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A Proof of Theorem 1

Proof. Recall the definition of the second-order displacement matrix,

Σ =

∫ (
(I − φ∗)(X)

)(
(I − φ∗)(X)

)T
dµ(X).

The square of Wasserstein distance (with L2 norm) betweenX|Y ∗ = 0 andX|Y ∗ = 1 can be written
as ∫

Tr
{(

(I − φ∗)(X)
)(

(I − φ∗)(X)
)T}

dµ(X) = Tr(Σ), (1)

where Tr(·) is the trace operator. In this proof, we restrict our attention on the optimal transport with
L2 norm. Therefore, the trace Tr{((I − φ)(X))((I − φ)(X))T }dµ(X), as a function of φ, achieves
its minimum value when φ = φ∗. Furthermore, for any b ∈ R, the term∫

Tr
{(

bT (I − φ∗)(X)
)(

bT (I − φ∗)(X)
)T}

dµ(X) = bTΣb,

can be regarded as the transportation cost via φ∗ in the direction of b.

Recall that P (X) = E(Y |X), we have Y ∗ = I(E(Y |X) ≥ 0.5), which indicates SY ∗|X ⊆ SY |X .
Therefore, to prove Theorem 1, we only need to verify SY ∗|X = S(Vr). Let B to denote a matrix
that satisfy Y ∗ ⊥⊥ X|BTX . Without loss of generality, we assume S(B) = SY ∗|X . Let S(B)⊥ be
the orthogonal complement space of S(B).

Recall that Vq = (v1, . . . , vq) ∈ Rp×q is a matrix which contains orthonormal columns satisfying
Σvj = λjvj for j = 1, . . . , q with λq > 0 = λq+1. Therefore, the space spanned by Σ is equivalent
to the space spanned by Vq. Also note that rank(B) = r. If S(B) = S(Σ) holds, we have
rank(B) = rank(Σ) = r = q, resulting in S(Vr) = S(Vq) = S(Σ) = S(B). The conclusion
follows immediately. Hence, to prove Theorem 1, it is sufficient to show that S(B) = S(Σ) holds.

To verify S(B) = S(Σ), we only need to show the following two results hold:

(I). S(Σ) ⊆ S(B). That is to say, for any b ∈ S(B)⊥, we have bT Σb = 0.
(II). S(B) ⊆ S(Σ). That is to say, for any b 6= 0, such that b ∈ S(B), we have bT Σb > 0.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



We now begin with the statement (I). The high-level idea is that if there exists a b ∈ S(B)⊥ such that
bT Σb > 0, we can construct a new measure-preserving map with a smaller transport cost than φ∗,
resulting in a contradiction.

Without loss of generality, we assume B = (B1, . . . , Br), B⊥ = (Br+1, . . . , Bp) with BT
i Bi = 1

for i = 1, . . . , p and BT
i Bj = 0 for i 6= j and i, j = 1, . . . , p. For any b ∈ S(B)⊥, according to

the definition of B, we have bTX ⊥⊥ Y ∗, i.e., p(bTX|Y ∗ = 0) = p(bTX|Y ∗ = 1) = p(bTX).
Moreover, we have

(B⊥)TX ⊥⊥ Y ∗. (2)

Let φ̃(1) : Rr → Rr be the optimal transport map from BTX|Y ∗ = 1 to BTX|Y ∗ = 0. We
now construct a map from (B⊥; B)TX|Y ∗ = 1 to (B⊥; B)TX|Y ∗ = 0, denoted as φ̃(2)(X) =

(Ip−r; φ̃(1))(X). Combining (2) and the fact that φ̃(1) is an optimal transport map, it is easy to check
that φ̃(2) is a measure-preserving map. Therefore, φ̃(2) ◦ (B⊥; B)T (X) is a measure-preserving map
from X|Y ∗ = 1 to (B⊥; B)TX|Y ∗ = 0. Note that (B⊥; B)(B⊥; B)T = Ip. Consequently, the
map φ̃(3)(X) = (B⊥; B)φ̃(2) ◦ (B⊥; B)T (X) is thus a measure-preserving map from X|Y ∗ = 1 to
X|Y ∗ = 0. Let Σ̃ be second-order displacement matrix respecting to φ̃(3). Recall that the first r
dimension in φ̃(2) is an identity map between B⊥TX|Y ∗ = 1 to B⊥TX|Y ∗ = 0. We thus have

Tr
{

(B⊥)T Σ̃B⊥
}

=

∫
Tr
{(

B⊥TX − Ip−r(B⊥TX)
) (

B⊥TX − Ip−r(B⊥TX)
)T}

dµ(X) = 0. (3)

If there exists b ∈ S(B)⊥ such that bTΣb > 0, we have

Tr
{

(B⊥)TΣB⊥
}
> 0 (4)

Note that φ̃(1) is the optimal transport map from BTX|Y ∗ = 0 to BTX|Y ∗ = 1. This is to say, we
have

Tr{BT Σ̃B}

=

∫
Tr

{(
BTX − φ̃(1)(BTX)

)(
BTX − φ̃(1)(BTX)

)T}
dµ(X) ≤ Tr{BTΣB}. (5)

Combining the results in Equation (3), Inequality (4), and Inequality (5), we have

Tr(Σ̃)

=

∫
Tr
{(

(I − φ̃(3))(X)
)(

(I − φ̃(3))(X)
)T}

dµ(X)

=

∫
Tr
{(

(B⊥T ; BT )T (I − φ̃(3))(X)
)(

(B⊥T ; BT )T (I − φ̃(3))(X)
)T}

dµ(X)

= Tr
{

(B⊥)T Σ̃B⊥
}

+ Tr{BT Σ̃B}

< Tr
{

(B⊥)TΣB⊥
}

+ Tr{BTΣB}

=

∫
Tr
{(

(B⊥T ; BT )T (I − φ∗)(X)
)(

(B⊥T ; BT )T (I − φ∗)(X)
)T}

dµ(X)

= Tr(Σ). (6)

Recall that the trace Tr{((I−φ)(X))((I−φ)(X))T }dµ(X), as a function of φ, achieves its minimum
value when φ = φ∗, which is the optimal transport map under the L2 distance. Inequality (6) indicates
φ̃(3) is a measure-preserving map with a smaller transport cost than φ∗, and thus makes contradiction.
This completes the proof for Statement I.

It is worth mentioning that, for the optimal transport problem respecting other choices of distance
metric, such as squared Euclidean distance, minimizing Tr(Σ) respecting φ does not necessarily lead
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to the solution of φ∗. Consequently, Inequality (6) may not leads to a contradiction in such cases.
Therefore, our proof restricts our attention to the optimal transport with L2 norm.

We then turn to Statement II. Suppose there is a b 6= 0 lies in the space S(B) such that bT Σb = 0.

Hence, there are exist at one Bi for i = 1, . . . , r such that Bi
T ΣBi = 0. Therefore,∫

Tr
{(
BT

i (I − φ∗)(X)
) (
BT

i (I − φ∗)(X)
)T}

dµ(X) = 0. (7)

Note that φ∗ is a measure-preserving map. We have BT
i φ
∗(X) and BT

i X|Y ∗ = 0 are identical
distributed. From (7), it is clear to see that BT

i X|Y ∗ = 1 and BT
i X|Y ∗ = 0 are identical distributed.

Hence, it follows that p(BT
i X|Y ∗ = 0) = p(BT

i X|Y ∗ = 1) = p(BT
i X), which implies that

BT
i X ⊥⊥ Y ∗. Therefore, we have S(Bi, Br+1, . . . , Bp) ⊆ S⊥Y ∗|X . In other words, we have SY ∗|X ⊆
S(B1, . . . , Bi−1, Bi+1 . . . , Br). Hence we can conlude that the dimension of the central dimension
reduction subspace SY ∗|X is less than r − 1. This leads to a contradiction with (H.2) where the
structure dimension is r.

B Technical Lemmas

Before we prove Theorem 2, we introduce the following two technical lemmas, whose proof can be
found in Theorem 4.1 in [1] and Section 3.3 in [2], respectively.

Lemma 1. Assume µ, ν are probabilities on Rp that both µ and ν have positive densities in the
interior of their convex supports and have finite moments of order 4 + δ for some δ > 0. Let
X1, . . . , Xn are i.i.d., random variables with law µ, Y1, . . . , Ym are i.i.d., random variables with
law ν, independent of the Xi’s, µn denotes the empirical measure on X1, . . . , Xn0

, and νm denotes
the empirical measure on Y1, . . . , Ym. As n,m→∞ and n/(m+ n)→ C ∈ (0, 1), it holds that

√
n(W 2

2 (µn, ν)− EW 2
2 (µn, ν))→ N(0, σ2(µ, ν)), (8)√

nm

n+m
(W 2

2 (µn, νm)− EW 2
2 (µn, νm))→ N(0, (1− C)σ2(µ, ν) + Cσ2(ν, µ)), (9)

where σ2(P,Q) =
∫

(‖x‖2 − 2φ∗(x))2dµ − (
∫

(‖x‖2 − 2φ∗(x))dµ)2 and φ∗ denotes an optimal
transportation potential from µ to ν.

Lemma 2. Let µn and νn be the empirical measure. Under (H.4), EW 2
2 (µn, µ) ≤ Cn−2/p and

EW 2
2 (νn, ν) ≤ Cn−2/p, where C is some constant.

C Proof of Theorem 2

Proof. For easy of presentation, let xi be the ith observation of X|P (X) ≥ 0.5,
and φ∗, φ̂ be the optimal transport map and the corresponding estimator, respectively.
Let x

(j)
i , X(j), φ∗(j)(xi), φ̂

∗(j)(xi), φ
∗(j)(X), and φ∗(j)(X) be the jth dimension of

xi, X, φ
∗(xi), φ̂

∗(xi), φ
∗(X), and φ∗(X), respectively, Note that under (H.3)–(H.5), the

(i, j)-th entry of Σ̂−Σ satisfies

‖Σ̂(i,j) −Σ(i,j)‖2

=

{
1

n1

n1∑
k=1

(x
(i)
k − φ̂

(i)(xk))(x
(j)
k − φ̂

(j)(xk)− E[(X(i) − φ∗(i)(X))(X(j) − φ∗(j)(X))]

}2

≤4

{
1

n1

n1∑
k=1

x
(i)
k x

(j)
k − EX

(i)X(j)

}2

+ 4

{
1

n1

n1∑
k=1

φ̂(i)(xk)x
(j)
k − Eφ

∗(i)(X)X(j)

}2

+4

{
1

n1

n1∑
k=1

φ̂(j)(xk)x
(i)
k − Eφ

∗(j)(X)X(i)

}2

+ 4

{
1

n1

n1∑
k=1

φ̂(i)(xk)φ̂(j)(xk)− Eφ∗(i)(X)φ∗(j)(X)

}2

.

(10)
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Under (H.3), the first term in (10) is Op(n−11 ) due to the law of large number. Under (H.3)–(H.5),
simple calculate yields,

1

n1

n1∑
k=1

φ̂(i)(xk)x
(j)
k − Eφ

∗(i)(X)X(j)

=
1

n1

n1∑
k=1

(
φ̂(i)(xk)− φ∗(i)(xk) + φ∗(i)(xk)

)
x
(j)
k − Eφ

∗(i)(X)X(j)

≤{ 1

n1

n1∑
k=1

(φ̂(i)(xk)− φ∗(i)(xk))2}1/2{ 1

n1

n1∑
k=1

(x
(j)
k )2}1/2 +

1

n1

n1∑
k=1

φ∗(i)(xk)x
(j)
k − Eφ

∗(i)(X)X(j).

Note that the transportation cost between the empirical measure φ̂(x1), . . . , φ̂(xn1) and a given
probability of the random variable X|Y ∗ = 0 equals to EW 2

2 (νn0
, ν) + Op(n−1/2) according to

Lemma 1. From Lemma 2, it is clear to see that EW 2
2 (νn0 , ν) = Op(n−2/p) which implies that

1
n1

∑n1

k=1(φ̂(i)(xk)− φ∗(i)(xk))2 = Op(n−2/p). Recall that n0/n1 goes to some constant bounded
away from zero under (H.5). Therefore,

1

n1

n1∑
k=1

φ̂(i)(xk)x
(j)
k − Eφ

∗(i)(X)X(j)

≤{ 1

n1

n1∑
k=1

(φ̂(i)(xk)− φ∗(i)(xk))2}1/2{ 1

n1

n1∑
k=1

(x
(j)
k )2}1/2 +

1

n1

n1∑
k=1

φ∗(i)(xk)x
(j)
k − Eφ

∗(i)(X)X(j)

=Op(n−1/p)Op(1) +Op(n−1/2)

=Op(n−1/p).

Similarly, it can be shown that the last two terms in (10) are in the order Op(n−1/p). That is,
‖Σ̂ − Σ‖F = Op(n−1/p). Therefore, by the Davis-Kahan theorem [3] under (H.2), we have
|| sin(Vr, V̂r)||F = Op(n−1/p).
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