem to
a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation. In step 1, while we plan to estimate
C∗, our algorithm runs a PCA on X. We observe that empirical covariance matrix C = 1

nX
TX =

1
nV (Σ)2(V )T, i.e., C’s eigenvectors coincide with X’s right singular vectors. When we use the
empirical estimator to construct ẑ, we obtain ẑ =

√
n(Σ)−1(V )Tx. When we apply this map to

every training point and assemble the new feature matrix, we exactly get Ẑ =
√
nXV (Σ)−1 =

√
nU .

It means that using C to construct ẑ is the same as running a PCA in STEP-1-PCA-X with k1 = d1.
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Figure 2: The angle matrix between C and C∗.

When k1 < d1, PCA uses a low rank approxima-
tion of C as an estimator for C∗. We now explain
why this is effective. First, note that C is very far
from C∗ when n� d1, therefore it is dangerous to
directly plug in C to find ẑ. Second, an interesting
regularity of C exists and can be best explained by
a picture. In Fig. 2, we plot the pairwise angles
between eigenvectors of C and those of C∗ from a
synthetic dataset. Columns are sorted by the C∗’s
eigenvalues in decreasing order. When C∗ and C
coincide, this plot would look like an identity ma-
trix. When C and C∗ are unrelated, then the plot
behaves like a block of white Gaussian noise. We

observe a pronounced pattern: the angle matrix can be roughly divided into two sub-blocks (see
the red lines in Fig. 2). The upper left sub-block behaves like an identity matrix, suggesting that
the leading eigenvectors of C are close to those of C∗. The lower right block behaves like a white
noise matrix, suggesting that the “small” eigenvectors of C are far from those of C∗. When n grows,
one can observe the upper left block becomes larger and this the eigenvectors of C will sequentially
get stabilized. Leading eigenvectors are first stabilized, followed by smaller ones. Our algorithm
leverages this regularity by keeping only a suitable number of reliable eigenvectors from C while
ensuring not much information is lost when we throw away those “small” eigenvectors.

Implementing the rank selection. We rely on three interacting building blocks:
1. Dimension-free matrix concentration. First, we need to find a concentration behavior of C for
n ≤ d1 to decouple d1 from the MSE bound. We utilize a dimension-free matrix concentration
inequality [35](also replicated as Lemma 3) . Roughly speaking, the concentration behaves as
‖C − C∗‖2 ≈ n−

1
2 . This guarantees that |λi(C)− λi(C∗)| ≤ n−

1
2 by standard matrix perturbation

results [25].
2. Davis-Kahan perturbation result. However, the pairwise closeness of the λi’s does not imply the
eigenvectors are also close. When λi(C∗) and λi+1(C∗) are close, the corresponding eigenvectors
in C can be “jammed” together. Thus, we need to identify an index i, at which λi(C∗)− λi+1(C∗)
exhibits significant gap, and use a Davis-Kahan result to show that Pi(C) is close to Pi(C

∗). On
the other hand, the map Π∗(, (Λ∗)−

1
2 (V ∗)T) we aim to find depends on the square root of inverse

(Λ∗)−
1
2 , so we need additional manipulation to argue our estimate is close to (Λ∗)−

1
2 (V ∗)T.

3. The connection between gap and tail. Finally, the performance of our procedure is also
characterized by the total volume of signals that are discarded, i.e.,

∑
i>k1

λi(C
∗), where k1 is the

location that exhibits the gap. The question becomes whether it is possible to identify a k1 that
simultaneously exhibits a large gap and ensures the tail after it is well-controlled, e.g., the sum of
the tail is O(n−c) for a constant c. We develop a combinatorial analysis to show that it is always
possible to find such a gap under the assumption that λi(C∗) is bounded by a power law distribution
with exponent ω ≥ 2. Combining all these three building blocks, we have:

5



Proposition 1. Let ξ and δ be two tunable parameters such that ξ = ω(log3 n/
√
n) and δ3 = ω(ξ).

Assume that λ∗i ≤ c ·i−ω . Consider running STEP-1-PCA-X in Fig. 1, with high probability, we have
(i) Leading eigenvectors/values are close: there exists a unitary matrix W and a constant c1 such
that ‖Vk1(Λk1)−

1
2 − V ∗k1(Λ∗k1)−

1
2W‖ ≤ c1ξ

δ3 . (ii) Small tail:
∑
i≥k1 λ

∗
i ≤ c2δ

ω−1
ω+1 for a constant c2.

Prop. 1 implies that our estimate ẑ+ = Π̂(x) is sufficiently close to z = Π∗(x), up to a unitary
transform. We then execute STEP-2-PCA-DENOISE to reduce the problem to a matrix denoising
one and solve it by hard-thresholding. Let us refer to y = Nz + ε, where z is a standard multivariate
Gaussian and N = MV ∗(Λ∗)

1
2 as the orthogonalized form of the problem. While we do not directly

observe z, our performance is characterized by spectra structure of N .
Theorem 1. Consider running ADAPTIVE-RRR in Fig. 1 on n independent samples (x,y) from
the model y = Mx + ε, where x ∈ Rd1 and y ∈ Rd2 . Let C∗ = IE[xxT]. Assume that (i)
‖M‖2 ≤ Υ = O(1), and (ii) x is a multivariate Gaussian with ‖x‖2 = 1. In addition, λ1(C∗) < 1
and for all i, λi(C∗) ≤ c/iω for a constant c, and (iii) ε ∼ N(0, σ2

ε Id1), where σε ≥ min{Υ, 1}.

Let ξ = ω(log3 n/
√
n), δ3 = ω(ξ), and θ be a suitably large constant. Let y = Nz + ε be the

orthogonalized form of the problem. Let `∗ be the largest index such that σN`∗ > θσε

√
d2
n . Let ŷ be

our testing forecast. With high probability over the training data:

IE[‖ŷ − y‖22] ≤
∑
i≥`∗

(σNi )2 +O

(
`∗d2θ

2σ2
ε

n

)
+O

(√
ξ

δ3

)
+O

(
δ

ω−1
4(ω+1)

)
(2)

The expectation is over the randomness of the test data.

Theorem 1 also implies that there exists a way to parametrize ξ and δ such that IE[‖ŷ − y‖22] ≤∑
i>`∗(σ

N
i )2 +O

(
`∗d2θ

2σ2
ε

n

)
+O(n−c0) for some constant c0. We next interpret each term in (2).

Terms
∑
i>`∗(σ

N
i )2 +O

(
`∗d2θ

2σ2
ε

n

)
are typical for solving a matrix denoising problem N̂T

+ + E(≈
NT + E): we can extract signals associated with `∗ leading singular vectors of N , so

∑
i>`∗(σ

N
i )2

starts at i > `∗. For each direction we extract, we need to pay a noise term of order θ2σ2
ε
d2
n , leading

to the term O
(
`∗d2θ

2σ2
ε

n

)
. Terms O

(√
ξ
δ3

)
+O

(
δ

ω−1
4(ω+1)

)
come from the estimations error of ẑ+

produced from Prop. 1, consisting of both estimation errors of C∗’s leading eigenvectors and the
error of cutting out a tail. We pay an exponent of 1

4 on both terms (e.g., δ
ω−1
ω+1 in Prop. 1 becomes

δ
ω−1

4(ω+1) ) because we used Cauchy-Schwarz (CS) twice. One is used in running matrix denoising
algorithm with inaccurate z+; the other one is used to bound the impact of cutting a tail. It remains
open whether two CS is can be circumvented.

Sec. 4 explains how Thm 1 and the lower bound imply the algorithm is near-optimal. Sec. 5 compares
our result with existing ones under other parametrizations, e.g. rank(M).

3.2 Analysis

We now analyze our algorithm. Our analysis consists of three steps. In step 1, we prove Proposition 1.
In step 2, we relate ZTY with the product produced by our estimate ẐT

+Y. In step 3, we prove
Theorem 1.

3.2.1 Step 1. PCA for the features (proof of Proposition 1)

This section proves Proposition 1. We shall first show that the algorithm always terminates. We have
the following lemma.
Lemma 1. Let {λi}i≤d be a sequence such that

∑
i≤n λi = 1, λi ≤ ci−ω for some constant c,

ω ≥ 2, and λ1 < 1. Define δi = λi − λi+1 for i ≥ 1. Let `0 be a sufficiently large number, and c1
and c2 are two suitable constants. Let ` be any number such that ` ≥ `0. Let τ be any parameter such
that τ < ρ− 1. There exists an i∗ such that (i) Gap is sufficiently large: δi∗ ≥ c1 · `−(τω/(ω−1)+1),
and (ii) tail sum is small:

∑
i≥i∗ λi ≤ c2/`−τ .
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We remark that Lemma 1 will also be able to show part (ii) of Proposition 1 (this will be explained
below). This lemma also corresponds to the “connection between gap and tail” building block referred
in Section 3.1.

Proof of Lemma 1. Define the function h(t) =
∑
i≥t c/i

ω = c3+o(1)
tω−1 (by Euler–Maclaurin formula),

where o(1) is a function of t

Next, let us define

i1 = min

i∗ :
∑
i≤i∗

λi ≥ 1− h(`
τ

ω−1 )

− 1

i2 = min

i∗ :
∑
i≤i∗

λi ≥ 1− 1

2
× h(`

τ
ω−1 )

− 1.

Roughly speaking, we want to identify an i1 such that
∑
i≤i1 λi is smaller than 1−h

(
`

τ
ω−1
)

but is as
close to it as possible. We can interpret i2 in a similar manner. i1, i2 ≥ 1 because of the assumption
λ1 < 1.

We can verify that i1 < `
τ

ω−1 because
∑
i≤`

τ
ω−1

λi ≥ 1 − h
(
`

τ
ω−1
)
. We can similarly verify that

i2 < c4`
τ

ω−1 for some constant c4. Now using∑
i≤i2+1

λi ≥ 1− (c3 + o(1))`−τ

2∑
i≤i1

λi ≤ 1− (c3 + o(1))`−τ .

We may use an averaging argement and show that there exists an i3 ∈ [i1 + 1, i2 + 1] such that

λi3 ≥
(c3 + o(1))`−τ

i2 − i1
≥ (c3 + o(1))`−τ

c4`
τ

ω−1

≥ c5`−τ−
τ

ω−1 = c5`
− τω
ω−1 .

Note that c5`−
τω
ω−1 ≥ 2c`−ω because τ < ω − 1. Next, using that λ` ≤ c/`ω , we have

λ` =

≥c5`
− τω
ω−1︷︸︸︷

λi3 +(λi3+1 − λi3) + · · ·+ (λ` − λ`−1) ≤

≤ c52 ·`
− τω
ω−1︷︸︸︷

c/`ω . (3)

This implies one of (λi3 − λi3+1), . . . , (λ`−1 − λ`) is at least c52 · `
− τω
ω−1 /`. In other words, there

exists an i∗ ∈ [i3 + 1, `] such that λi∗ − λi∗+1 ≥ c5
2 `
−( τω

ω−1 +1). Finally, we can check that∑
i≥i∗

λi∗ ≤
∑
i≥i1

λi∗ ≤ h
(
`

τ
ω−1
)
≤ c2
`τ
. (4)

We apply Lemma 1 by setting τ → ω − 1. There is a parameter ` that we can tune, such that it
is always possible to find an i∗ where δi∗ ≥ c1`

−(ω+1) and
∑
i≥i∗ λi ≤ 1 − c2`−(ω−1). For any

δ = o(1) (a function of n), we can set ` = Θ
((

1
δ

) 1
ω+1

)
. In addition,

∑
i≥k1 λi = O

(
δ
ω−1
ω+1

)
. This

also proves the second part of the Proposition.

It remains to prove part (i) of Proposition 1. It consists of three steps.

Step 1. Dimension-free Chernoff bound for matrices. We first give a bound on ‖C∗ − C‖2, which
characterizes the tail probability by using the first and second moments of random vectors. This is
the key device enabling us to meaningfully recover signals even when n� d1.
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Lemma 2. Recall that C∗ = IE[xxT] and C = 1
nX

TX. For any ξ > 0,

Pr[‖C∗ − C‖2 ≥ ξ] ≤ (2n2) exp(−nξ2/(log4 n)) + n−10. (5)

The exponent 10 is chosen arbitrarily and is not optimized.

Proof of Lemma 2. We use the following specific form of Chernoff bound ([35])

Lemma 3. Let z1, z2, . . . , zn be i.i.d. random vectors such that ‖zi‖ ≤ α a.s. and ‖IE[ziz
T
i ]‖ ≤ β.

Then for any ε > 0,

Pr

∥∥∥∥∥∥ 1

n

∑
i≤n

ziz
T
i − IE[ziz

T
i ]

∥∥∥∥∥∥
2

≥ ξ

 ≤ (2n2) exp

(
− nξ2

16βα2 + 8α2ξ

)
(6)

We aim to use Lemma 3 to show Lemma 2 and we set zi = xi. But the `2-norm of zi’s are unbounded
so we need to use a simple coupling technique to circumvent the problem. Specifically, let c0 be a
suitable constant and define

z̃i =

{
zi if |zi| ≤ c0 log2 n
0 otherwise. (7)

By using a standard Chernoff bound, we have

Pr[∃i : z̃i 6= zi] ≤
1

n10
. (8)

Let us write C̃ = 1
n

∑
i≤n z̃iz̃

T
i . We set α = c0 log2 n and β = Θ(1) in Lemma 3. One can see that

Pr[‖C∗ − C‖2 ≥ ξ] ≤ Pr
[
(‖C̃ − C‖2 ≥ ξ) ∨ (C̃ 6= C)

]
≤ 2n2 exp

(
− nξ2

log4 n

)
+

1

n10
. (9)

Step 2. Davis-Kahan bound. The above analysis gives us that ‖C∗ − C‖2 ≤ ξ. We next show that
the first a few eigenvectors of C are close to those of C∗.

Lemma 4. Let ξ = ω
(

log3 n√
n

)
and δ3 = ω(ξ). Considering running STEP-1-PCA-X in Fig. 1. Let

P∗ = V ∗k1(V ∗k1)T and P = Vk1V
T
k1

. When ‖C∗ − C‖2 ≤ ξ, ‖P∗ − P‖2 ≤ 2ξ
δ .

Proof. Recall that λ∗1, λ
∗
2, . . . , λ

∗
d1

are the eigenvalues of C∗. Let also λ1, λ2, . . . , λd1 be the eigen-
values of C. Define

S1 = [λk1 − δ/10,∞] and S2 = [0, λk1+1 + δ/10]. (10)
The constant 10 is chosen in an arbitrary manner. Because ‖C∗−C‖2 ≤ ξ, we know that S1 contains
λ∗1, . . . , λ

∗
k and that S2 contains λ∗k1+1, . . . , λ

∗
d1

[25]. Using the Davis-Kahan Theorem [15], we get

‖P∗ − P‖2 ≤
‖C∗ − C‖2

0.8δ
≤ 2ε

δ
(11)

We also need the following building block.
Lemma 5. [47] Let A and B be n× n positive semidefinite matrices with the same rank of d. Let
X and Y be of full column rank such that XXT = A and Y Y T = B. Let δ be the smallest non-zero
eigenvalue of B. Then there exists a unitary matrix W ∈ Rd×d such that

‖XW − Y ‖2 ≤
‖A−B‖2(

√
‖A‖2 +

√
‖B‖2)

δ
.
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Step 3. Commuting the unitary matrix. Roughly speaking, Lemma 4 and Lemma 5 show that there
exists a unitary matrix W such that ‖Vk1W − V ∗k1‖2 is close to 0. Standard matrix perturbation result

also shows that Λk1 and Λ∗k1 are close. This gives us that Vk1WΛ
− 1

2

k1
and V ∗k1(Λ∗k1)−

1
2 are close,

whereas we need that Vk1Λ
− 1

2

k1
W and V ∗k1(Λ∗k1)−

1
2 are close. The unitary matrix W is not in the right

place. This is a standard technical obstacle for analyzing PCA based techniques [47, 18, 28]. We
develop the following lemma to address the issue.
Lemma 6. Let U1, U2 be n × d matrices such that U>1 U1 = U>2 U2 = I . Let S1, S2 be diagonal
matrices with strictly positive entries, and let W ∈ Rd×d be a unitary matrix. Then,

‖U1S
−1
1 W − U2S

−1
2 ‖ ≤

‖U1S1W − U2S2‖
min{(S1)ii} ·min{(S2)ii}

+
‖U1U

>
1 − U2U

>
2 ‖

min{(S2)ii}

Proof. Observe that,

U1S
−1
1 W − U2S

−1
2 = U1S

−1
1 W (S2U

>
2 −W>S1U

>
1 )U2S

−1
2 + U1U

>
1 U2S

−1
2 − U2U

>
2 U2S

−1
2 .

The result then follows by taking spectral norms of both sides, the triangle inequality and the
sub-multiplicativity of the spectral norm.

Results from Step 1 to Step 3 suffice to prove the first part of Proposition 1. First, we use Lemma 4
and Lemma 5 (adopted from [47]) to get that

‖V ∗k1(Λ∗k1)
1
2W − Vk1(Λk1)

1
2 ‖2 ≤

c0ξ

δ2
. (12)

Next, observe that λk1 , λ
∗
k1

= Ω(δ). By applying Lemma 6, with U1 = V ∗k1 and S1 = (Λ∗k1)
1
2 ,

U2 = Vk1 and S2 = (Λk1)
1
2 , we obtain

‖Vk1Λ
− 1

2

k1
W − V ∗k1Λ

∗− 1
2

k1
‖2 ≤

‖V ∗k1Λ
∗ 1

2

k1
W − Vk1Λ

1
2

k1
‖2

δ
+
‖P∗ − P‖2

δ
≤ c1ξ

δ3

This completes the proof of Proposition 1.

3.2.2 Step 2. Analysis of ZTY

Proposition 2. Consider running ADAPTIVE-RRR in Fig. 1 to solve the regression problem y =

Mx + ε. Let Ẑ+ be the output of the first stage STEP-1-PCA-X. Let W be the unitary matrix
specified in Proposition 1. Let N̂+ = ẐT

+Y. We have with high probability (over the training data),

N̂T
+ = WTNT + EL + ET ,

where

‖EL‖2 ≤ 2.2σε

√
d2

n
and ‖ET ‖F = O(ε/δ3).

The rest of this Section proves Proposition 2. Recall that Y = ZNT + E is the orthogonalized
form of our problem. Let us split N = [N+, N−], where N+ ∈ Rd2×k1 consists of the k1 leading
columns ofN andN− ∈ Rd2×(d1−k1) consists of the remaining columns. Similarly, let z = [z+, z−],
where z+ ∈ Rn×k1 and z− ∈ Rn×(d1−k1). Let Z = [Z+,Z−], where Z+ ∈ Rn×k1 and Z− ∈
Rn×(d1−k1). Finally, when we refer to estimated features of an individual instance produced from
Step 1, we use ẑ+.

We have Y = Z+N
T
+ + Z−N

T
− + E. We let

δ+ = ẑ+ −WTz+

∆+ = Ẑ+ − Z+W,

9



where ‖δ+‖2 = O(ε/δ3) and ‖∆+‖2 = O(
√
nε/δ3). We have

1

n
ẐT

+Y =
1

n
(∆+ + Z+W )T(Z+N

T
+ + Z−N

T
− + E)

= WTNT
+ +WT

(
1

n
ZT

+Z+ − Ik1×k1
)
NT

+ +
1

n
WTZT

+Z−N
T
− +

1

n
WTZT

+E

+
1

n
∆T

+(Z+N
T
+ + Z−N

T
− + E).

We shall let
N̂T

+ = WTNT + E , (13)
where

E = E1 + E2 + E3 + E4 + E5

E1 = WT

(
1

n
ZT

+Z+ − Ik1×k1
)
NT

+

E2 =
1

n
WTZT

+Z−N
T

E3 =
1

n
WTZT

+E

E4 =
1

n
∆T

+E

E5 =
1

n
∆T

+(Z+N
T
+ + Z−N

T
−).

We next analyze each term. We aim to find bounds in either spectral norm or Frobenius norm. In
some cases, it suffices to use ‖Ei‖2 · rank(Ei) to upper bound ‖Ei‖F . So we bound only Ei’s spectral
norm. On the other hand, in the case of analyzing E5, we can get a tight Frobenius norm bound but
we cannot get a non-trivial spectral bound.

From time to time, we will label the dimension of matrices in complex multiplication operations to
enable readers to do sanity checks.

Bounding E1. We use the following Lemmas.
Lemma 7. Let Z ∈ Rn×k1 , where k1 < n. Let each entry of Z be an independent standard Gaussian.
We have ∥∥∥∥ 1

n
ZTZ− I

∥∥∥∥ ≤ max

{
10 log2 n√

n
, 4

√
k1

n

}
(14)

Proof of Lemma 7. We rely on the Lemma [41]:

Lemma 8. Let S ∈ Rn×k (n > k) be a random matrix so that each Si,j is an independent standard
Gaussian random variable. Let σmax(S) be the maximum singular value of S and σmin(S) be the
minimum singular value of it. We have

Pr[
√
n−
√
k − t ≤ σmin(S) ≤ σmax(S) ≤

√
n+
√
k + t] ≥ 1− 2× exp(−t2/2). (15)

We set t = max
{√

k1
10 , log2 n

}
. Let us start with considering the case

√
k1

10 > log2 n. We have

σmin(ZTZ) ≥ n− 2.2
√
nk1 + 1.21k1 ≥ n− 2.2

√
nk1. (16)

and

σmax(ZTZ) ≤ n+ 2.2
√
nk1 + 1.21k1 ≤ n+ 4

√
nk1. (17)

The case
√
k1

10 ≤ log2 n can be analyzed in a similar fashion so that we can get∥∥∥∥ 1

n
ZTZ− I

∥∥∥∥ ≤ max

{
10 log2 n√

n
, 4

√
k1

n

}
. (18)
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Therefore, we have

‖E1‖2 ≤ max

{
10 log2 n√

n
, 4

√
k1

n

}
‖NT

+‖2 = Υ max

{
10 log2 n√

n
, 4

√
k1

n

}
.

Bounding E2. Observe that IE[‖Z−NT
−‖2F ] = n‖NT

−‖2F . Also,

IE[‖ ZT
+︸︷︷︸

k1×n

Z−︸︷︷︸
n×(d1−k1)

NT
−︸︷︷︸

(d1−k1)×d2

‖2F | Z−NT
− ] = k1‖Z−NT

−‖2F .

Therefore,
IE[ZT

+Z−N
T
− ] = k1n‖NT

−‖F . (19)

We next bound ‖N−‖F .
Lemma 9. Let N be the learnable parameter in normalized form N = [N+, N−], where N+ ∈
Rd2×k1 and N− ∈ Rd2×(d1−k1), and k1 is determined by STEP-1-PCA-X. We have ‖N−‖F =

O
(
δ
ω−1
ω+1

)
= o(1).

Proof of Lemma 9. Recall that
N = M︸︷︷︸

d2×d1

V ∗︸︷︷︸
d1×d1

(Λ∗)
1
2︸ ︷︷ ︸

d1×d1

.

We let Λ∗ = [Λ∗+,Λ
∗
−], where Λ∗+ ∈ Rd1×k1 and Λ∗− ∈ Rd1×(d1−k1). We have N− = MV ∗(Λ∗−)

1
2 .

Therefore,

‖N−‖2F ≤ ‖M‖22‖V ∗‖22
∥∥∥(Λ∗)

1
2

∥∥∥2

F
= O

(
Υδ

ω−1
ω+1

)
= o(1). (20)

Here, we used the assumption ‖M‖2 = O(1) and the last equation holds because of Proposition 1.

By (19), (20), and a standard Chernoff bound, we have whp

‖E2‖2 ≤ ‖E2‖F ≤ 2

√
k1

n
‖N−‖F = o

(√
k1

n

)
.

Bounding E3. We have the following Lemma.
Lemma 10. Let Z ∈ Rn×k1 so that each entry in Z is an independent standard Gaussian and
E ∈ Rn×d2 so that each entry in E is an independent Gaussian N(0, σ2

ε ). For sufficiently large n,
k1, and d2, where k1 ≤ d2, we have∥∥∥∥ 1

n
ZTE

∥∥∥∥ ≤ 1.1σε√
n

(
√
k1 +

√
d2).

Proof of Lemma 10. Let t = max

{
10 log2 n√

n
, 4
√

k1
n

}
. By Lemma 7, with high probability

‖ 1
nZ

TZ − I‖ ≤ t. This implies that the eigenvalues of ZTZ are all within the range n(1 ± t).
Note that for 0 < η < 1/3, if ξ ∈ [1− η, 1 + η], then

√
ξ ∈ [1− 2η, 1 + 2η]. This implies that the

singular values of Z are within the range
√
n(1± 2t).

Let ΣZ/
√
n = I + ∆Z , where ‖∆Z‖ ≤ 2t. We have

1

n
ZTE = V Z

(
ΣZ√
n

)
(UZ)T E√

n
= V Z(I + ∆Z)(UZ)T E√

n

= V Z︸︷︷︸
k1×k1

(UZ)T︸ ︷︷ ︸
k1×n

E√
n︸︷︷︸

n×d2

+V Z∆Z(UZ)T E√
n
. (21)
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Using the fact that the columns of UZ are orthonormal vectors, V Z is a unitary matrix, and k1 ≤ d2,
we see that V Z(UZ)TE/

√
n is a matrix with i.i.d. Gaussian entries with standard deviation σε/

√
n.

Let B = V Z(UZ)TE/σε and B̃ = (UZ)TE/σε. Then, from (21), we have

1

n
ZTE =

σε√
n

(
B + V Z∆ZB̃

)
. (22)

The entries in B (B̃) are all i.i.d Gaussian. By Marchenko-Pastar’s law (and the finite sample bound
of it [41]), we have with high probability ‖B̃‖, ‖B‖ =

√
k1 +

√
d2 + o(

√
k1 +

√
d2). Therefore,

with high probability: ∥∥∥∥ 1

n
ZTE

∥∥∥∥
2

≤ 1.1σε√
n

(
√
k1 +

√
d2).

Lemma 10 implies that

‖E3‖2 ≤
1.1σε√
n

(
√
k1 +

√
d2).

Bounding E4. We have

IE[‖E4‖2F ] =
1

n2
IE[‖∆T

+E‖2F ] =
d2

n
‖∆+‖2F = O

(
d2ε

nδ3

)
= o

(
d2

n

)
.

Using a Chernoff bound, we have whp ‖E4‖F = o
(
d2
n

)
.

Bounding E5. Because E5 = 1
n∆T

+(ZNT), we have

‖E5‖2F ≤
1

n2
‖∆T

+‖22‖ZNT‖2F .

Using a simple Chernoff bound, we have whp,

‖ZNT‖2F ≤ 2n‖Mx‖22 ≤ 2n‖M‖22‖x‖22 ≤ 2Υn.

This implies ‖E5‖2F ≤ O
(

ε2

n2δ6n
2Υ2

)
= O

(
ε2

δ6

)
.

We may let

EL = E1 + E2 + E3 + E4
ET = E5.

We can check that

‖EL‖2 ≤ ‖E1‖2 + ‖E2‖2 + ‖E3‖2 + ‖E4‖2

≤ Υ max

{
10 log2 n√

n
, 4
k1

n

}
+ o

(√
k1

n

)
+

1.1σε√
n

(
√
k1 +

√
d2) + o

(
d2

n

)

≤ 2.2σσε

√
d2

n

Also, we can see that ‖ET ‖F = ‖E5‖F = O(ε/δ3). This completes the proof for Proposition 2.
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3.2.3 Step 3. Analysis of our algorithm’s MSE

Let us recall our notation:

1. z = (Λ∗)−
1
2 (V ∗)Tx and δ+ = ẑ+ −WTz+.

2. We let N̂T
+ = ẐT

+Y be the output of STEP-1-PCA-X in Fig. 1.

3. All singular vectors in N̂+ whose associated singular values ≥ θσε
√

d2
n are kept.

Let ` be the largest index such that σN+

` ≥ θσε

√
d2
n . One can see that our testing forecast is

Pk2(N̂+)ẑ+. Therefore, we need to bound IEz[‖Pk2(N̂+)ẑ+ −Nz‖2].

By Proposition 2, we have N̂+ = (WTNT
+ + EL + ET )T, where ‖EL‖2 ≤ 2.2σε

√
d2
n and ‖ET ‖F =

O(ξ/δ3) whp. Let E , EL + ET . We have

Pk2(N+W + ET)ẑ+ = Pk2(N+W + ET)(WTz+ + δ+)

= Pk2(N+W + ET)WTW (WTz+ + δ+)

= Pk2(( N+︸︷︷︸
d2×k1

W︸︷︷︸
k1×k1

+ ET︸︷︷︸
d2×k1

) WT︸︷︷︸
k1×k1

)(WWT︸ ︷︷ ︸
k1×k1

z+︸︷︷︸
k1×1

+ W︸︷︷︸
k1×k1

δ+︸︷︷︸
k1×1

)

= Pk2
(
N+ + (WE)T

)
(z+ +Wδ+).

Let E ′ = (WE)T, E ′L = (WEL)T, E ′T = (WET )T, and δ′+ = Wδ+. We still have ‖E ′L‖2 ≤
2.2σε

√
d2
n , and ‖E ′T ‖F = O(ε/δ3).

We next have

IEz

[
‖Pk2(N̂+)ẑ+ −Nz‖22

]
= IEz

[∥∥(Pk2(N+ + E ′)z+ −N+z+) + Pk2(N+ + E ′)δ′+ −N−z−
∥∥2

2

]
≤ IEz

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2

2

]
︸ ︷︷ ︸

,Φ1

+ IEz

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2

2

]
︸ ︷︷ ︸

,Φ2

+ 2

√
IEz

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2

2

]
· IEz

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2

2

]
(Cauchy Schwarz for random variables)

= Φ1 + Φ2 + 2
√

Φ1Φ2.

We first bound Φ2 (the easier term). We have

Φ2 = IEz

[∥∥Pk2(N+ + E ′)δ′+ −N−z−
∥∥2

2

]
≤ 2IEz

[∥∥Pk2(N+ + E ′)δ′+
∥∥2

2

]
+ 2IE

[∥∥N−z−∥∥2

2

]
We first bound IEz

[∥∥Pk2(N+ + E ′)δ′+
∥∥2

2

]
. We consider two cases.

Case 1. σmax(N+) > θ
2σε

√
d2
n . In this case, we observe that ‖E‖2 ≤ 2.2σε

√
d2
n + o(1).

This implies that ‖N+ + E ′‖2 = O(‖N+‖2) = O(1). Therefore, IEz

[∥∥Pk2(N+ + E ′)δ′+
∥∥2

2

]
≤

‖(N+ + E ′)δ′+‖22 = O(‖δ′+‖22).

Case 2. σmax(N+) ≤ θ
2σε

√
d2
n . In this case, ‖N+ + E ′‖2 ≤ θσ

√
d2
n . This implies Pk2(N+ +

E ′)δ′+ = 0 (i.e., the projection Pk2(·) will not keep any subspace).
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This case also implies IEz

[∥∥Pk2(N+ + E ′)δ′+
∥∥2

2

]
= 0 = O(‖δ′+‖22)

Next, we have IE[‖N−z−‖22] = ‖N−‖2F = O
(
δ
ω−1
ω+1

)
.

Therefore,

Φ2 = O

(
ε2

δ6
+ δ

ω−1
ω+1

)
.

Next, we move to bound

IEz

[∥∥(Pk2(N+ + E ′)z+ −N+z+)
∥∥2

2

]
.

We shall construct an orthonormal basis on Rd2 and use the basis to “measure the mass”. Let
us describe this simple idea at high-level first. Let v1,v2, · · · ,vd2 be a basis for Rd2 and let
A ∈ Rd2×k1 be an arbitrary matrix. We have ‖A‖2F =

∑
i≤d2 ‖v

T
i A‖22. The meaning of this equality

is that we may apply a change of basis on the columns of A and the “total mass” of A should remain
unchanged after the basis change. Our orthonormal basis consists of three groups of vectors.

Group 1. {UN+

:,i } for i ≤ `, where ` is the number of σi(N+) such that σi(N+) ≥ θσε
√

d2
n .

Group 2. The subspace in Span({U N̂:,i}i≤k2) that is orthogonal to {UN+

:,i }i≤`. Let us refer to these
vectors as û1, . . . , ûs and Û[s] = [û1, . . . ûs].

Group 3. An arbitrary basis that is orthogonal to vectors in group 1 and group 2. Let us refer to them
as r1, . . . , rt.

We have

‖Pk2(N+ + E ′)−N+‖2F

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T

(Pk2(N+ + E ′)−N+)

∥∥∥∥2

2

Term 1

+
∑
i≤s

‖ûT
i (Pk2(N+ + E ′)−N+) ‖22 Term 2

+
∑
i≤r

‖rT
i (Pk2(N+ + E ′)−N+) ‖22 Term 3

To understand the reason we perform such grouping, we can imagine making a decision for an
(overly) simplified problem for each direction in the basis: consider a univariate estimation problem
y = µ+ ε with µ being the signal, ε ∼ N(0, σ2) being the noise, and y being the observation. Let us
consider the case we observe only one sample. Now when y � σ, we can use y as the estimator and
IE[(y − µ)2] = σ2. This high signal-to-noise setting corresponds to the vectors in Group 1.

When y ≈ 3σ, we have µ2 = IE[(y−ε)2] ≈ (3−1)2σ2 = 4σ2. On the other hand, IE[(y−µ)2] = σ2.
This means if we use y as the estimator, the forecast is at least better than trivial. The median signal-
to-noise setting corresponds to the vectors in group 2.

When y � σ, we can simply use ŷ = 0 as the estimator. This low signal-to-noise setting corresponds
to vectors in group 3.

In other words, we expect: (i) In term 1, signals along each direction of vectors in group 1 can

be extracted. Each direction also pays a σ2 term, which in our setting corresponds to θσε
√

d2
n .

Therefore, the MSE can be bounded by O(`θ2σ2
εd2/n). (ii) In terms 2 and 3, we do at least (almost)

as well as the “trivial forecast” (ŷ = 0). There is also an error produced by the estimator error from
ẑ+, and the tail error produced from cutting out features in STEP-1-PCA-X in Fig. 1.

Now we proceed to execute this idea.
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Term 1.
∑
i≤`

∥∥∥∥(UN+

:,i

)T

(Pk2(N+ + E ′)−N+)

∥∥∥∥2

2

. Let Û ∈ Rd2×d2 be the left singular vector

of N+ + E ′. We let Û have d2 columns to include those vectors whose corresponding singular values
are 0 for the ease of calculation. We have

∑
i≤`

∥∥∥∥(UN+

:,i

)T

(Pk2(N+ + E ′)−N+)

∥∥∥∥2

2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T (
Û:,1:k2Û

T
:,1:k2(N+ + E ′)−N+

)∥∥∥∥2

2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T ((
Û ÛT − Û:,k2+1:d2Û

T
:,k2+1:d2

)
(N+ + E ′)−N+

)∥∥∥∥2

2

=
∑
i≤`

∥∥∥∥(UN+

:,i

)T (
E ′ − Û:,k2+1:d2Û

T
:,k2+1:d2(N+ + E ′)

)∥∥∥∥2

2

≤ 2

∑
i≤t

∥∥∥∥(UN+

:,i

)T

E ′
∥∥∥∥2

2

+
∑
i≤`

∥∥∥∥(UN+

:,i

)T

Û:,k2+1:d2Û
T
:,k2+1:d2(N+ + E ′)

∥∥∥∥2

2


≤ O

`‖E ′L‖22 + ‖E ′T ‖2F +
∑
i≤`

∥∥∥∥(UN+

:,i

)T
∥∥∥∥2

2

∥∥∥Û:,k2+1:d2

∥∥∥2

2

∥∥∥ÛT
:,k2+1:d2(N+ + E ′)

∥∥∥2

2︸ ︷︷ ︸
≤ θ

2σ2εd2
n by the definition of k2.


= O

(
`‖E ′L‖22 + ‖E ′T ‖2F +

`d2θ
2σ2
ε

n

)
= O

(
`d2θ

2σ2
ε

n
+ +‖E ′T ‖2F

)

Term 2.
∑
i≤s ‖ûT

i (Pk2(N+ + E ′)−N+) ‖22. We have

∑
i≤s

‖ûT
i (Pk2(N+ + E ′)−N+) ‖22 =

∑
i≤s

‖ûT
i (Pk2(N+ + E ′)− (N+ + E ′) + E ′) ‖22

=
∑
i≤s

‖ûT
i E ′‖22

On the other hand, note that∑
i≤s

‖ûT
i N+‖22

=
∑
i≤s

∥∥ûT
i (N+ + E ′)− ûT

i E ′
∥∥2

2

=
∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2

2
+ ‖ûT

i E ′‖22 − 2
〈
ûT
i (N+ + E ′), ûT

i (E ′L + E ′T )
〉)

=
∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2

2
− 2〈ûT

i (N+ + E ′), ûT
i E ′L〉

)
+
∑
i≤s

‖ûT
i E ′‖22︸ ︷︷ ︸

= Term 2.

−2
∑
i≤s

〈ûT
i (N+ + E ′), ûT

i E ′T 〉

(23)
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Note that ∑
i≤s

(∥∥ûT
i (N+ + E ′)

∥∥2

2
− 2〈ûT

i (N+ + E ′), ûT
i E ′L〉

)
≥
∑
i≤s

‖ûT
i (N+ + E ′)‖2

(
‖ûT

i (N+ + E ′)‖2︸ ︷︷ ︸
≥θσε

√
d2
n

−2 ‖ûT
i E ′L‖2︸ ︷︷ ︸

≤2.2σε

√
d2
n

)
≥ 0 (using the fact that θ is sufficiently large). (24)

Next, we examine the term −2
∑
i≤s〈ûT

i (N+ + E ′), ûT
i E ′T 〉.

− 2
∑
i≤s

〈ûT
i (N+ + E ′), ûT

i E ′T 〉

= −2〈ÛT
[s](N+ + E ′), ÛT

[s]E
′
T 〉

= −2Tr
(
ÛT

[s]E
′
T (N+ + E ′)TÛ[s]

)
≥ −2

∥∥Tr(E ′T (N+ + E ′)T
∥∥

2

∥∥∥ÛT
[s]Û[s]

∥∥∥
2

= −2
∣∣〈(E ′T )T, N+ + E ′〉

∣∣
≥ −2‖E ′T ‖F ‖N+ + E ′‖F (Cauchy Schwarz)
≥ −2‖E ′T ‖F (‖N+‖F + ‖E ′‖F ))

≥ −O(‖E ′T ‖F ) (‖N+‖2F ≤ ‖N‖2F = IE[‖Nz‖2] = IE[‖Mx‖2] = O(1))
(25)

(23), (24), and (25) imply that∑
i≤s

‖Pk2(N+ + E ′)−N+‖
2
2 ≤

∑
i≤s

∥∥∥ÛTN+

∥∥∥2

2
+O(‖E ′T ‖F ).

Term 3. We have ∑
i≤r

‖rT
i (Pk2(N+ + E ′)−N+) ‖22 =

∑
i≤r

‖rT
i N+‖22.

This is because ri’s are orthogonal to the first k2 left singular vectors of N+ + E ′.
We sum together all the terms:

‖Pk2(N+ + E ′)−N+‖
2
F ≤ O

(
`d2θ

2σ2
ε

n

)
+
∑
i≤s

∥∥∥ÛT
i N+

∥∥∥2

2︸ ︷︷ ︸
(∗)

+
∑
i≤t

‖rT
i N+‖22︸ ︷︷ ︸

(∗∗)

+O (‖E ′T ‖F ) .

= O

(
`d2θ

2σ2
ε

n

)
+ ‖N+‖2F −

∑
i≤`

(
σ
N+

i

)2

+O (‖E ′T ‖F ) (26)

In the above analysis, we used Span({ûi}i≤s, {ri}i≤t) is orthogonal to Span({UN+

:,i }i≤`). There-
fore, we can collect (*) and (**) and obtain∑

i≤s

∥∥∥ÛT
i N+

∥∥∥2

2
+
∑
i≤t

‖rT
i N+‖22 = ‖N+‖2F −

∑
i≤`

(σ
N+

i )2.

Now the MSE is in terms of σN+

i . We aim to bound the MSE in σNi . So we next relate
∑
i≤`(σ

N+

i )2

with
∑
i≤`(σ

N
i )2. Recall that Ñ+ = [N+,0], where 0 ∈ Rd2×(d1−k1). The singular values of Ñ+

are the same as those of N+. By using a standard matrix perturbation result, we have

∑
i≤`

(
σ
N+

i − σNi
)2

=
∑
i≤`

(
σ
Ñ+

i − σNi
)2

≤ ‖N−‖2F = cδ
ω−1
ω+1 (27)
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for some constant c. We may think (27) as a constraint and maximize the difference
∑
i≤`(σ

N
i )2 −∑

i≤`(σ
N+

i )2. This is maximized when σN1 = σ
N+

1 +
√
cδ

ω−1
ω+1 and σNi = σ

N+

i for i > 1.

Therefore, ∑
i≤`

(
σNi
)2 ≤ ∑

1≤i≤`

(
σ
N+

i

)2

+

(
σ
N+

1 +

√
cδ

ω−1
ω+1

)2

=
∑

1≤i≤`

(
σ
N+

i

)2

+O

(√
δ
ω−1
ω+1

)
. (28)

Now (26) becomes

(26) ≤ ‖N+‖2F −
∑
i≤`

(σNi )2 +O

(
`d2θ

2σ2
ε

n

)
+O(ξ/δ3) +O

(√
δ
ω−1
ω+1

)
. (29)

Next, we assert that ` ≥ `∗. Recall that ‖σN+

i − σNi ‖22 = ‖N−‖2F = o(1). This implies σN+

i >

θσε

√
d2
n for i ≤ `∗, i.e., ` ≥ `∗. So we have

Φ1 = ‖Pk2(N++E ′)−N+‖2F ≤ ‖N‖2F−
∑
i≤`∗

(σNi )2+O

(
`∗d2θ

2σ2
ε

n

)
+O(ξ/δ3)+O

(√
δ
ω−1
ω+1

)
.

(30)

Finally, we obtain the bound for Φ1 + Φ2 + 2
√

Φ1Φ2. Note that

Φ2

Φ1
≤

O
(
ξ2

δ6 + δ
ω−1
ω+1

)
O
(
ξ
δ3 +

√
δ
ω−1
ω+1

) ≤ min

{
ξ

δ3
,

√
δ
ω−1
ω+1

}
(= o(1)).

We have

Φ1 + Φ2 + 2
√

Φ1Φ2

= Φ1(1 + 2

√
Φ2

Φ1
) + Φ2

=

‖N‖2F −∑
i≤`∗

(σNi )2 +O

(
`∗d2θ

2σ2
ε

n

)
+O(ξ/δ3) +O

(√
δ
ω−1
ω+1

)
×

{
1 + min

{√
ξ

δ3
+
(
δ
ω−1
ω+1

) 1
4

}}
+O

(
ξ2

δ6

)
+O

(
δ
ω−1
ω+1

)
≤ ‖N‖2F −

∑
i≤`∗

(σNi )2 +O

(
`∗d2θ

2σ2
ε

n

)
+O

(√
ξ

δ3

)
+O

(
δ

ω−1
4(ω+1)

)
. (31)

This completes the proof of Theorem 1.

4 Lower bound

Our algorithm accurately estimates the singular vectors of N that correspond to singular values above

the threshold τ = θσε

√
d2
n . However, it may well happen that most of the spectral ‘mass’ of N lies

only slightly below this threshold τ . In this section, we establish that no algorithm can do better than
us, in a bi-criteria sense, i.e. we show that any algorithm that has a slightly smaller sample than ours
can only minimally outperform ours in terms of MSE.

We establish ‘instance dependent’ lower bounds: When there is more ‘spectral mass’ below the
threshold, the performance of our algorithm will be worse, and we will need to establish that no
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Figure 3: (a) Major result: signals inN are partitioned into four blocks. All signals in block 1 can be estimated
(Thm 1). All signals in block 3 cannot be estimated (Prop 3). Our lower bound techniques does not handle a
small tail in Block 4. A gap in block 2 exists between upper and lower bounds. (b)-(d) Constructing N: Step 1
and 2 belong to the first stage; step 3 belongs to the second stage. (b) Step 1. Generate a random subset D(i) for
each row i, representing its non-zero positions. (c) Step 2. Randomly sample from D, where D is the Cartesian
product of D(i). (d) Step 3. Fill in non-zero entries sequentially from left to right.

algorithm can do much better. This departs from the standard minimax framework, in which one
examines the entire parameter space of N , e.g. all rank r matrices, and produces a large set of
statistically indistinguishable ‘bad’ instances [49]. These lower bounds are not sensitive to instance-
specific quantities such as the spectrum of N , and in particular, if prior knowledge suggests that the
unknown parameter N is far from these bad instances, the minimax lower bound cannot be applied.

We introduce the notion of local minimax. We partition the space into parts so that similar matrices
are together. Similar matrices are those N that have the same singular values and right singular
vectors; we establish strong lower bounds even against algorithms that know the singular values and
right singular vectors of N . An equivalent view is to assume that the algorithm has oracle access to
C∗, M ’s singular values, and M ’s right singular vectors. This algorithm can solve the orthogonalized
form as N ’s singular values and right singular vectors can easily be deduced. Thus, the only reason
why the algorithm needs data is to learn the left singular vectors of N . The lower bound we establish
is the minimax bound for this ‘unfair’ comparison, where the competing algorithm is given more
information. In fact, this can be reduced further, i.e., even if the algorithm ‘knows’ that the left
singular vectors of N are sparse, identifying the locations of the non-zero entries is the key difficulty
that leads to the lower bound.
Definition 1 (Local minimax bound). Consider a model y = Mx + ε, where x is a random
vector, so C∗(x) = IE[xxT] represents the co-variance matrix of the data distribution, and M =

UMΣM (VM )T. The relation (M,x) ∼ (M ′,x′)⇔ (ΣM = ΣM
′∧VM = VM

′∧C∗(x) = C∗(x′))
is an equivalence relation and let the equivalence class of (M,x) be

R(M,x) = {(M ′,x′) : ΣM
′

= ΣM , VM
′

= VM , and C∗(x′) = C∗(x)}. (32)

The local minimax bound for y = Mx + ε with n independent samples and ε ∼ N(0, σ2
ε Id2×d2) is

r(x,M, n, σε) = min
M̂

max
(M ′,x′)∈R(M,x)

IE X,Y from
y∼M′x′+ε

[IEx′ [‖M̂(X,Y)x′ −M ′x′‖22 | X,Y]]. (33)

It is worth interpreting (33) in some detail. For any two (M,x), (M ′,x′) inR(M,x), the algorithm
has the same ‘prior knowledge’, so it can only distinguish between the two instances by using the
observed data, in particular M̂ is a function only of X and Y, and we denote it as M̂(X,Y) to
emphasize this. Thus, we can evaluate the performance of M̂ by looking at the worst possible
(M ′,x′) and considering the MSE IE‖M̂(X,Y)x′ −M ′x′‖2.
Proposition 3. Consider the problem y = Mx + ε with normalized form y = Nz + ε. Let ξ be
a sufficient small constant. There exists a sufficiently small constant ρ0 (that depends on ξ) and a

constant c such that for any ρ ≤ ρ0, r(x,M, n, σε) ≥ (1− cρ 1
2−ξ)

∑
i≥t(σ

N
i )2 −O

(
ρ

1
2
−ξ

dω−1
2

)
, where

t is the smallest index such that σNt ≤ ρσε
√

d2
n .

Proposition 3 gives the lower bound on the MSE in expectation; it can be turned into a high probability
result with suitable modifications. The proof of the lower bound uses a similar ‘trick’ to the one used
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in the analysis of the upper bound analysis to cut the tail. This results in an additional term O
(
ρ

1
2
−ξ

dω−1
2

)
which is generally smaller than the n−c0 tail term in Theorem 1 and does not dominate the gap.

Gap requirement and bi-criteria approximation algorithms. Let τ = σε

√
d2
n . Theorem 1 asserts

that any signal above the threshold θτ can be detected, i.e., the MSE is at most
∑
σNi >θτ

σ2
i (N)

(plus inevitable noise), whereas Proposition 3 asserts that any signal below the threshold ρτ cannot
be detected, i.e., the MSE is approximately at least

∑
σNi ≥ρτ

(1− poly(ρ))σ2
i (N). There is a ‘gap’

between θτ and ρτ , as θ > 1 and ρ < 1. See Fig. 3(a). This kind of gap is inevitable because both
bounds are ‘high probability’ statements. This gap phenomenon appears naturally when the sample
size is small as can be illustrated by this simple example. Consider the problem of estimating µ when
we see one sample from N(µ, σ2). Roughly speaking, when µ� σ, the estimation is feasible, and
whereas µ � σ, the estimation is impossible. For the region µ ≈ σ, algorithms fail with constant
probability and we cannot prove a high probability lower bound either.

While many of the signals can ‘hide’ in the gap, the inability to detect signals in the gap is a
transient phenomenon. When the number of samples n is modestly increased, our detection threshold

τ = θσε

√
d2
n shrinks, and this hidden signal can be fully recovered. This observation naturally leads

to a notion of bi-criteria optimization that frequently arises in approximation algorithms.
Definition 2. An algorithm for solving the y = Mx + ε problem is (α, β)-optimal if, when given an
i.i.d. sample of size αn as input, it outputs an estimator whose MSE is at most β worse than the local
minimax bound, i.e., IE[‖ŷ − y‖22] ≤ r(x,M, n, σε) + β.

Corollary 1. Let ξ and c0 be small constants and ρ be a tunable parameter. Our algorithm is
(α, β)-optimal for

α =
θ2

ρ
5
2

β = O(ρ
1
2−ξ)‖Mx‖22 +O(n−c0)

The error term β consists of ρ
1
2−ε‖Mx‖22 that is directly characterized by the signal strength and

an additive term O(n−c0) = o(1). Assuming that ‖Mx‖ = Ω(1), i.e., the signal is not too weak,
the term β becomes a single multiplicative bound O(ρ

1
2−ξ + n−c0)‖Mx‖22. This gives an easily

interpretable result. For example, when our data size is n log n, the performance gap between
our algorithm and any algorithm that uses n samples is at most o(‖Mx‖22). The improvement is
significant when other baselines deliver MSE in the additive form that could be larger than ‖Mx‖22
in the regime n ≤ d1.

Preview of techniques. Let N = UNΣN (V N )T be the instance (in orthogonalized form). Our
goal is to construct a collection N = {N1, . . . , NK} of K matrices so that (i) For any Ni ∈ N ,
ΣNi = ΣN and V Ni = V N . (ii) For any two Ni, Nj ∈ N , ‖N − N ′‖F is large, and (iii)
K = exp(Ω(poly(ρ)d2)) (cf. [49, Chap. 2]).

Condition (i) ensures that it suffices to construct unitary matrices UNi ’s for N , and that the resulting
instances will be in the same equivalence class. Conditions (ii) and (iii) resemble standard construction
of codes in information theory: we need a large ‘code rate’, corresponding to requiring a large K
as well as large distances between codewords, corresponding to requiring that ‖Ui − Uj‖F be large.
Standard approaches for constructing such collections run into difficulties. Getting a sufficiently tight
concentration bound on the distance between two random unitary matrices is difficult as the matrix
entries, by necessity, are correlated. On the other hand, starting with a large collection of random unit
vectors and using its Cartesian product to build matrices does not necessarily yield unitary matrices.

We design a two-stage approach to decouple condition (iii) from (i) and (ii) by only generating sparse
matrices UNi . See Fig. 3(b)-(d). In the first stage (Steps 1 & 2 in Fig. 3(b)-(c)), we only specify the
non-zero positions (sparsity pattern) in each UNi . It suffices to guarantee that the sparsity patterns of
the matrices UNi and UNj have little overlap. The existence of such objects can easily be proved
using the probabilistic method. Thus, in the first stage, we can build up a large number of sparsity
patterns. In the second stage (Step 3 in Fig. 3(d)), we carefully fill in values in the non-zero positions
for each UNi . When the number of non-zero entries is not too small, satisfying the unitary constraint
is feasible. As the overlap of sparsity patterns of any two matrices is small, we can argue the distance
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between them is large. By carefully trading off the number of non-zero positions and the portion of
overlap, we can simultaneously satisfy all three conditions.

4.1 Roadmap

This section describes the roadmap for executing the above idea.

Normalized form. Recall that d2 ≤ d1, we have

Mx = UM︸︷︷︸
d2×d2

ΣM︸︷︷︸
d2×d2

(VM )T︸ ︷︷ ︸
d2×d1

V ∗︸︷︷︸
d1×d1

(Λ∗)
1
2︸ ︷︷ ︸

d1×d1

z︸︷︷︸
d1×1

(34)

We may perform an SVD on ΣM (VM )TV ∗(Λ∗)
1
2 = A︸︷︷︸

d2×d2

L†︸︷︷︸
d2×d2

BT︸︷︷︸
d2×d1

. We may also set z† = BTz,

which is a standard multi-variate Gaussian in Rd2 . Then we have

Mx = UMAL†BTz = (UMA)L†z†. (35)

Let N† = (UMA)L†. The SVD of N† is exactly (UM )AL†Id2×d2 because UMA is unitary. The
normalized form of our problem is

y = N†z† + ε. (36)

Recall our local minimax has an oracle access interpretation. An algorithm with the oracle can
reduce a problem into the normalized form on its own, and the algorithm knows L†. But the oracle
still does not have any information on N†’s left singular vectors because being able to manipulate
UM is the same as being able to manipulate UMA. Therefore, we can analyze the lower bound in
normalized form, with the assumption that the SVD of N† = U†L†Id2×d2 , in which L† is known
to the algorithm. We shall also let σ†i = L†i,i = σN

†

i . Because N† is square, we let d = d2 in the
analysis below.

We make two remarks in comparison to the orthogonalized form y = Nz + ε. (i) z† ∈ Rd2 , whereas
z ∈ Rd1 . z†’s dimension is smaller because the knowledge of ΣM and VM enable us to remove the
directions from x that are orthogonal to M ’s row space. (ii) σNi = σN

†

i for i ≤ d2.

We rely on the following theorem (Chapter 2 in [49]) to construct the lower bound.

Theorem 2. Let N† = {N†1 , N
†
2 , . . . , N

†
K}, where K ≥ 2. Let Pi be distribution of the training data

produced from the model y = N†i z
† + ε. Assume that

• ‖N†i −N
†
j ‖2F ≥ 2s > 0 for any 0 ≤ j ≤ k ≤ K.

• For any j = 1, . . .K and

1

K

K∑
j=1

KL(Pj , P1) ≤ α logK (37)

with 0 ≤ α ≤ 1
8 .

Then

inf
N̂†

sup
N†∈N†

Pr
N†

(‖N̂†, N†‖ ≥ s) ≥
√
K

1 +
√
K

(1− 2α−
√

2α

logK
). (38)

Because L† is fixed, this problem boils down to finding a collection U† of unitary matrices in Rd×d

such that any two elements in U† are sufficiently far. Then we can construct N† = {U†L† : U† ∈ U}.
We next reiterate (with elaboration) the challenge we face when using existing techniques. Then we
describe our approach. We shall first examine a simple case, in which we need only design vectors
for one column. Then we explain the difficulties of using an existing technique to generalize the
design. Finally, we explain our solution.
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Recall that (Z†)TY = (N†)T + E , where we can roughly view E as a matrix that consists of
independent Gaussian (0, σε/

√
n). For the sake of discussion, we assume σε = 1 in our discussion

below.

Warmup: one colume case. The problem of packing one column roughly corresponds to estab-
lishing a lower bound on the estimation problem y = u + ε, where y,u, ε ∈ Rd. ε corresponds to
a column in E and consists of d independent Gaussian N(0, 1/

√
n). u correpsonds to a column in

U† and we require ‖u‖2 ≈ ρ
√
d/n. To apply Theorem 2, we shall construct a D = {u1, . . . ,uK}

such that ‖ui − uj‖ is large for each {i, j} pair and K is also large. Specifically, we require
‖ui − uj‖22 ≈ 2ρ2 d

n (large distance requirement) and K = exp(Θ(
√
ρd)) (large set requirement).√

ρ is carefully optimized and we will defer the reasoning to the full analysis below. A standard
tool to construct D is to use a probabilistic method. We sample ui independently from the same
distribution and argue that with high probability ‖ui − uj‖22 is sufficiently large. Then a union

bound can be used to derive K. For example, we may set ui ∼ N(0, ρ
√

d
nId×d) for all i, and the

concentration quality suffices for us to sample K vectors.

Multiple column case. We now move to the problem of packing multiple columns in U together.
K is required to be much larger, e.g., K = exp(Θ(

√
ρd2)) for certain problem instances. A natural

generalization of one-column case is to build our parameter set by taking the Cartesian product of
multiple copies of D. This gives us a large K for free but the key issue is that vectors in D are
generated independently. So there is no way to guarantee they are independent to each other. In fact,
it is straightforward to show that many elements in the Cartesian product are far from unitary. One
may also directly sample random unitary matrices and argue that they are far from each other. But
there seems to exist no tool that enables us to build up a concentration of exp(−Θ(

√
ρd2)) between

two random unitary matrices.

Therefore, a fundamental problem is that we need independence to build up a large set but the unitary
constraint limits the independence. So we either cannot satisfy the unitary requirement (Cartesian
product approach) or cannot properly use the independence to build concentrations (random unitary
matrix approach).

Our approach. We develop a technique that decouples the three requirements (unitary matrices,
large distance, and large K). Let us re-examine the Cartesian product approach. When the vectors for
each column are completely determined, then it is remarkably difficult to build a Cartesian product
that guarantees orthogonality between columns. To address this issue, our approach only “partially”
specify vectors in each column. Then we take a Cartesian product of these partial specifications. So
the size of the Cartesian product is sufficiently large; meanwhile an element in the product does not
fully specify U† so we still have room to make them unitary. Thus, our final step is to transform each
partial specification in the Cartesian product into a unitary matrix. Specifically, it consists of three
steps (See Fig. 3)

Step 1. Partial specification of each column. For each column i of interest, we build up a
collection D(i) = {R(i,1), . . . , R(i,K)}. Each R(i,j) ⊂ [d] specifies only the positions of non-zero
entire for a vector prepared for filling in U:,i.

Step 2. Cartesian product. Then we randomly sample elements from the Cartesian product
D ,

⊗
iD(i). Each element in the product specifies the non-zero entries of U†. We need to do

another random sampling instead of using the full Cartesian product because we need to guarantee
that any two matrices share a small number of non-zero entries. For example, (R(1,1), R(2,1), R(3,1))
and (R(1,1), R(2,1), R(3,2)) are two elements in

⊗
iD(i) but they specify two matrices with the same

locations of non-zero entries for the first two columns.

Step 3. Building up unitary matrices. Finally, for each element ~R ∈ D (that specify positions of
non-zero entries), we carefully fill in the values of the non-zero entries so that all our matrices are
unitary and far from each other. We shall show that it is always possible to construct unitary matrices
that “comply with” ~R. In addition, our unitary matrices have few entries with large magnitude so
when two matrices share few positions of non-zero entries, they are far.
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4.2 Analysis

We now execute the plan outlined in the roadmap. Let K and λ be tunable parameters. For the
purpose of getting intuition, K is related to the size of U† so it can be thought as being exponential in
d, whereas λ is a constant and we use ρλ to control the density of non-zero entries in each U† ∈ U†.

Let D(i) = {R(i,1), R(i,2), · · · , R(i,K)} be a collection of random subsets in [d], in which each R(i,j)

is of size ρλd. We sample the subsets without replacement. Recall that t is the smallest index such

that σ†t ≤ ρσε

√
d
n and let us also define t = bρ

λd
2 c. We let γ = t − t + 1. We assume that t ≥ t;

otherwise Proposition 3 becomes trivial. Let D be the Cartesian product of D(i) for integers i ∈ [t, t].
We use ~R to denote an element in D. ~R = (~Rt, ~Rt+1, · · · , ~Rt) is a γ-tuple so that each element ~Ri
corresponds to an element in D(i). There are two ways to represent ~R. Both are found useful in our
analysis.

1. Set representation. We treat ~Ri as a set in D(i).

2. Index representation. We treat ~Ri as an index from [K] that specifies the index of the set
that ~Ri refers to.

Note that the subscript i of ~Ri starts at t (instead of 1 or 0) for convenience.
Example 4.1. The index of Di starts at t. Assume that t = t+ 1. Let D(t) =

(
{2, 3}, {1, 4}, {1, 2}

)
and D(t+1) =

(
{1, 3}, {2, 4}, {3, 4}

)
. The element

(
{1, 2}, {2, 4}

)
∈ D(t) ⊗ D(t+1). There are two

ways to represent this element. (i) Set representation. ~R =
(
{1, 2}, {2, 4}

)
, in which ~Rt = {1, 2}

and ~Rt+1 = {2, 4}. (ii) Index representation. ~R = (3, 2). ~Rt = 3 refers to that the third element
{1, 2} in D(t) is selected.

We now describe our proof in detail. We remark that throughout our analysis, constants are re-used in
different proofs.

4.2.1 Step 1. Partial specification for each column

This step needs only characterize the behavior of an individual D(i).
Lemma 11. Let ρ < 1 be a sufficiently small variable, λ be a tunable parameter and let D(i) =
{R(i,1), R(i,2), · · · , R(i,K)} be a collection of random subsets in [d] (sampled without replacement)
such that |R(i,j)| = ρλd for all j. There exist constants c0, c1, and c2 such that when K =
exp(c0ρ

2λd), with probability 1 − exp(−c1ρ2λd), for any two distinct R(i) and R(j), |R(i,j) ∩
R(i,k)| ≤ c2ρ2λd.

Proof of Lemma 11. This can be proved by a standard probabilistic argument. Let R(i,j) be an
arbitrary subset such that |R(i,j)| = ρλd. Let R(i,k) be a random subset of size ρλd. We compute the
probability that |R(i,j) ∩R(i,k)| ≥ c2ρ2λd for a fixed R(i,j).

Let us sequentially sample elements fromR(i,k) (without replacement). Let It be an indicator random
variable that sets to 1 if and only if the t-th random element in R(i,k) hits an element in R(i,j). We
have

Pr[It = 1] ≤ ρλd

(1− ρλ)d
≤ ρλ

2
. (39)

By using a Chernoff bound, we have

Pr

| ρλd∑
i=1

It| ≥
c2ρ

2λd

2

 ≤ exp(−Ω(ρ2λd)). (40)

By using a union bound, we have

Pr[∃i, j : |R(i,j)∩R(i,k)| ≥ c2ρ
2λd

2
] ≤

(
K

2

)
exp(−Ω(ρ2λd)) ≤ exp(−Ω(ρ2λd)+2 logK). (41)

Therefore, when we set K = exp(c0ρ
2λd), the failure probability is 1− exp(−Θ(ρ2λd)).
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4.2.2 Step 2. Random samples from the Cartesian product

We let D =
⊗

i∈[t,t] D(i). Note that each D(i) is sampled independently. We define S be a random
subset of D. We next explain the reason we need to sample random subsets. Recall that for each
~R ∈ S, we aim to construct a unitary matrix U† (to be discussed in Step 3) such that the positions of
non-zero entries in U†:,i are specified by ~Ri (i.e., U†j,i 6= 0 only when j ∈ ~Ri).

Let ~R and ~R′ be two distinct elements in D. Let U† and Ũ† be two unitary matrices generated by
~R and ~R′. We ultimately aim to have that ‖U†L† − Ũ†L†‖2F being large. We shall make sure (i)
U† and Ũ† share few non-zero positions (Step 2; this step), and (ii) few entries in U† and Ũ† have
excessive magnitude (Step 3). These two conditions will imply that U† and Ũ† are far, which then
implies a lower bound on U†L† and Ũ†L†.

Because we do not want U† and Ũ† share non-zero positions, we want to maximize the Hamming
distance (in index representation) between ~R and ~R′ (i.e., ~Ri = ~R′i implies U†:,i and Ũ†:,i share all
non-zero positions, which is a bad event). We sample S randomly from D because random sample is
a known procedure that generates “code” with large Hamming distance [30].

Before proceeding, we note one catch in the above explanation, i.e., different columns are of different
importance. Specifically, ‖U†L† − Ũ†L†‖2F =

∑
i∈[d](σ

†
i )

2‖U†:,i − Ũ
†
:,i‖2. When ~Ri and ~R′i collide

for a large (σ†i )
2, it makes more impact to the Frobenius norm. Thus, we define a weighted cost

function that resembles the structure of Hamming distance.

c(~R, ~R′) =
∑
i∈[t,t]

(σ†i )
2I(~Ri = ~R′i). (42)

Note that the direction we need for c(~R, ~R′) is opposite to Hamming distance. One usually maximizes
Hamming distance whereas we need to minimize the weighted cost.

We need to develop a specialized technique to produce concentration behavior for S because c(~R, ~R′)
is weighted.

Lemma 12. Let ρ and λ be the parameters for producting D(i). Let ζ < 1 be a tunable parameter.
Let S be a random subset of D of D ,

⊗
i∈[t,t] D(i) such that

|S| = exp

c3nρ2λ+ζ

ρ2σ2
ε

∑
i∈[t,t]

(σ†i )
2

 (43)

for some constant c3. With high probability at least 1 − exp(−c4ρ2λd) (c4 a constant), for any ~R
and ~R′ in S, c(~R, ~R′) ≤ ρζ(

∑
i∈[t,t](σ

†
i )

2).

Proof. Let Ψ =
∑
i∈[t,t](σ

†
i )

2. Let ~R and ~R′ be two different random elements in D. We shall first

compute that Pr
[
c(~R, ~R′) ≥ ρζΨ

]
. Here, we assume that ~R is an arbitrary fixed element and ~R′ is

random.

Recall that σ†i ∈ [0, ρσε
√

n
d ] for i ∈ [t, t]. We shall partition [0, ρσε

√
n
d ] into subintervals and group

σ†i by these intervals. Let It be the set of σ†i that are in [2−t−1ρσε
√

n
d , 2
−tρσε

√
n
d ] (t ≥ 0). Let T

be the largest integer such that IT is not empty. Let Lt = |It| and `t =
∑
i∈It I(~Ri = ~R′i). We call

{`t}t≤T the overlapping coefficients between ~R and ~R′.

Note that c(~R, ~R′) ≤
∑
t≤T `t2

−2tρ2σ2
εd/n. Therefore, a necessary condition for c(~R, ~R′) ≥ ρζΨ

is
∑
t≤T

`t2
−2tρ2σ2

εd
n ≥ ρηΨ. Together with the requirement that

∑
t≤T `t ≥ 1, we need∑

t≤T

`t ≥ max

{
nρζΨ

dρ2σ2
ε

, 1

}
(44)
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Recall that we assume that ~R is fixed and ~R′ is random. When c(~R, ~R′) ≥ ρζΨ, we say ~R′ is bad.
We next partition all bad ~R′ into sets indexed by {`t}t≤T . Let C({`t}t≤T ) be all the bad ~R′ such
that the overlapping coefficients between ~R and ~R′ are {`t}t≤T . We have

Pr[c(~R, ~R′) ≥ ρζΨ] = Pr[~R′ is bad ] = Pr

~R′ ∈ ⋃
{`t}t≤T

C({`t}t≤T )

 =
∑
k≥1

∑
all C({`i})

s.t.
∑
t `t = k

Pr[~R′ ∈ C({`t}t≤T )]

Next also note that

Pr[~R′ ∈ C({`t}t≤T )] ≤
∏
t≤T

(
Lt
`t

)(
1

K

)∑
t≤T `t

,

where K is the size of each D(i).

The number of possible {`i}t≤T such that
∑
t≤T `i = k is at most

(
d+k
k

)
. Therefore,∑

k≥1

∑
all C({`i})

s.t.
∑
t `t = k

Pr
[
~R′ ∈ C({`i}i≤T )

]

≤
∑
k≥1

∑
all C({`i})

s.t.
∑
t `t = k

∏
t≤T

(
Lt
`t

)(
1

K

)`t

≤
∑
k≥1

∑
all C({`i})

s.t.
∑
t `t = k

∏
t≤T

(
eLt
K

)`t
(using

(
Lt
`t

)
≤
(
eLt
`t

)`t
≤ (eLi)

`i )

≤
∑
k≥1

(
d+ k

k

)∏
t≤T

(
eLt
K

)`t
≤ d max

k s.t.∑
t `t=k

(
d+ k

k

)∏
i≤T

(
eLi
K

)`t
≤ d

(
e(d+ k)

k

)k ∏
t≤T

(
eLt
K

)`t
(where k =

∑
t≤T `t from the previous line)

≤ d(2ed)k
∏
t≤T

(
eLt
K

)`t

≤ d
∏
t≤T

(
2e2d2

K

)`t
≤ exp

−cρ2λd(
∑
t≤T

`t)

 (c is a suitable constant; using K from Lemma 11)

≤ exp

(
−cρ2λdmax

{
nρζΨ

dρ2σ2
ε

, 1

})
By using a union bound on all pairs of ~R and ~R′ in S, we have for sufficiently small c3, there exists a
c4 such that

Pr
[
∃~R, ~R′ ∈ S : c(~R, ~R′) ≥ ρζΨ

]
≤ exp

(
−c4ρ2λdmax

{
nρζΨ

dρ2σ2
ε

, 1

})
≤ exp(−c4ρ2λd).

4.2.3 Step 3. Building up unitary matrices

We next construct a set of unitary matrices in Rd×d based on elements in S. We shall refer to the
procedure to generate a unitary U from an element ~R ∈ S as q(~R).
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Procedure q(~R): Let U ∈ Rd×d be the matrix q(~R) aims to fill in. Let v(1),v(2), . . . ,v(t−1) ∈ Rd

be an arbitrary set of orthonormal vectors. q(~R) partitions the matrix U into three regions of columns
and it fills different regions with different strategies. See also three regions illustrated by matrices in
Fig. 3.

Region 1: U:,i for i < t. We set U:,i = v(i) when i < t. This means all the unitary matrices we
construct share the first t− 1 columns.

Region 2: U:,i for i ∈ [t, t]. We next fill in non-zero entries of each U:,i by ~Ri for i ∈ [t, t]. We
fill in each U:,i sequentially from left to right (from small i to large i). We need to make sure that
(i) it is feasible to construct U:,i that is orthogonal to all U:.j (j < i) by using only entries specified
by Ri. (ii) there is a way to fill in U:,i so that not too many entries are excessively large. (ii) is
needed because for any ~R and ~R′, ~Ri and ~R′i still share a small number of non-zero positions (whp
|~Ri ∩ ~R′i| = O(ρ2λd), according to Lemma 11). When the mass in |~Ri ∩ ~R′i| is large, the distance
between U and U ′ is harder to control.

Region 3: U:,i for i > t. q(~R) fills in the rest of the vectors arbitrarily so long as U is unitary. Unlike
the first t − 1 columns, these columns depend on ~R so each U ∈ U has a different set of ending
column vectors.

Analysis for region 2. Our analysis focuses on two asserted properties for Region 2 are true. We
first show (i) is true and describe a procedure to make sure (ii) happens.

For j ≤ i − 1, let w(j) ∈ Rρλd be the projection of U:,j onto the coordinates specified by ~Ri.
See Fig. 3(d) for an illustration. Note that t = ρλd

2 , the dimension of the subspace spanned
by w(1), . . .w(i−1) is at most ρλd/2. Therefore, we can find a set of orthonormal vectors
{u(1), . . .u(κ)} ⊆ Rρλd (κ ≥ ρλd

2 ) that are orthogonal to w(j) (j ≤ i − 1). To build a U:,i

that’s orthogonal to all U:,j (j ≤ i− 1), we can first find a u ∈ Rρλd that is a linear combination of
{u(j)}j≤κ, and then “inflate” u back to Rd, i.e., the k-th non-zero coordinate of U:,i is uk. One can
see that

〈U:,j , U:,i〉 = 〈w(j),u〉 = 0

for any j < i.

We now make sure (ii) happens. We have the following Lemma.

Lemma 13. Let {u(1), . . . ,u(κ)} (κ ≥ ρλd/2) be a collection of orthonormal vectors in Rρλd. Let η
be a small tunable parameter. There exists a set of coefficients β1, . . . , βκ such that u =

∑κ
i=1 βiu

(i)

is a unit vector and there exist constant c5, c6, and c7 such that∑
i≤ρλd

u2
i I

(
ui ≥

c5√
ρλ+ηd

)
≤ c7ξ, (45)

where ξ = exp(− c6
ρη ).

Proof of Lemma 13. We use a probabilistic method to find u. Let zi ∼ N(0, 1/
√
ρλd) for i ∈ [ρλd].

Let S =
√∑

i≤ρλd z
2
i . We shall set βi = zi/S. One can check that u =

∑
i∈[ρλd] βiu

(i) is a unit
vector. We then examine whether (45) is satisfied for these βi’s we created. If not, we re-generate a
new set of zi’s and βi’s. We repeat this process until (45) is satisfied.

Because βi’s are normalized, setting the standard deviation of zi is unnecessary. We nevertheless do
so because S will be approximately a constant, which helps us simplify the calculation.

We claim that there exists a constant c such that for any `,

IE

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)]
≤ cξ

ρλd
. (46)
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We first show that (46) implies Lemma 13. Then we will show (46).

By linearity of expectation, (46) implies

IE

 ∑
`≤ρλd

u2
`I

(
u` ≥

c5√
ρλ+ηd

) ≤ cξ.
Then we use a Markov inequality and obtain

Pr

 ∑
`≤ρλd

u2
`I

(
u` ≥

c5√
ρλ+ηd

) ≥ 2cξ

 ≤ 1

2

So our probabilistic method described above is guaranteed to find a u that satisfies (45)

We next move to showing (46). Recall that

u` =
1

S
(
∑
i≤κ

ziu
(i)
` ).

We also let Z` =
∑
i≤κ ziu

(i)
` . We can see that Z` is a Gaussian random variable with a standard

deviation
√

1
ρλd

∑
i≤κ(u

(i)
` )2 ≤

√
1
ρλd

. The inequality uses the fact that u(i)’s are orthonormal to

each other and therefore
∑
i≤κ(u

(i)
` )2 ≤ 1.

On the other hand, one can see that

IE[S] = IE[
∑
i≤κ

z2
i ] =

(
1√
ρλd

)2

· κ ≥ 1

2
.

Therefore, by a standard Chernoff bound, Pr
[
S ≤ 1

4

]
≤ exp(−Θ(κ)).

Next, because {zi}i≤κ collectively form a spherical distribution, we have
{
zi
S

}
i≤κ is independent to

S. Therefore,

IE

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)]
= IE

[
u2
`I

(
u` ≥

c5√
ρλ+ηd

)
| S ≥ 1

4

]
(47)

Conditioned on S ≥ 1
4 , we use the fact that u` = Z`/S to get u` ≤ 4Z` and

I

(
u` ≥

c5√
ρλ+ηd

)
= I

(
Z` ≥

c5√
ρλ+ηd

S

)
≤ I

(
Z` ≥

c5

4
√
ρλ+ηd

)
. (48)
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Therefore,

(47)

≤ 16IE

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)
| S ≥ 1

4

]

=
16

Pr
[
S ≥ 1

4

] (IE

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)]
− IE

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)
| S < 1

4

]
Pr

[
S ≤ 1

4

])

≤ 16(1 + exp(−Θ(κ)))

(
IE

[
Z2
` I

(
Z` ≥

c5

4
√
ρλ+ηd

)])

≤ 16(1 + exp(−Θ(κ)))IE

[
Z2
` I

(
Z` ≥

2c5√
ρλ+ηd

)]

≤ 16(1 + exp(−Θ(κ)))√
2πσZ`

∫ ∞
2c5√
ρλ+ηd

z2 exp

(
z2

σ2
Z`

)
dz

≤ c

ρλ+ηd
exp

(
−Θ(ρ−η)

)
(using σZ` ≤

√
1
ρλd

)

≤ O(
ξ

ρλd
)

4.2.4 Proof of Proposition 3

Now we are ready to use Theorem 2 to prove Proposition 3. Let S be the set constructed from Step
1 and U† = {U† : U† = q(~R), ~R ∈ S}. Let N† = {U†L† : U† ∈ U†}. Let also PN† be the
distribution of (y, z†) generated from the model y = N†z† + ε. Let PN†|z† be the distribution of y
from the normalized model when z† is given. Let PN†,n be the product distribution when we observe
n samples from the model y = N†z† + ε. Let fN†(y, z†) be the pdf of for PN† , fN†(y | z†) be the
pdf of y given z†, and f(z†) be the pdf of z†.

We need to show that for any N†, Ñ† ∈ N (i) ‖N† − Ñ†‖F is large, and (ii) the KL-divergence
between PN†,n and PN†,n is bounded.

Lemma 14. Let S, U†, and N† be generated by the parameters λ, η, and ζ (see Steps 1 to 3). For
any N† and Ñ† in N, we have

‖N† − Ñ†‖2F ≥
∑
i∈[t,t]

σ†i (2− c8ρ
λ−η − c9ρζ) (49)

for some constant c8 and c9.

Proof. Let U†, Ũ† ∈ U† such that N† = U†L† and Ñ† = Ũ†L†; let ~R, ~R′ ∈ S be that U† = q(~R)

and Ũ† = q(~R′). Also, recall that we let Ψ =
∑
i∈[t,t](σ

†
i )

2.

We have
‖N† − Ñ†‖2F =

∑
i∈[d]

‖(U†:,i − Ũ
†
:,i)σ

†
i ‖

2
2 ≥

∑
i∈[t,t]

‖(U†:,i − Ũ
†
:,i)σ

†
i ‖

2
2

Let also H = {~Ri = ~R′i, i ∈ [t, t]}, i.e., the set of coordinates that ~R and ~R′ agree. Whp, we have

Ψ =
∑
i∈H

(σ†i )
2 +

∑
i∈[t,t]
i/∈H

(σ†i )
2 = c(~R, ~R′) +

∑
i∈[t,t]
i/∈H

(σ†i )
2 ≤ ρζΨ +

∑
i∈[t,t]
i/∈H

(σ†i )
2 (50)

The last inequality holds because of Lemma 12. Therefore, we have
∑

i∈[t,t]
i/∈H

(σ†i )
2 ≥ (1− ρζ)Ψ.
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Now we have ∑
i∈[t,t]

‖(U†:,i − Ũ
†
:,i)σ

†
i ‖

2
2 ≥

∑
i∈[t,t]
i/∈H

‖(U†:,i − Ũ
†
:,i‖

2
2(σ†i )

2.

Next we bound ‖U†:,i − Ũ
†
:,i‖22 when ~Ri 6= ~R′i. We have

‖U†:,i − Ũ
†
:,i‖

2
2 ≥ 2−

∑
j∈~Ri∩~R′i

(
(U†j,i)

2 + (Ũ†j,i)
2
)
. (51)

By Lemma 11, whp |~Ri ∩ ~R′i| ≤ c2ρ2λd. Next, we give a bound for
∑
j∈~Ri∩~R′i

(U†j,i)
2. The bound

for
∑
j∈~Ri∩~R′i

(Ũ†j,i)
2 can be derived in a similar manner.

For each j ∈ |~Ri ∩ ~R′i|, we check whether U†j,i ≥
c5√
ρλ+ηd

:

∑
j∈~Ri∩~R′i

(U†j,i)
2 =

∑
j∈~Ri∩~R′i

[
(U†j,i)

2I(U†j,i ≤
c5√
ρλ+ηd

) + (U†j,i)
2I(U†j,i >

c5√
ρλ+ηd

)

]

≤ O
(
ρ2λd

ρλ+ηd
+ exp(−Θ(1/ρη))

)
= O(ρλ−η).

Therefore,∑
i∈[t,t]

‖(U†:,i − Ũ
†
:,i)(σ

†
i )

2‖22 ≥
∑
i∈[t,t]

(σ†i )
2(2−O(ρλ−η)(1− ρζ)) ≥

∑
i∈[t,t]

(σ†i )
2(2− c8ρλ−η − c9ρζ).

We need two additional building blocks.
Lemma 15. Consider the regression problem y = Mx + ε, where ‖M‖ ≤ Υ = O(1) and the
eigenvalues σi(IE[xxT)] of the features follow a power law distribution with exponent ω. Consider
the problem y = Nz + ε in orthogonalized form. Let σNi be the i-th singular value of N . Let t be an
arbitrary value in [0,min{d1, d2}]. There exists a constant c10 such that∑

i≥t

σ2
i (N) ≤ c10

tω−1
.

Proof of Lemma 15. Without loss of generality, assume that d1 ≥ d2. We first split the columns of
N into two parts, N = [N+, N−], in which N+ ∈ Rd2×t consists of the first t columns of N and
N− ∈ Rd2×(d1−t) consists of the remaining columns. Let 0 be a zero matrix in Rd2×(d1−t). [N+,0]
is a matrix of rank at most t.

Let us split other matrices in a similar manner.

• M = [M+,M−], where M+ ∈ Rd2×t and M− ∈ Rd2×(d1−t),

• V ∗ = [V ∗+, V
∗
−], where V ∗+ ∈ Rd1×t, and V ∗− ∈ Rd1×(d1−t), and

• Λ∗ = [Λ∗+,Λ
∗
−], where Λ∗+ ∈ Rd1×t and Λ∗− ∈ Rd1×(d1−t).

We have∑
i≥t

(σNi )2 = ‖N −Pt(N)‖2F

≤ ‖N − [N+,0]‖2F (Pt(N) gives an optimal rank-t approximation of N ).

= ‖N−‖2F ≤ ‖M−V ∗−‖2‖(Λ∗−)
1
2 ‖2F ≤

c10

tω−1
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We next move to our second building block.
Fact 4.1.

KL(PN†,n,PÑ†,n) =
n‖N† − Ñ†‖2F

2σ2
ε

. (52)

Proof of Fact 4.1.

KL(PN†,n,PÑ†,n)

= nKL(PN† ,PÑ†)

= nIEy=N†z†+ε

[
log

(
fN†(y, z

†)

fÑ†(y, z
†)

)]
= nIEz†

[
IEy=N†z†+ε

[
log

(
fN†(y, z

†)

fÑ†(y, z
†)

)
| z†
]]

= nIEz†

[
IEy=N†z†+ε

[
log

(
fN†(y | z†)f(z†)

fÑ†(y | z†)f(z†)

)
| z†
]]

= nIEzIEy=N†z†+ε

[[
log

(
fN†(y | z†)
fÑ†(y | z†)

)
| z†
]]

= nIEz

[
KL(PN†|z† ,PÑ†|z†)

]
=
n‖N† − Ñ†‖2F

2σ2
ε

We now complete the proof for Proposition 3. First, define ψ ,
∑
i≥t+1(σ†i )2∑
i∈[t,t](σ

†
i )2

. For any N† and Ñ† in

N, we have
‖N† − Ñ†‖2F =

∑
i≥t

(σ†i )
2 = (1 + ψ)Ψ,

where recall that Ψ =
∑
i∈[t,t](σ

†
i )

2. Using Lemma 14, we have KL(PN†,n,PÑ†,n) = n(1 + ψ)Ψ.

Next, we find a smallest α such that
max
N†,Ñ†

KL(PN†,n,PÑ†,n) ≤ α log |N|. (53)

By Lemma 12, we have |N| = exp(c3
nρ2λ+ζ−2

σ2
ε

Ψ). (53) is equivalent to requiring

n(1 + ψ)Ψ

2σ2
ε

≤ αc3nρ
2λ+ζ−2Ψ

σ2
ε

.

We may thus set α = O(ρ2−2λ+ζ(1 + ψ)). Now we may invoke Theorem 2 and get

r(x,M, n, σε) ≥ Ψ

(
1− 1√

|N|

)
(2− c8ρλ−η − c9ρζ)︸ ︷︷ ︸

Lemma 14

(
1−O(ρ2−2λ−ζ)(1 + ψ)

)
≥ Ψ(1−O(ρλ−η + ρζ + ρ2−2λ−ζ))− Ψψ︸︷︷︸

=
∑
i>t(σ

†
i )2

ρ2−2λ−ζ

≥ Ψ(1−O(ρλ−η + ρζ + ρ2−2λ−ζ))−O
(

1

(ρλd)ω−1

)
ρ2−2λ−ζ

(Use Lemma 15 to bound
∑
i>t(σ

†
i )

2 )

We shall set ξ = η be a small constant (say 0.001), λ = 1
2 + ξ, and ζ = 1

2 . This gives us

r(x,M, n, σε) ≥ Ψ(1−O(ρ
1
2 + ρ

1
2−2ξ))− ρ

1
2−2ξ−(ω−1)( 1

2 +ξ)

dω−1

Together with the fact that
∑
i>t(σ

†
i )

2 = O
(

1
(ρλω)ω−1

)
, we complete the proof of Proposition 3.
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5 Related work and comparison

In this section, we compare our results to other regression algorithms that make low rank constraints
on M . Most existing MSE results are parametrized by the rank or spectral properties of M , e.g.
[33]defined a generalized notion of rank

Bq(RAq ) ∈
{
A ∈ Rd2×d1 :

min{d1,d2}∑
i=1

|σAi |q ≤ Rq
}
, q ∈ [0, 1], A ∈ {N,M}, (54)

i.e. RNq characterizes the generalized rank of N whereas RMq characterizes that of M . When q = 0,
RNq = RMq is the rank of the N because rank(N) = rank(M) in our setting. In their setting, the

MSE is parametrized by RM and is shown to be O
(
RMq

(
σ2
ελ
∗
1(d1+d2)

(λ∗min)2n

)1−q/2)
. In the special case

when q = 0, this reduces to O
(
σ2
ελ
∗
1rank(M)(d1+d2)

(λ∗min)2·n

)
. On the other hand, the MSE in our case is

bounded by (cf. Thm. 1). We have IE[‖ŷ − y‖22] = O
(
RNq (

σ2
εd2
n )1−q/2 + n−c0

)
. When q = 0, this

becomes O
(σ2

ε rank(M)d2
n + n−c0

)
.

The improvement here is twofold. First, our bound is directly characterized by N in orthogonalized
form, whereas result of [33]needs to examine the interaction between M and C∗, so their MSE
depends on both RMq and λ∗min. Second, our bound no longer depends on d1 and pays only an
additive factor n−c0 , thus, when n < d1, our result is significantly better. Other works have different
parameters in the upper bounds, but all of these existing results require that n > d1 to obtain non-
trivial upper bounds [27, 8, 11, 27]. Unlike these prior work, we require a stochastic assumption on
X (the rows are i.i.d.) to ensure that the model is identifiable when n < d1, e.g. there could be two
sets of disjoint features that fit the training data equally well. Our algorithm produces an adaptive
model whose complexity is controlled by k1 and k2, which are adjusted dynamically depending on
the sample size and noise level. [8] and [11] also point out the need for adaptivity; however they
still require n > d1 and make some strong assumptions. For instance, [8]assumes that there is a gap
between σi(XMT) and σi+1(XMT) for some i. In comparison, our sufficient condition, the decay
of λ∗i , is more natural. Our work is not directly comparable to standard variable selection techniques
such as LASSO [48] because they handle univariate y. Column selection algorithms [14] generalize
variable selection methods for vector responses, but they cannot address the identifiability concern.

5.1 Missing proof in comparison

This section proves the following corollary.

Corollary 2. Use the notation appeared in Theorem 1. Let the ground-truth matrix N ∈ Bq(RNq )
for q ∈ [0, 1]. We have whp

IE[‖ŷ − y‖22] = O

(
RNq

(
σ2
εd2

n

)1−q/2

+ n−c0

)
. (55)

Proof. We first prove the case q = 0 as a warmup. Observe that

‖N‖2F −
∑
i≤`∗

(σNi )2 =
∑

`∗<i≤r

(σNi )2 ≤ θ2σ2
εd2(r − `)
n

.

The last inequality uses σNi ≤ θσε
√

d2
n for i > `∗. Therefore, we have

IE[‖ŷ − y‖2)2] ≤ O
(

(r − `∗)θ2σ2
εd2

n
+
`∗d2θ

2σ2
ε

n
+ n−c0

)
= O

(
rθ2σ2

εd2

n
+ n−c0

)
.

Next, we prove the general case q ∈ (0, 1]. We can again use an optimization view to give an upper
bound of the MSE. We view

∑
i≤d2(σNi )q ≤ Rq as a constraint. We aim to maximize the uncaptured

signals, i.e., solve the following optimization problem
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maximize:
∑
i>`∗

(σNi )2

subject to:
∑
i>`

(σNi )q ≤ R−, where R− = Rq −
∑
i≤`∗(σ

N
i )q

σNi ≤
θ2σ2

εd2

n
, for i ≥ `∗.

The optimal solution is achieved when (σNi )2 =
θ2σ2

εd2
n for `∗ < i ≤ `∗+ k, where k = R−(

θ2σ2εd2
n

) q
2

,

and σNi = 0 for i > `∗ + k. We have

IE[‖ŷ − y‖22]

≤
∑
i>`∗

(σNi )2 +O

(
`∗d2θ

2σ2
ε

n
+ n−c0

)

=

Rq −∑
i≤`∗

(σNi )q

(θ2σ2
εd2

n

)1−q/2

+O

(
`∗d2θ

2σ2
ε

n
+ n−c0

)
(56)

We can also see that∑
i≤`∗

(σNi )q
(
θ2σ2

εd2

n

)1−q/2

≥
∑
i≤`∗

(
θ2σ2

εd2

n

)q/2(
θ2σ2

εd2

n

)1−q/2

= `∗
(
θ2σ2

εd2

n

)
.

Therefore,

(56) ≤ O

(
Rq

(
θ2σ2

εd2

n

)1−q/2

+ n−c0

)
.

6 Experiments

Model MSEout MSEin MSEout−in R2
out(bps) R2

in (bps) Sharpe t-statistic
ARRR, N= 983 0.9935 1.0140 -0.0205 46.3761 158.2564 2.4350 8.3268
Lasso 1.1158 0.3953 0.7205 6.6049 7147.0116 2.1462 0.0601
Ridge 1.2158 0.1667 1.0491 9.8596 8511.9076 0.6603 -0.0497
Reduced ridge 1.0900 0.8687 0.2213 13.0321 1555.5136 0.3065 -0.3275
RRR 1.2200 0.5867 0.6332 7.0830 4121.2548 0.3647 -0.6626
Nuclear norm 1.2995 0.12078 1.1787 4.7297 8789.0625 0.6710 0.2340
PCR 1.0259 0.8456 0.1802 1.1278 1544.7258 1.8070 0.3947
ARRR, N= 2838 1.0056 0.9050 0.1006 18.5761 689.0625 1.6239 15.4134
Lasso 1.0625 0.5286 0.5339 1.1236 6029.5225 0.5954 0.0179
Ridge 1.0289 0.6741 0.3548 0.2116 5342.1481 0.5739 0.0670
Reduced ridge 1.9722 0.7373 1.2349 1.0816 2416.7056 1.5482 0.0619
RRR 1.0873 0.61376 0.4735 4.5795 3844.124 -0.477 0.6399
Nuclear norm 1.1086 0.15346 0.9551 2.2097 8461.2402 -0.3698 -0.8986
PCR 1.0263 0.5336 0.4927 5.233 4653.9684 1.2799 0.6990

Table 1: Summary of results for equity return forecasts. R2 are measured by basis points (bps).
1bps = 10−4. Bold font denotes the best out-of-sample results and smallest gap.

We apply our algorithm on an equity market and a social network dataset to predict equity returns and
user popularity respectively. Our baselines include ridge regression (“Ridge”), reduced rank ridge
regression [32] (“Reduced ridge”), LASSO (“Lasso”), nuclear norm regularized regression (“Nuclear
norm”), reduced rank regression [51] (“RRR”), and principal component regression [1] (“PCR”).

Predicting equity returns. We use a stock market dataset from an emerging market that consists of
approximately 3600 stocks between 2011 and 2018. We focus on predicting the next 5-day returns.
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Model MSEin MSEout MSEout−in Corrin Corrout
ARRR 5.0104 ± 0.38 9.4276 ± 2.31 4.4172 0.7425 ± 0.07 0.6730 ± 0.13
Lasso 2.3755 ± 1.95 14.8279 ± 4.81 12.4524 0.9171 ± 0.09 0.4754 ± 0.15
Ridge 1.3974 ± 0.53 13.6244 ± 4.39 12.2270 0.9555 ± 0.04 0.4742 ± 0.17
Reduced ridge 4.5260 ± 1.93 12.2339 ± 2.70 7.7079 0.7905 ± 0.09 0.4972 ± 0.18
RRR 4.3456 ± 0.47 13.0768 ± 2.63 8.7313 0.7725 ± 0.12 0.3820 ± 0.22
Nuclear norm 4.9190 ± 2.04 13.0532 ± 4.38 8.6677 0.7872 ± 0.10 0.4869 ± 0.16
PCR 6.4037 ± 1.99 13.0847± 4.19 8.8892 0.7199 ± 0.05 0.4861 ± 0.15

Table 2: Average results for Twitter dataset from 10 random samples. Bold font denotes the
best out-of-sample results and smallest gap

For each asset in the universe, we compute its past 1-day, past 5-day, and past 10-day returns as
features. We use a standard approach to translate forecasts into positions [3, 53]. We examine two
universes in this market: (i) Universe 1 is equivalent to S&P 500 and consists of 983 stocks, and (ii)
Full universe consists of all stocks except for illiquid ones.

Predicting equity returns. We use a stock market dataset from an emerging market that consists of
approximately 3600 stocks between 2011 and 2018. We focus on predicting the next 5-day returns.
For each asset in the universe, we compute its past 1-day, past 5-day and past 10-day returns as
features. We use a standard approach to translate forecasts into positions [3, 53]. We examine two
universes in this market: (i) Universe 1 is equivalent to S&P 500 and consists of 983 stocks, and (ii)
Full universe consists of all stocks except for illiquid ones.

Results. Table 1 reports the forecasting power and portfolio return for out-of-sample periods in
two universes. We observe that (i) The data has a low signal-to-noise ratio. The out-of-sample R2

values of all the methods are close to 0. (ii) ADAPTIVE-RRR has the highest forecasting power.
(iii) ADAPTIVE-RRR has the smallest in-sample and out-of-sample gap (see column MSEout−in),
suggesting that our model is better at avoiding spurious signals.

Predicting user popularity in social networks. We collected tweet data on political topics from
October 2016 to December 2017. Our goal is to predict a user’s next 1-day popularity, which is
defined as the sum of retweets, quotes, and replies received by the user. There are a total of 19 million
distinct users, and due to the huge size, we extract the subset of 2000 users with the most interactions
for evaluation. For each user in the 2000-user set, we use its past 5 days’ popularity as features. We
further randomly sample 200 users and make predictions for them, i.e., setting d2 = 200 to make d2

of the same magnitude as n.

Results. We randomly sample users for 10 times and report the average MSE and correlation
(with standard deviations) for both in-sample and out-of-sample data. In Table 2 we can see results
consistent with the equity returns experiment: (i) ADAPTIVE-RRR yields the best performance in
out-of-sample MSE and correlation. (ii) ADAPTIVE-RRR achieves the best generalization error by
having a much smaller gap between training and test metrics.

6.1 Setup of experiments

6.1.1 Equity returns

We use daily historical stock prices and volumes from an emerging market to build our model. Our
license agreement prohibits us to redistribute the data so we include only a subset of samples. Full
datasets can be purchased by standard vendors such as quandl or algoseek. Our dataset consists of
approximately 3,600 stocks between 2011 and 2018.

Universes. We examine two different universes in this market (i) Universe 1 is equivalent to S&P
500. It consists of 800 stocks at any moment. Similar to S&P 500, the list of stocks appeared in
universe 1 is updated every 6 months. A total number of 983 stocks have appeared in universe 1 at
least once. (ii) Universe 2 consists of all stocks except for illiquid ones. This excludes the smallest
5% stocks in capital and the smallest 5% stocks in trading volume. Standard procedure is used to
avoid universe look-ahead and survival bias [53].

Returns. We use return information to produce both features and responses. Our returns are the
“log-transform” of all open-to-open returns [53]. For example, the next 5-day return of stock i is
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log(pi,t+5/pi,t), where pi,t is the open price for stock i on trading day t. Note that all non-trading
days need to be removed from the time series pi,t. Similarly, the past 1-day return is log(pi,t/pi,t−1).

Model. We focus on predicting the next 5-day returns for different universes. Let rt =
(r1,t, r2,t, . . . , rd2,t), where ri,t is the next 5-day return of stock i on day t. Our regression model is

rt+1 = Mxt + ε. (57)

The features consist of the past 1-day, past 5-day, and past 10-day returns of all the stocks in the same
universe. For example, in Universe 1, the number of responses is d2 = 800. The number of features
is d1 = 800× 3 = 2, 400. We further optimize the hyperparameters k1 and k2 by using a validation
set because our theoretical results are asymptotic ones (with unoptimized constants). Baseline models
use the same set of features and the same hyper-parameter tuning procedure.

We use three years of data for training, one year for validation, and one year for testing. The model is
re-trained every test year. For example, the first training period is May 1, 2011 to May 1, 2014. The
corresponding validation period is from June 1, 2014 to June 1, 2015. We use the validation set to
determine the hyperparameters and build the model, and then we use the trained model to forecast
returns of equity in the same universe from July 1, 2015 to July 1, 2016. Then the model is retrained
by using data in the second training period (May 1, 2012 to May 1, 2015). This workflow repeats.
To avoid looking-ahead, there is a gap of one month between training and validation periods, and
between validation and test periods.

We use standard approach to translate forecasts into positions [23, 37, 3, 53]. Roughly speaking, the
position is proportional to the product of forecasts and a function of average dollar volume. We allow
short-selling. We do not consider transaction cost and market impact. We use Newey-West estimator
to produce t-statistics of our forecasts.

6.1.2 User popularity

We use Twitter dataset to build models for predicting a user’s next 1-day popularity, which is defined
as the sum of retweets, quotes, and replies received by the user.

Data collection. We collected 15 months Twitter data from October 01, 2016 to December 31, 2017,
using the Twitter streaming API. We tracked the tweets with topics related to politics with keywords
“trump”, “clinton”, “kaine”, “pence”, and “election2016”. There are a total of 804 million tweets and
19 million distinct users. User u has one interaction if and only if he or she is retweeted/replied/quoted
by another user v. Due to the huge size, we extract the subset of 2000 users with the most interactions
for evaluation.

Model. Our goal is to forecast the popularity of a random subset of 200 users. Let yt =
(y1,t, . . . , yd2,t), where d2 = 200 and yi,t is the popularity of user i at time t. Our regression
model is

yt+1 = Mxt + ε. (58)

Features. For each user, we compute his/her daily popularity for 5 days prior to day t. Therefore,
the total number of features is d1 = 2000× 5 = 10, 000.

We remark that there are n = 240 observations. This setup follows our assumption d1 � d2 ≈ n.

Training and hyper-parameters. We use the period from October 01, 2016 to June 30, 2017 as the
training dataset, the period from July 01, 2017 to October 30 as validation dataset to optimize the
hyper-parameters, and the rest of the period, from September 10, 2017 to December 31, 2017, is used
for the performance evaluation.

7 Conclusion
This paper examines the low-rank regression problem under the high-dimensional setting. We design
the first learning algorithm with provable statistical guarantees under a mild condition on the features’
covariance matrix. Our algorithm is simple and computationally more efficient than low rank methods
based on optimizing nuclear norms. Our theoretical analysis of the upper bound and lower bound
can be of independent interest. Our preliminary experimental results demonstrate the efficacy of our
algorithm. The full version explains why our (algorithm) result is unlikely to be known or trivial.
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Broader Impact

The main contribution of this work is theoretical. Productionizing downstream applications stated in
the paper may need to take six months or more so there is no immediate societal impact from this
project.
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