- We thank the reviewers for their careful reading of the paper and their insightful feedback. Please find below answers to
- the questions that were raised. For clarity, we sometimes use blue text to quote from the reviews.

Review #1.

- R: The result expressions for term t and the running time all ignore the dependency for α , it is better to give an
- illustration for about the dependency on α , to show the differences to previous works more clearly.
- We quickly remark that the dependencies on α both in the exponent of the running time and the additive error are all
- polynomial. We will write out the dependencies more clearly in the revision. Thank you for the suggestion.
- R: Authors show that the computational complexity of these two problems [Densest Ball and 1-Cluster] are essentially
- the same by the binary search. I've some questions about this binary search. Authors don't show the data universe
- and the precision of the binary search, then what is the time for this binary search? Intuitively, it will depend on them. 10
- Authors are expected to explain that before saying they are the same. 11
- There are two directions in the equivalence. When reducing from 1-Cluster to Densest Ball, we binary-search on the
- target radius. In this case, the number of iterations needed for the binary search depends logarithmically on the ratio 13
- between the maximum possible distance between two input points and the minimum possible distance between two 14
- distinct input points. This is explained in more detail in Appendix F of the Supplementary Material. 15
- Conversely, when reducing from Densest Ball to 1-Cluster, we binary-search on the number of points inside the optimal 16
- ball. Here the number of iterations will be logarithmic in the number of input points. 17
- We will add a remark regarding these in the main body of the revision. Thank you for pointing this out.

Review #2. 19

- R: The paper is a solid theoretical contribution and I vote for acceptance. I would have loved to see an experimental 20
- analysis so I am curious, why no experimental analysis? especially for the k-means, there are so many standard 21
- implementations, why not pick one and apply the generic framework of the second result? 22
- Thank you for your suggestion. The main issue facing an experimental evaluation of our algorithms is that they would
- rely on constructions of lattices and solvers for the Closest Vector Problem on lattices. Unfortunately, these are currently 24
- not efficient at scales that would be interesting from a practical clustering point of view. Nevertheless, obtaining a 25
- differentially private clustering algorithm that is also practical is one of the directions that we are currently pursuing. 26

Review #3. 27

- Thank you very much for the careful reading and helpful comments. We will incorporate the low-level/stylistic 28
- suggestions. 29
- R: Line 420 (above): Shouldn't this be a less than or equal, rather than an equal?
- Yes, the expression before line 420 in the Supplementary Material should indeed be < instead of =. 31
- R: Eq. (23): in the last derivation, I am not sure how eq. (21) has already been applied
- The last line in the derivation of (23) should indeed be removed.

Review #6.

- R: Additive approximation terms, perhaps unavoidable. 35
- Yes, the additive approximation term is indeed inevitable under differential privacy requirements. We will emphasize 36
- this in the text. 37