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Abstract

We study the low rank regression problemy = M x + � , wherex andy ared1 and
d2 dimensional vectors respectively. We consider the extreme high-dimensional
setting where the number of observationsn is less thand1 + d2. Existing algorithms
are designed for settings wheren is typically as large asrank(M )(d1 + d2). This
work provides an ef�cient algorithm which only involves two SVD, and establishes
statistical guarantees on its performance. The algorithm decouples the problem by
�rst estimating the precision matrix of the features, and then solving the matrix
denoising problem. To complement the upper bound, we introduce new techniques
for establishing lower bounds on the performance of any algorithm for this problem.
Our preliminary experiments con�rm that our algorithm often out-performs existing
baselines, and is always at least competitive.

1 Introduction

We consider the regression problemy = M x + � in the high dimensional setting, wherex 2 R d1 is
the vector of features,y 2 R d2 is a vector of responses,M 2 R d2 � d1 are the learnable parameters,
and� � N (0; � 2

� I d2 � d2 ) is a noise term. High-dimensional setting refers to the case where the number
of observationsn is insuf�cient for recovery and hence regularization for estimation is necessary [27,
33, 11]. This high-dimensional model is widely used in practice, such as identifying biomarkers [54],
understanding risks associated with various diseases [19, 6], image recognition [38, 17], forecasting
equity returns in �nancial markets [36, 44, 31, 7], and analyzing social networks [52, 39].

We consider the “large feature size” setting, in which the number of featuresd1 is excessively large
and can be even larger than the number of observationsn. This setting frequently arises in practice
because it is often straightforward to perform feature-engineering and produce a large number of
potentially useful features in many machine learning problems. For example, in a typical equity
forecasting model,n is around 3,000 (i.e., using 10 years of market data), whereas the number
of potentially relevant features can be in the order of thousands [36, 24, 26, 12]. In predicting
the popularity of a user in an online social network,n is in the order of hundreds (each day is an
observation and a typical dataset contains less than three years of data) whereas the feature size can
easily be more than 10k [40, 5, 43].

Existing low-rank regularization techniques (e.g., [27, 33, 29] ) are not optimized for the large feature
size setting. These results assume that either the features possess the so-called restricted isometry
property [9], or their covariance matrix can be accurately estimated [33]. Therefore, their sample
complexityn depends on eitherd1 or the smallest eigenvalue value� min of x 's covariance matrix.

For example, a mean-squared error (MSE) result that appeared in [33]is of the formO
�

r (d1 + d2 )
n� 2

min

�
.

Whenn � d1=� 2
min , this result becomes trivial because the forecastŷ = 0 produces a comparable

MSE. We design an ef�cient algorithm for the large feature size setting. Our algorithm is a simple
two-stage algorithm. LetX 2 R n � d1 be a matrix that stacks together all features andY 2 R n � d2

be the one that stacks the responses. In the �rst stage, we run a principal component analysis (PCA)
on X to obtain a set of uncorrelated featuresẐ. In the second stage, we run another PCA to obtain a
low rank approximation of̂ZT Y and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on using PCA to
process features, a widely used practice for “dimensionality reduction” [10, 22, 20]. PCA is known
to be effective to orthogonalize features by keeping only the subspace explaining large variations.
But its performance can only be analyzed under the so-called factor model [45, 44]. We show the
ef�cacy of PCA without the factor model assumption. Instead, PCA should be interpreted as a robust
estimator ofx 's covariance matrix. The empirical estimatorC = 1

n XX T in the high-dimensional
setting cannot be directly used becausen � d1 � d2, but it exhibits an interesting regularity: the
leading eigenvectors ofC are closer to ground truth than the remaining ones. In addition, the number
of reliable eigenvectors grows as the sample size grows, so our PCA procedure projects the features
along reliable eigenvectors anddynamicallyadjustsẐ 's rank to maximally utilize the raw features.
Under mild conditions on the ground-truth covariance matrixC � of x, we show that it is always
possible to decomposex into a set of near-independent features and a set of (discarded) features that
have an inconsequential impact on a model's MSE.
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When featuresx are transformed into uncorrelated onesz, our original problem becomesy = N z+ � ,
which can be reduced to a matrix denoising problem [16] and be solved by the second stage. Our
algorithm guarantees that we can recover all singular vectors ofN whose associated singular values
are larger than a certain threshold� . The performance guarantee can be translated into MSE bounds
parametrized by commonly used variables (though, these translations usually lead to looser bounds).
For example, whenN 's rank isr , our result reduces the MSE fromO( r (d1 + d2 )

n� 2
min

) to O( rd 2
n + n� c)

for a suitably small constantc. The improvement is most pronounced whenn � d1.

We also provide a new matching lower bound. Our lower bound asserts thatno algorithmcan recover
a fraction of singular vectors ofN whose associated singular values are smaller than�� , where
� is a “gap parameter”. Our lower bound contribution is twofold. First, we introduce a notion of
“local minimax”, which enables us to de�ne a lower bound parametrized by the singular values of
N . This is a stronger lower bound than those delivered by the standard minimax framework, which
are often parametrized by the rankr of N [27]. Second, we develop a new probabilistic technique
for establishing lower bounds under the new local minimax framework. Roughly speaking, our
techniques assemble a large collection of matrices that share the same singular values ofN but are far
from each other, so no algorithm can successfully distinguish these matrices with identical spectra.

2 Preliminaries

Notation. Let X 2 R n � d1 andY 2 R n � d2 be data matrices with theiri -th rows representing the
i -th observation. For matrixA, we denote its singular value decomposition asA = UA � A (V A )T

andP r (A) , UA
r � A

r V A
r

T
is the rankr approximation obtained by keeping the topr singular values

and the corresponding singular vectors. When the context is clear, we drop the superscriptA and use
U; � ; andV (Ur , � r , andVr ) instead. Both� i (A) and� A

i are used to refer toi -th singular value of
A. We use MATLAB notation when we refer to a speci�c row or column, e.g.,V1;: is the �rst row of
V andV:;1 is the �rst column.kAkF , kAk2, andkAk� are Frobenius, spectral, and nuclear norms
of A. In general, we use boldface upper case (e.g.,X ) to denote data matrices and boldface lower
case (e.g.,x) to denote one sample. Regular fonts denote other matrices. LetC � = IE[ xx T ] and
C = 1

n X T X be the empirical estimate ofC � . Let C � = V � � � (V � )T be the eigen-decomposition of
the matrixC � , and� �

1 � � �
2; : : : ; � � �

d1
� 0 be the diagonal entries of� � . Let f u1; u2; : : : u ` g be

an arbitrary set of column vectors, andSpan(f u1; u2; : : : ; u ` g) be the subspace spanned by it. An
event happens with high probability means that it happens with probability� 1 � n� 5, where 5 is an
arbitrarily chosen large constant and is not optimized.

STEP-1-PCA-X(X )
1 [U; � ; V ] = svd( X )
2 � = 1

n (� 2); � i = � i;i .
3 � Gap thresholding.
4 � � = n � O (1) is a tunable parameter.
5 k1 = max f k1 : � k1 � � k1 +1 � � g,
6 � k1 : diagonal matrix comprised off � i gi � k 1 .
7 Uk1 ; Vk1 : k1 leading columns ofU andV .
8 �̂ = (� k1 ) � 1

2 V T
k1

9 Ẑ+ =
p

nUk1 (= X �̂ T ).
10 return f Ẑ+ ; �̂ g.

STEP-2-PCA-DENOISE(Ẑ+ ; Y )

1 N̂ T
+  1

n ẐT
+ Y .

2 � Absolute value thresholding.
3 � � is a suitable constant;� � is std. of the noise.

4 k2 = max
n

k2 : � k2 (N̂+ ) � �� �

q
d2
n

o
.

5 return P k2 (N̂+ )

ADAPTIVE-RRR(X ; Y )

1 [Ẑ+ ; �̂] = STEP-1-PCA-A(X ).
2 P k2 (N̂+ ) = STEP-2-PCA-DENOISE(Ẑ+ ; Y ).
3 return M̂ = P k2 (N̂+ )�̂

Figure 1: Our algorithm (ADAPTIVE-RRR) for solving the regressiony = M x + � .

Our model. We consider the modely = M x + � , wherex 2 R d1 is a multivariate Gaussian,
y 2 R d2 , M 2 R d2 � d1 , and� � N (0; � 2

� I d2 � d2 ). We can relax the Gaussian assumptions onx and
� for most results we develop. We assume a PAC learning framework, i.e., we observe a sequence
f (x i ; y i )gi � n of independent samples and our goal is to �nd anM̂ that minimizes the test error
IEx ;y [kM̂ x � M xk2

2]. We are speci�cally interested in the setting in whichd2 � n � d1.

The key assumption we make to circumvent thed1 � n issue is that the features are correlated. This
assumption can be justi�ed for the following reasons:(i) In practice, it is dif�cult, if not impossible, to
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construct completely uncorrelated features.(ii) Whenn � d1, it is not even possible totestwhether
the features are uncorrelated [4]. (iii) When we indeed know that the features are independent, there
are signi�cantly simpler methods to design models. For example, we can build multiple models
such that each model regresses on an individual feature ofx, and then use a boosting/bagging
method [20, 42] to consolidate the predictions.

The correlatedness assumption implies that the eigenvalues ofC � decays. The only (full rank)
positive semide�nite matrices that have non-decaying (uniform) eigenvalues are the identity matrix
(up to some scaling). In other words, whenC � has uniform eigenvalues,x has to be uncorrelated.

We aim to design an algorithm that workseven whenthe decay is slow, such as when� i (C � ) has a
heavy tail. Speci�cally, our algorithm assumes� i 's are bounded by a heavy-tail power law series:

Assumption 2.1. The� i (C � ) series satis�es� i (C � ) � c � i � ! for a constantc and! � 2.

We do notmake functional form assumptions on� i 's. This assumption also covers many benign
cases, such as whenC � has low rank or its eigenvalues decay exponentially. Many empirical studies
report power law distributions of data covariance matrices [2, 34, 50, 13]. Next, we make standard
normalization assumptions.IEkxk2

2 = 1 , kM k2 � � = O(1), and� � � 1. Remark that we assume
only the spectral norm ofM is bounded, while its Frobenius norm can be unbounded. Also, we
assume the noise� � � 1 is suf�ciently large, which is more important in practice. The case when
� � is small can be tackled in a similar fashion. Finally, our studies avoid examining excessively
unrealistic cases, so we assumed1 � d3

2. We examine the setting where existing algorithms fail to
deliver non-trivial MSE, so we assume thatn � rd1 � d4

2.

3 Upper bound

Our algorithm (see Fig. 1) consists of two steps.Step 1. Producing uncorrelated features.We run
a PCA to obtain a total number ofk1 orthogonalized features. SeeSTEP-1-PCA-X in Fig. 1. Let
the SVD ofX beX = U�( V )T . Let k1 be a suitable rank chosen by inspecting the gaps ofX 's
singular values (Line 5 inSTEP-1-PCA-X). Ẑ+ =

p
nUk1 is the set of transformed features output

by this step. The subscript+ in Ẑ+ re�ects that a dimension reduction happens so the number of
columns inẐ+ is smaller than that inX . Compared to standard PCA dimension reduction, there are
two differences:(i) We use the left leading singular vectors ofX (with a re-scaling factor

p
n) as the

output, whereas the PCA reduction outputsP k1 (X ). (ii) We design a specialized rule to choosek1
whereas PCA usually uses a hard thresholding or other ad-hoc rules.Step 2. Matrix denoising. We

run a second PCA on the matrix(N̂+ )T , 1
n ẐT

+ Y . The rankk2 is chosen by a hard thresholding rule
(Line 4 in STEP-2-PCA-DENOISE). Our �nal estimator isP k2 (N̂+ )�̂ , where�̂ = (� k1 ) � 1

2 V T
k1

is
computed in STEP-1-PCA-X(X ).

3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding the
statistical structure of the problem. We shall realize that applying PCA on the featuresshould not
be viewed as removing noise from a factor model, or �nding subspaces that maximize variations
explained by the subspaces as suggested in the standard literature [20, 45, 46]. Instead, it implicitly
implements a robust estimator forx 's precision matrix, and the design of the estimator needs to be
coupled with our objective of forecastingy , thus resulting in a new way of choosing the rank.

Design motivation: warm up. We �rst examine a simpli�ed problemy = N z + � , where variables
in z are assumed to be uncorrelated. Assumed = d1 = d2 in this simpli�ed setting. Observe that

1
n

ZT Y =
1
n

ZT (ZN T + E) = (
1
n

ZT Z)N T +
1
n

ZT E � I d1 � d1 N T +
1
n

ZT E = N T + E; (1)

whereE is the noise term andE can be approximated by a matrix with independent zero-mean noises.
Solving the matrix denoising problem.Eq. 1 implies that when we computeZT Y , the problem
reduces to an extensively studied matrix denoising problem [16, 21]. We include the intuition for
solving this problem for completeness. The signalN T is overlaid with a noise matrixE. E will elevate
all the singular values ofN T by an order of� �

p
d=n. We run a PCA to extract reliable signals: when
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the singular value of a subspace is� � �
p

d=n, the subspace contains signi�cantly more signal than
noise and thus we keep the subspace. Similarly, a subspace associated a singular value. � �

p
d=n

mostly contains noise. This leads to a hard thresholding algorithm that setsN̂ T = P r (N T + E),
wherer is the maximum index such that� r (N T + E) � c

p
d=n for some constantc. In the general

settingy = M x + � , x may not be uncorrelated. But when we setz = (� � ) � 1
2 (V � )T x, we see that

IE[zzT ] = I . This means knowingC � suf�ces to reduce the original problem to a simpli�ed one.
Therefore, our algorithm uses Step 1 to estimateC � andZ, and uses Step 2 to reduce the problem to
a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation.In step 1, while we plan to estimate
C � , our algorithm runs a PCA onX . We observe that empirical covariance matrixC = 1

n X T X =
1
n V(�) 2(V )T , i.e., C's eigenvectors coincide withX 's right singular vectors. When we use the
empirical estimator to constructẑ, we obtainẑ =

p
n(�) � 1(V )T x. When we apply this map to

every training point and assemble the new feature matrix, we exactly getẐ =
p

nX V(�) � 1 =
p

nU.
It means that usingC to construct̂z is the same as running a PCA inSTEP-1-PCA-X with k1 = d1.

Figure 2: The angle matrix betweenC andC � .

Whenk1 < d 1, PCA uses a low rank approxima-
tion of C as an estimator forC � . We now explain
why this is effective. First, note thatC is very far
from C � whenn � d1, therefore it is dangerous to
directly plug inC to �nd ẑ. Second, an interesting
regularity ofC exists and can be best explained by
a picture. In Fig. 2, we plot the pairwise angles
between eigenvectors ofC and those ofC � from a
synthetic dataset. Columns are sorted by theC � 's
eigenvalues in decreasing order. WhenC � andC
coincide, this plot would look like an identity ma-
trix. WhenC andC � are unrelated, then the plot
behaves like a block of white Gaussian noise. We

observe a pronounced pattern: the angle matrix can be roughly divided into two sub-blocks (see
the red lines in Fig. 2). The upper left sub-block behaves like an identity matrix, suggesting that
the leading eigenvectors ofC are close to those ofC � . The lower right block behaves like a white
noise matrix, suggesting that the “small” eigenvectors ofC are far from those ofC � . Whenn grows,
one can observe the upper left block becomes larger and this the eigenvectors ofC will sequentially
get stabilized. Leading eigenvectors are �rst stabilized, followed by smaller ones. Our algorithm
leverages this regularity by keeping only a suitable number of reliable eigenvectors fromC while
ensuring not much information is lost when we throw away those “small” eigenvectors.

Implementing the rank selection. We rely on three interacting building blocks:

1. Dimension-free matrix concentration.First, we need to �nd a concentration behavior ofC for
n � d1 to decoupled1 from the MSE bound. We utilize a dimension-free matrix concentration
inequality [35](also replicated as Lemma 3) . Roughly speaking, the concentration behaves as
kC � C � k2 � n� 1

2 . This guarantees thatj� i (C) � � i (C � )j � n� 1
2 by standard matrix perturbation

results [25].

2. Davis-Kahan perturbation result.However, the pairwise closeness of the� i 's does not imply the
eigenvectors are also close. When� i (C � ) and� i +1 (C � ) are close, the corresponding eigenvectors
in C can be “jammed” together. Thus, we need to identify an indexi , at which� i (C � ) � � i +1 (C � )
exhibits signi�cant gap, and use a Davis-Kahan result to show thatP i (C) is close toP i (C � ). On
the other hand, the map� � (, (� � ) � 1

2 (V � )T ) we aim to �nd depends on the square root of inverse
(� � ) � 1

2 , so we need additional manipulation to argue our estimate is close to(� � ) � 1
2 (V � )T .

3. The connection between gap and tail.Finally, the performance of our procedure is also
characterized by the total volume of signals that are discarded, i.e.,

P
i>k 1

� i (C � ), wherek1 is the
location that exhibits the gap. The question becomes whether it is possible to identify ak1 that
simultaneously exhibits a large gap and ensures the tail after it is well-controlled, e.g., the sum of
the tail isO(n� c) for a constantc. We develop a combinatorial analysis to show that it isalways
possibleto �nd such a gap under the assumption that� i (C � ) is bounded by a power law distribution
with exponent! � 2. Combining all these three building blocks, we have:
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Proposition 1. Let � and� be two tunable parameters such that� = ! (log3 n=
p

n) and� 3 = ! (� ).
Assume that� �

i � c� i � ! . Consider runningSTEP-1-PCA-X in Fig. 1, with high probability, we have
(i) Leading eigenvectors/values are close:there exists a unitary matrixW and a constantc1 such
that kVk1 (� k1 ) � 1

2 � V �
k1

(� �
k1

) � 1
2 W k � c1 �

� 3 : (ii) Small tail:
P

i � k1
� �

i � c2�
! � 1
! +1 for a constantc2.

Prop. 1 implies that our estimatêz+ = �̂( x) is suf�ciently close toz = � � (x), up to a unitary
transform. We then executeSTEP-2-PCA-DENOISE to reduce the problem to a matrix denoising
one and solve it by hard-thresholding. Let us refer toy = N z + � , wherez is a standard multivariate
Gaussian andN = MV � (� � )

1
2 as theorthogonalized formof the problem. While we do not directly

observez, our performance is characterized by spectra structure ofN .
Theorem 1. Consider runningADAPTIVE-RRR in Fig. 1 onn independent samples(x; y ) from
the modely = M x + � , wherex 2 R d1 and y 2 R d2 . Let C � = IE[ xx T ]. Assume that(i)
kM k2 � � = O(1), and(ii) x is a multivariate Gaussian withkxk2 = 1 . In addition,� 1(C � ) < 1
and for all i , � i (C � ) � c=i! for a constantc, and(iii) � � N (0; � 2

� I d1 ), where� � � minf � ; 1g.

Let � = ! (log3 n=
p

n), � 3 = ! (� ), and� be a suitably large constant. Lety = N z + � be the

orthogonalized form of the problem. Let` � be the largest index such that� N
` � > �� �

q
d2
n . Let ŷ be

our testing forecast. With high probability over the training data:

IE[kŷ � yk2
2] �

X

i � ` �

(� N
i )2 + O

�
` � d2� 2� 2

�

n

�
+ O

 r
�
� 3

!

+ O
�

�
! � 1

4( ! +1)

�
(2)

The expectation is over the randomness of the test data.

Theorem 1 also implies that there exists a way to parametrize� and� such thatIE[kŷ � yk2
2] �

P
i>` � (� N

i )2 + O
�

` � d2 � 2 � 2
�

n

�
+ O(n� c0 ) for some constantc0. We next interpret each term in (2).

Terms
P

i>` � (� N
i )2 + O

�
` � d2 � 2 � 2

�
n

�
are typical for solving a matrix denoising problem̂N T

+ + E(�

N T + E): we can extract signals associated with` � leading singular vectors ofN , so
P

i>` � (� N
i )2

starts ati > ` � . For each direction we extract, we need to pay a noise term of order� 2� 2
�

d2
n , leading

to the termO
�

` � d2 � 2 � 2
�

n

�
. TermsO

� q
�

� 3

�
+ O

�
�

! � 1
4( ! +1)

�
come from the estimations error ofẑ+

produced from Prop. 1, consisting of both estimation errors ofC � 's leading eigenvectors and the
error of cutting out a tail. We pay an exponent of1

4 on both terms (e.g.,�
! � 1
! +1 in Prop. 1 becomes

�
! � 1

4( ! +1) ) because we used Cauchy-Schwarz (CS) twice. One is used in running matrix denoising
algorithm with inaccuratez+ ; the other one is used to bound the impact of cutting a tail. It remains
open whether two CS is can be circumvented.

Sec. 4 explains how Thm 1 and the lower bound imply the algorithm is near-optimal. Sec. 5 compares
our result with existing ones under other parametrizations, e.g.rank(M ).

3.2 Analysis

We now analyze our algorithm. Our analysis consists of three steps. In step 1, we prove Proposition 1.
In step 2, we relateZT Y with the product produced by our estimateẐT

+ Y . In step 3, we prove
Theorem 1.

3.2.1 Step 1. PCA for the features (proof of Proposition 1)

This section proves Proposition 1. We shall �rst show that the algorithm always terminates. We have
the following lemma.
Lemma 1. Let f � i gi � d be a sequence such that

P
i � n � i = 1 , � i � ci � ! for some constantc,

! � 2, and� 1 < 1. De�ne � i = � i � � i +1 for i � 1. Let `0 be a suf�ciently large number, andc1
andc2 are two suitable constants. Let` be any number such that` � `0. Let� be any parameter such
that � < � � 1. There exists ani � such that(i) Gap is suf�ciently large:� i � � c1 � ` � ( � != ( ! � 1)+1) ,
and (ii) tail sum is small:

P
i � i � � i � c2=`� � .
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We remark that Lemma 1 will also be able to show part (ii) of Proposition 1 (this will be explained
below). This lemma also corresponds to the “connection between gap and tail” building block referred
in Section 3.1.

Proof of Lemma 1.De�ne the functionh(t) =
P

i � t c=i! = c3 + o(1)
t ! � 1 (by Euler–Maclaurin formula),

whereo(1) is a function oft

Next, let us de�ne

i 1 = min

8
<

:
i � :

X

i � i �

� i � 1 � h(`
�

! � 1 )

9
=

;
� 1

i 2 = min

8
<

:
i � :

X

i � i �

� i � 1 �
1
2

� h(`
�

! � 1 )

9
=

;
� 1:

Roughly speaking, we want to identify ani 1 such that
P

i � i 1
� i is smaller than1� h

�
`

�
! � 1

�
but is as

close to it as possible. We can interpreti 2 in a similar manner.i 1; i 2 � 1 because of the assumption
� 1 < 1.

We can verify thati 1 < `
�

! � 1 because
P

i � `
�

! � 1
� i � 1 � h

�
`

�
! � 1

�
. We can similarly verify that

i 2 < c 4`
�

! � 1 for some constantc4. Now using

X

i � i 2 +1

� i � 1 �
(c3 + o(1)) ` � �

2
X

i � i 1

� i � 1 � (c3 + o(1)) ` � � :

We may use an averaging argement and show that there exists ani 3 2 [i 1 + 1 ; i 2 + 1] such that

� i 3 �
(c3 + o(1)) ` � �

i 2 � i 1
�

(c3 + o(1)) ` � �

c4`
�

! � 1

� c5` � � � �
! � 1 = c5` � � !

! � 1 :

Note thatc5` � � !
! � 1 � 2c`� ! because� < ! � 1. Next, using that� ` � c= !̀ , we have

� ` =

� c5 `
� � !

! � 1

z}|{
� i 3 +( � i 3 +1 � � i 3 ) + � � � + ( � ` � � ` � 1) �

� c 5
2 � `

� � !
! � 1

z}| {
c=`! : (3)

This implies one of(� i 3 � � i 3 +1 ); : : : ; (� ` � 1 � � ` ) is at leastc5
2 � ` � � !

! � 1 =`. In other words, there

exists ani � 2 [i 3 + 1 ; `] such that� i � � � i � +1 � c5
2 ` � ( � !

! � 1 +1 ) : Finally, we can check that
X

i � i �

� i � �
X

i � i 1

� i � � h
�
`

�
! � 1

�
�

c2

` � : (4)

We apply Lemma 1 by setting� ! ! � 1. There is a parameter` that we can tune, such that it
is always possible to �nd ani � where� i � � c1` � ( ! +1) and

P
i � i � � i � 1 � c2` � ( ! � 1) . For any

� = o(1) (a function ofn), we can set̀ = �
� �

1
�

� 1
! +1

�
. In addition,

P
i � k1

� i = O
�

�
! � 1
! +1

�
. This

also proves the second part of the Proposition.

It remains to prove part (i) of Proposition 1. It consists of three steps.

Step 1. Dimension-free Chernoff bound for matrices.We �rst give a bound onkC � � Ck2, which
characterizes the tail probability by using the �rst and second moments of random vectors. This is
the key device enabling us to meaningfully recover signals even whenn � d1.
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Lemma 2. Recall thatC � = IE[ xx T ] andC = 1
n X T X . For any� > 0,

Pr[kC � � Ck2 � � ] � (2n2) exp(� n� 2=(log4 n)) + n� 10: (5)

The exponent 10 is chosen arbitrarily and is not optimized.

Proof of Lemma 2.We use the following speci�c form of Chernoff bound ([35])

Lemma 3. Let z1, z2; : : : ; zn be i.i.d. random vectors such thatkzi k � � a.s. andkIE[zi zT
i ]k � � .

Then for any� > 0,

Pr

2

4














1
n

X

i � n

zi zT
i � IE[zi zT

i ]














2

� �

3

5 � (2n2) exp
�

�
n� 2

16�� 2 + 8 � 2�

�
(6)

We aim to use Lemma 3 to show Lemma 2 and we setzi = x i . But the`2-norm ofzi 's are unbounded
so we need to use a simple coupling technique to circumvent the problem. Speci�cally, letc0 be a
suitable constant and de�ne

~zi =
�

zi if jzi j � c0 log2 n
0 otherwise.

(7)

By using a standard Chernoff bound, we have

Pr[9i : ~zi 6= zi ] �
1

n10 : (8)

Let us write ~C = 1
n

P
i � n ~zi ~zT

i . We set� = c0 log2 n and� = �(1) in Lemma 3. One can see that

Pr[kC � � Ck2 � � ] � Pr
h
(k ~C � Ck2 � � ) _ ( ~C 6= C)

i
� 2n2 exp

�
�

n� 2

log4 n

�
+

1
n10 : (9)

Step 2. Davis-Kahan bound.The above analysis gives us thatkC � � Ck2 � � . We next show that
the �rst a few eigenvectors ofC are close to those ofC � .

Lemma 4. Let � = !
�

log 3 np
n

�
and� 3 = ! (� ). Considering runningSTEP-1-PCA-X in Fig. 1. Let

P � = V �
k1

(V �
k1

)T andP = Vk1 V T
k1

. WhenkC � � Ck2 � � , kP � � Pk 2 � 2�
� :

Proof. Recall that� �
1; � �

2; : : : ; � �
d1

are the eigenvalues ofC � . Let also� 1; � 2; : : : ; � d1 be the eigen-
values ofC. De�ne

S1 = [ � k1 � �=10; 1 ] and S2 = [0 ; � k1 +1 + �=10]: (10)

The constant 10 is chosen in an arbitrary manner. BecausekC � � Ck2 � � , we know thatS1 contains
� �

1; : : : ; � �
k and thatS2 contains� �

k1 +1 ; : : : ; � �
d1

[25]. Using the Davis-Kahan Theorem [15], we get

kP � � Pk 2 �
kC � � Ck2

0:8�
�

2�
�

(11)

We also need the following building block.

Lemma 5. [47] Let A andB ben � n positive semide�nite matrices with the same rank ofd. Let
X andY be of full column rank such thatXX T = A andY YT = B . Let � be the smallest non-zero
eigenvalue ofB . Then there exists a unitary matrixW 2 R d� d such that

kXW � Yk2 �
kA � B k2(

p
kAk2 +

p
kB k2)

�
:
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Step 3. Commuting the unitary matrix.Roughly speaking, Lemma 4 and Lemma 5 show that there
exists a unitary matrixW such thatkVk1 W � V �

k1
k2 is close to0. Standard matrix perturbation result

also shows that� k1 and� �
k1

are close. This gives us thatVk1 W �
� 1

2
k1

andV �
k1

(� �
k1

) � 1
2 are close,

whereas we need thatVk1 �
� 1

2
k1

W andV �
k1

(� �
k1

) � 1
2 are close. The unitary matrixW is not in the right

place. This is a standard technical obstacle for analyzing PCA based techniques [47, 18, 28]. We
develop the following lemma to address the issue.

Lemma 6. Let U1; U2 ben � d matrices such thatU>
1 U1 = U>

2 U2 = I . LetS1, S2 be diagonal
matrices with strictly positive entries, and letW 2 R d� d be a unitary matrix. Then,

kU1S� 1
1 W � U2S� 1

2 k �
kU1S1W � U2S2k

minf (S1) ii g � minf (S2) ii g
+

kU1U>
1 � U2U>

2 k
minf (S2) ii g

Proof. Observe that,

U1S� 1
1 W � U2S� 1

2 = U1S� 1
1 W (S2U>

2 � W > S1U>
1 )U2S� 1

2 + U1U>
1 U2S� 1

2 � U2U>
2 U2S� 1

2 :

The result then follows by taking spectral norms of both sides, the triangle inequality and the
sub-multiplicativity of the spectral norm.

Results from Step 1 to Step 3 suf�ce to prove the �rst part of Proposition 1. First, we use Lemma 4
and Lemma 5 (adopted from [47]) to get that

kV �
k1

(� �
k1

)
1
2 W � Vk1 (� k1 )

1
2 k2 �

c0�
� 2 : (12)

Next, observe that� k1 ; � �
k1

= 
( � ). By applying Lemma 6, withU1 = V �
k1

andS1 = (� �
k1

)
1
2 ,

U2 = Vk1 andS2 = (� k1 )
1
2 , we obtain

kVk1
�

� 1
2

k1
W � V �

k1
�

� � 1
2

k1
k2 �

kV �
k1

�
� 1

2
k1

W � Vk1
�

1
2
k1

k2

�
+

kP � � Pk 2

�
�

c1�
� 3

This completes the proof of Proposition 1.

3.2.2 Step 2. Analysis ofZT Y

Proposition 2. Consider runningADAPTIVE-RRRin Fig. 1 to solve the regression problemy =
M x + � . Let Ẑ+ be the output of the �rst stageSTEP-1-PCA-X. Let W be the unitary matrix
speci�ed in Proposition 1. Let̂N+ = ẐT

+ Y . We have with high probability (over the training data),

N̂ T
+ = W T N T + EL + ET ;

where

kEL k2 � 2:2� �

r
d2

n
and kET kF = O(�=� 3):

The rest of this Section proves Proposition 2. Recall thatY = ZN T + E is the orthogonalized
form of our problem. Let us splitN = [ N+ ; N � ], whereN+ 2 R d2 � k1 consists of thek1 leading
columns ofN andN � 2 R d2 � (d1 � k1 ) consists of the remaining columns. Similarly, letz = [ z+ ; z� ],
wherez+ 2 R n � k1 andz� 2 R n � (d1 � k1 ) . Let Z = [ Z+ ; Z � ], whereZ+ 2 R n � k1 andZ � 2
R n � (d1 � k1 ) . Finally, when we refer to estimated features of an individual instance produced from
Step 1, we usêz+ .

We haveY = Z+ N T
+ + Z � N T

� + E. We let

� + = ẑ+ � W T z+

� + = Ẑ+ � Z+ W;
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wherek� + k2 = O(�=� 3) andk� + k2 = O(
p

n�=� 3). We have
1
n

ẐT
+ Y =

1
n

(� + + Z+ W )T (Z+ N T
+ + Z � N T

� + E)

= W T N T
+ + W T

�
1
n

ZT
+ Z+ � I k1 � k1

�
N T

+ +
1
n

W T ZT
+ Z � N T

� +
1
n

W T ZT
+ E

+
1
n

� T
+ (Z+ N T

+ + Z � N T
� + E):

We shall let
N̂ T

+ = W T N T + E; (13)
where

E = E1 + E2 + E3 + E4 + E5

E1 = W T
�

1
n

ZT
+ Z+ � I k1 � k1

�
N T

+

E2 =
1
n

W T ZT
+ Z � N T

E3 =
1
n

W T ZT
+ E

E4 =
1
n

� T
+ E

E5 =
1
n

� T
+ (Z+ N T

+ + Z � N T
� ):

We next analyze each term. We aim to �nd bounds in either spectral norm or Frobenius norm. In
some cases, it suf�ces to usekEi k2 � rank(Ei ) to upper boundkEi kF . So we bound onlyEi 's spectral
norm. On the other hand, in the case of analyzingE5, we can get a tight Frobenius norm bound but
we cannot get a non-trivial spectral bound.

From time to time, we will label the dimension of matrices in complex multiplication operations to
enable readers to do sanity checks.

Bounding E1. We use the following Lemmas.
Lemma 7. LetZ 2 R n � k1 , wherek1 < n . Let each entry ofZ be an independent standard Gaussian.
We have 









1
n

ZT Z � I








 � max

(
10 log2 n

p
n

; 4

r
k1

n

)

(14)

Proof of Lemma 7.We rely on the Lemma [41]:

Lemma 8. Let S 2 R n � k (n > k ) be a random matrix so that eachSi;j is an independent standard
Gaussian random variable. Let� max (S) be the maximum singular value ofS and� min (S) be the
minimum singular value of it. We have

Pr[
p

n �
p

k � t � � min (S) � � max (S) �
p

n +
p

k + t] � 1 � 2 � exp(� t2=2): (15)

We sett = max
n p

k1
10 ; log2 n

o
. Let us start with considering the case

p
k1

10 > log2 n. We have

� min (ZT Z) � n � 2:2
p

nk1 + 1 :21k1 � n � 2:2
p

nk1: (16)
and

� max (ZT Z) � n + 2 :2
p

nk1 + 1 :21k1 � n + 4
p

nk1: (17)

The case
p

k1
10 � log2 n can be analyzed in a similar fashion so that we can get










1
n

ZT Z � I








 � max

(
10 log2 n

p
n

; 4

r
k1

n

)

: (18)
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Therefore, we have

kE1k2 � max

(
10 log2 n

p
n

; 4

r
k1

n

)

kN T
+ k2 = � max

(
10 log2 n

p
n

; 4

r
k1

n

)

:

Bounding E2. Observe thatIE[kZ � N T
� k2

F ] = nkN T
� k2

F . Also,

IE[k ZT
+|{z}

k1 � n

Z �|{z}
n � (d1 � k1 )

N T
�|{z}

(d1 � k1 ) � d2

k2
F j Z � N T

� ] = k1kZ � N T
� k2

F :

Therefore,
IE[ZT

+ Z � N T
� ] = k1nkN T

� kF : (19)

We next boundkN � kF .
Lemma 9. Let N be the learnable parameter in normalized formN = [ N+ ; N � ], whereN+ 2
R d2 � k1 andN � 2 R d2 � (d1 � k1 ) , andk1 is determined bySTEP-1-PCA-X. We havekN � kF =

O
�

�
! � 1
! +1

�
= o(1).

Proof of Lemma 9.Recall that
N = M|{z}

d2 � d1

V �
|{z}

d1 � d1

(� � )
1
2

| {z }
d1 � d1

:

We let� � = [� �
+ ; � �

� ], where� �
+ 2 R d1 � k1 and� �

� 2 R d1 � (d1 � k1 ) . We haveN � = MV � (� �
� )

1
2 .

Therefore,

kN � k2
F � k M k2

2kV � k2
2






 (� � )

1
2








2

F
= O

�
� �

! � 1
! +1

�
= o(1): (20)

Here, we used the assumptionkM k2 = O(1) and the last equation holds because of Proposition 1.

By (19), (20), and a standard Chernoff bound, we have whp

kE2k2 � kE 2kF � 2

r
k1

n
kN � kF = o

 r
k1

n

!

:

BoundingE3. We have the following Lemma.
Lemma 10. Let Z 2 R n � k1 so that each entry inZ is an independent standard Gaussian and
E 2 R n � d2 so that each entry inE is an independent GaussianN (0; � 2

� ). For suf�ciently largen,
k1, andd2, wherek1 � d2, we have










1
n

ZT E








 �

1:1� �p
n

(
p

k1 +
p

d2):

Proof of Lemma 10.Let t = max
�

10 log 2 np
n ; 4

q
k1
n

�
. By Lemma 7, with high probability

k 1
n ZT Z � I k � t. This implies that the eigenvalues ofZT Z are all within the rangen(1 � t).

Note that for0 < � < 1=3, if � 2 [1 � �; 1 + � ], then
p

� 2 [1 � 2�; 1 + 2� ]. This implies that the
singular values ofZ are within the range

p
n(1 � 2t).

Let � Z =
p

n = I + � Z , wherek� Z k � 2t. We have

1
n

ZT E = V Z
�

� Z
p

n

�
(UZ )T E

p
n

= V Z (I + � Z )(UZ )T E
p

n

= V Z
|{z}

k1 � k1

(UZ )T

| {z }
k1 � n

E
p

n
|{z}
n � d2

+ V Z � Z (UZ )T E
p

n
: (21)
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Using the fact that the columns ofUZ are orthonormal vectors,V Z is a unitary matrix, andk1 � d2,
we see thatV Z (UZ )T E=

p
n is a matrix with i.i.d. Gaussian entries with standard deviation� � =

p
n.

Let B = V Z (UZ )T E=� � and ~B = ( UZ )T E=� � . Then, from (21), we have

1
n

ZT E =
� �p

n

�
B + V Z � Z ~B

�
: (22)

The entries inB ( ~B ) are all i.i.d Gaussian. By Marchenko-Pastar's law (and the �nite sample bound
of it [41]), we have with high probabilityk ~B k; kB k =

p
k1 +

p
d2 + o(

p
k1 +

p
d2). Therefore,

with high probability:









1
n

ZT E










2
�

1:1� �p
n

(
p

k1 +
p

d2):

Lemma 10 implies that

kE3k2 �
1:1� �p

n
(
p

k1 +
p

d2):

Bounding E4. We have

IE[kE4k2
F ] =

1
n2 IE[k� T

+ Ek2
F ] =

d2

n
k� + k2

F = O
�

d2�
n� 3

�
= o

�
d2

n

�
:

Using a Chernoff bound, we have whpkE4kF = o
� d2

n

�
.

Bounding E5. BecauseE5 = 1
n � T

+ (ZN T ), we have

kE5k2
F �

1
n2 k� T

+ k2
2kZN T k2

F :

Using a simple Chernoff bound, we have whp,

kZN T k2
F � 2nkM xk2

2 � 2nkM k2
2kxk2

2 � 2� n:

This implieskE5k2
F � O

�
� 2

n 2 � 6 n2� 2
�

= O
�

� 2

� 6

�
:

We may let

EL = E1 + E2 + E3 + E4

ET = E5:

We can check that

kEL k2 � kE 1k2 + kE2k2 + kE3k2 + kE4k2

� � max
�

10 log2 n
p

n
; 4

k1

n

�
+ o

 r
k1

n

!

+
1:1� �p

n
(
p

k1 +
p

d2) + o
�

d2

n

�

� 2:2� � �

r
d2

n

Also, we can see thatkET kF = kE5kF = O(�=� 3). This completes the proof for Proposition 2.
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3.2.3 Step 3. Analysis of our algorithm's MSE

Let us recall our notation:

1. z = (� � ) � 1
2 (V � )T x and� + = ẑ+ � W T z+ .

2. We letN̂ T
+ = ẐT

+ Y be the output of STEP-1-PCA-X in Fig. 1.

3. All singular vectors inN̂+ whose associated singular values� �� �

q
d2
n are kept.

Let ` be the largest index such that� N +

` � �� �

q
d2
n . One can see that our testing forecast is

P k2 (N̂+ )ẑ+ . Therefore, we need to boundIEz [kP k2 (N̂+ )ẑ+ � N zk2].

By Proposition 2, we havêN+ = ( W T N T
+ + EL + ET )T ; wherekEL k2 � 2:2� �

q
d2
n andkET kF =

O(�=� 3) whp. LetE , EL + ET . We have

P k2 (N+ W + ET )ẑ+ = P k2 (N+ W + ET )(W T z+ + � + )

= P k2 (N+ W + ET )W T W (W T z+ + � + )

= P k2 (( N+|{z}
d2 � k1

W|{z}
k1 � k1

+ ET
|{z}

d2 � k1

) W T
|{z}

k1 � k1

)(WW T
| {z }
k1 � k1

z+|{z}
k1 � 1

+ W|{z}
k1 � k1

� +|{z}
k1 � 1

)

= P k2

�
N+ + ( W E)T �

(z+ + W� + ):

Let E0 = ( W E)T , E0
L = ( W EL )T , E0

T = ( W ET )T , and� 0
+ = W� + . We still havekE0

L k2 �

2:2� �

q
d2
n , andkE0

T kF = O(�=� 3).

We next have

IEz

h
kP k2 (N̂+ )ẑ+ � N zk2

2

i

= IE z

h


 (P k2 (N+ + E0)z+ � N+ z+ ) + P k2 (N+ + E0)� 0

+ � N � z�



 2

2

i

� IEz

h


 (P k2 (N+ + E0)z+ � N+ z+ )




 2

2

i

| {z }
, � 1

+ IE z

h


 P k2 (N+ + E0)� 0

+ � N � z�



 2

2

i

| {z }
, � 2

+ 2

r

IEz

h


 (P k2 (N+ + E0)z+ � N+ z+ )




 2

2

i
� IEz

h


 P k2 (N+ + E0)� 0

+ � N � z�



 2

2

i

(Cauchy Schwarz for random variables)

= � 1 + � 2 + 2
p

� 1� 2:

We �rst bound� 2 (the easier term). We have

� 2 = IE z

h


 P k2 (N+ + E0)� 0

+ � N � z�



 2

2

i

� 2IEz

h


 P k2 (N+ + E0)� 0

+




 2

2

i
+ 2IE

h


 N � z�




 2

2

i

We �rst boundIEz

h


 P k2 (N+ + E0)� 0

+




 2

2

i
. We consider two cases.

Case 1. � max (N+ ) > �
2 � �

q
d2
n . In this case, we observe thatkEk2 � 2:2� �

q
d2
n + o(1).

This implies thatkN+ + E0k2 = O(kN+ k2) = O(1). Therefore,IEz

h


 P k2 (N+ + E0)� 0

+




 2

2

i
�

k(N+ + E0)� 0
+ k2

2 = O(k� 0
+ k2

2).

Case 2. � max (N+ ) � �
2 � �

q
d2
n . In this case,kN+ + E0k2 � ��

q
d2
n . This impliesP k2 (N+ +

E0)� 0
+ = 0 (i.e., the projectionP k2 (�) will not keep any subspace).
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This case also impliesIEz

h


 P k2 (N+ + E0)� 0

+




 2

2

i
= 0 = O(k� 0

+ k2
2)

Next, we haveIE[kN � z� k2
2] = kN � k2

F = O
�

�
! � 1
! +1

�
.

Therefore,

� 2 = O
�

� 2

� 6 + �
! � 1
! +1

�
:

Next, we move to bound

IEz

h


 (P k2 (N+ + E0)z+ � N+ z+ )




 2

2

i
:

We shall construct an orthonormal basis onR d2 and use the basis to “measure the mass”. Let
us describe this simple idea at high-level �rst. Letv1; v2; � � � ; vd2 be a basis forR d2 and let
A 2 R d2 � k1 be an arbitrary matrix. We havekAk2

F =
P

i � d2
kv T

i Ak2
2. The meaning of this equality

is that we may apply a change of basis on the columns ofA and the “total mass” ofA should remain
unchanged after the basis change. Our orthonormal basis consists of three groups of vectors.

Group 1. f UN +
:;i g for i � `, where` is the number of� i (N + ) such that� i (N + ) � �� �

q
d2
n .

Group 2. The subspace inSpan(f UN̂
:;i gi � k2 ) that is orthogonal tof UN +

:;i gi � ` . Let us refer to these

vectors aŝu1; : : : ; ûs andÛ[s] = [ û1; : : : ûs].

Group 3. An arbitrary basis that is orthogonal to vectors in group 1 and group 2. Let us refer to them
asr 1; : : : ; r t .

We have

kP k2 (N+ + E0) � N+ k2
F

=
X

i � `










�
UN +

:;i

� T
(P k2 (N+ + E0) � N+ )










2

2
Term 1

+
X

i � s

kûT
i (P k2 (N+ + E0) � N+ ) k2

2 Term 2

+
X

i � r

kr T
i (P k2 (N+ + E0) � N+ ) k2

2 Term 3

To understand the reason we perform such grouping, we can imagine making a decision for an
(overly) simpli�ed problem for each direction in the basis: consider a univariate estimation problem
y = � + � with � being the signal,� � N (0; � 2) being the noise, andy being the observation. Let us
consider the case we observe only one sample. Now wheny � � , we can usey as the estimator and
IE[( y � � )2] = � 2. This high signal-to-noise setting corresponds to the vectors in Group 1.

Wheny � 3� , we have� 2 = IE[( y� � )2] � (3� 1)2� 2 = 4 � 2. On the other hand,IE[( y� � )2] = � 2.
This means if we usey as the estimator, the forecast is at least better than trivial. The median signal-
to-noise setting corresponds to the vectors in group 2.

Wheny � � , we can simply usêy = 0 as the estimator. This low signal-to-noise setting corresponds
to vectors in group 3.

In other words, we expect:(i) In term 1, signals along each direction of vectors in group 1 can

be extracted. Each direction also pays a� 2 term, which in our setting corresponds to�� �

q
d2
n .

Therefore, the MSE can be bounded byO(`� 2� 2
� d2=n). (ii) In terms 2 and 3, we do at least (almost)

as well as the “trivial forecast” (̂y = 0 ). There is also an error produced by the estimator error from
ẑ+ , and the tail error produced from cutting out features in STEP-1-PCA-X in Fig. 1.

Now we proceed to execute this idea.
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