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Abstract

Sufficient dimension reduction is used pervasively as a supervised dimension
reduction approach. Most existing sufficient dimension reduction methods are
developed for data with a continuous response and may have an unsatisfactory
performance for the categorical response, especially for the binary-response. To
address this issue, we propose a novel estimation method of sufficient dimension
reduction subspace (SDR subspace) using optimal transport. The proposed method,
named principal optimal transport direction (POTD), estimates the basis of the
SDR subspace using the principal directions of the optimal transport coupling
between the data respecting different response categories. The proposed method
also reveals the relationship among three seemingly irrelevant topics, i.e., sufficient
dimension reduction, support vector machine, and optimal transport. We study the
asymptotic properties of POTD and show that in the cases when the class labels
contain no error, POTD estimates the SDR subspace exclusively. Empirical studies
show POTD outperforms most of the state-of-the-art linear dimension reduction
methods.

1 Introduction

Sufficient dimension reduction (SDR) has been one of the most popular linear dimension reduction
frameworks in statistics [40, 14, 35]. Given a predictor X ∈ Rp and a response Y ∈ R, sufficient
dimension reduction aims to find a projection matrix B ∈ Rp×q (p ≥ q) such that

Y ⊥⊥ X|BTX, (1)
where ⊥⊥ denotes statistical independence. Model (1) indicates that the projected predictor BTX
preserves all the information about Y contained in X . The column space of B, denoted as S(B)
is called a sufficient dimension reduction subspace (SDR subspace). One special property of the
sufficient dimension reduction framework is that the model (1) does not assume any specific rela-
tionship between Y and X . Nowadays, sufficient dimension reduction has played crucial roles in
various statistical and machine learning applications, such as classification problems [33], online
learning [9], medical research [50], and causal inference [45]. Some popular sufficient dimension
reduction techniques include sliced inverse regression (SIR) [40], principal Hessian directions (PHD)
[41], sliced average variance estimator (SAVE) [16], directional regression (DR) [38], among others.

Despite its popularity, the success of most existing SDR methods highly depends on the restricted
conditions that are imposed on the predictors. In practice, these methods may fail to identify the
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true SDR subspace when the conditions are not met. We illustrate such a phenomenon through an
example that was originally introduced in [42] as a clustering problem. The example includes two C-
shaped trigonometric curves with random Gaussian noise tangle with each other in a two-dimensional
subspace embedded in R10. There are two classes, one for each curve:

I) X1 = 20 cos θ+Z1+1, X2 = 20 sin θ+Z2,where Z1, Z2, and θ are independent generated
from N (0, 1), N (0, 1), and N (π, (0.25π)2), respectively; X3, . . . , X10 are independent
generated from N (0, 1).

II) X1 = 20 cos θ + Z1, X2 = 20 sin θ + Z2, where Z1, Z2, and θ are independent generated
from N (0, 1), N (0, 1), and N (0, (0.25π)2), respectively; X3, . . . , X10 are independent
generated from N (0, 1).

Figure 1: Results for different SDR methods on a 10D binary-
response example. The first two predictors of the data are illustrated
in panel (a), where different color represent different classes. Panel
(b), (c), and (d) show the first one or two directions estimated by
SIR, SAVE, and POTD, respectively. POTD is the only one among
three that can effectively recover the SDR subspace.

For each class, we first generate a sam-
ple of size 300 and then standardize
the sample. It is clear that the SDR
subspace of this example is the space
spanned by (e1, e2), where ej is a col-
umn vector with the j-th element be-
ing 1 and 0 for the rest. Figure 1(a)
shows the first two predictors of the
data, where two classes are illustrated
by different colors, respectively. Fig-
ure 1(b) shows the data projected on
the SIR direction. Only one projec-
tion direction can be estimated by SIR
since the response is binary. Figure 1(c) shows the data points projected on the plane spanned by
the first two directions estimated by SAVE. Note that both of these two classic SDR techniques fail
to provide a decent estimation of the SDR subspace. Such an observation can be attributed to the
fact that SIR and SAVE only utilize the first-moment and the second-moment information of the
predictors. As a result, they are not able to recover the SDR subspace when the first two moments of
the predictors respecting different classes are identical.

Our contributions. To overcome the aforementioned limitation of the classic SDR methods, we
propose a novel approach for estimating the SDR subspace, primary for the data with a categorical
response. The proposed method, named principal optimal transport direction (POTD), forms the basis
of the SDR subspace using the principal directions of the optimal transport coupling between the data
that are respecting different response categories. POTD does not rely on the moment information
of the predictors and is able to provide a more decent estimation of the SDR subspace, as shown in
Fig. 1(d). We reveal the close relationship between the proposed method and a well-known SDR
approach, named principal support vector machine (PSVM) [36]. This approach first utilizes support
vector machine (SVM) to find the optimal hyperplane that separates the data respecting different
response categories, then use the normal vectors of this hyperplane to construct the SDR subspace.
We demonstrate that the "displacement vectors," which respecting the optimal transport map between
the data that are respecting different response categories, are highly consistent with the normal vectors
of the aforementioned hyperplane. We propose to use these displacement vectors as surrogates for the
desired normal vectors to construct the SDR subspace, thus avoid estimating the optimal hyperplane.
Theoretically, we show the proposed method can consistently and exclusively estimate the SDR
subspace for the data with a binary-response when the class labels contain no error. To the best of
our knowledge, our work is the first approach that can achieve the full SDR subspace instead of
a partial SDR subspace obtained by alternative approaches, under mild conditions. We show the
advantages of POTD over existing linear dimension reduction methods through extensive simulations.
Furthermore, we show the proposed method outperforms several state-of-the-art linear dimension
reduction methods in terms of classification accuracy through extensive experiments on various
real-world datasets.

2 Preliminaries

Sufficient dimension reduction. In this paper, we consider the sufficient dimension reduction
Model (1) in classification problems, i.e., the response Y ∈ {1, . . . , k} indicating k classes in
the data. Recall in Model (1); sufficient dimension reduction methods aim to seek a set of linear
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combinations ofX , i.e.,B T X , such that the responseY depends on the predictorsX only through
B T X . Since the projection matrixB in Model (1) is not unique, the target of interest in SDR is not
on B itself, but the space spanned by the columns ofB , denoted asS(B ). The central subspace,
denoted bySY jX , is the intersection of the spaces spanned by all possibleB that satisfy Model (1)
and hence has the minimal dimension among all suchB 's (Cook, 1998b). It is known thatSY jX
exists uniquely under mild conditions [14]. We call an SDR method exclusive if it induces an SDR
subspace that equals to the central subspace. It is known that some popular SDR methods, e.g., SIR,
SAVE, and DR, are exclusive under certain conditions [35].

There is a vast literature on SDR methods [46, 82, 47, 79], the majority of which are developed for
data with continuous response. Although some of them work fairly well for categorical response
data, the performance of some classic SDR methods degrades signi�cantly for binary-response
data. For example, SIR can identify at most one direction in binary classi�cation since there are
only two slices available. As a result, SIR is unable to recover the full SDR subspace when one
direction is insuf�cient to separate two classes, say the example in Fig.1. For another example, SAVE
is known for its inef�cient estimation when the response is binary [38], and we refer to [15] for
more discussion. There exist other SDR methods in the literature that are designed for categorical
response data [60, 61]. The performance of these methods, however, depends on relatively strong
assumptions that are imposed on the predictors, and they may not recover the full SDR subspace
in some applications. There also exist some nonlinear dimension reduction methods to tackle the
classi�cation problems [36, 66]. These nonlinear methods are beyond the scope of this paper.

Optimal transport methods. To overcome the aforementioned limitations of the existing SDR
methods, we develop a novel SDR approach for data with a categorical response, utilizing optimal
transport methods. Optimal transport has been widely studied in mathematics, probability, and
economics [25, 63, 59]. Recently, as a powerful tool to transform one probability measure to
another, optimal transport methods �nd extensive applications in machine learning [3, 18, 55, 4, 10,
27, 48, 53, 77, 78, 68, 67, 26, 58], statistics [21, 11, 51, 72, 49, 54, 20, 28, 17], computer vision
[25, 56, 63, 55, 22, 69], and so on.

Let P (Rp) be the set of Borel probability measures inRp, and let

P 2(Rp) =
n

� 2 P (Rp)
�
�
�
Z

jjx jj2d� (x ) < 1
o

:

Consider two probability measures�; � 2 P 2(Rp). For any measurable set
 � Rp, we de�ne
� (� )(
) = � (� � 1(
)) . Let � be the set of all the so-called measure-preserving map� : Rp ! Rp,
such that� (� ) = � and� � 1(� ) = �: Let k � k be the Euclidean norm. Among all the maps in� ,
the optimal one respecting toL 2 transport cost is de�ned as

� � = inf
� 2 �

Z

Rp
ka � � (a)k2d� (a): (2)

Formulation (2) is usually called the Monge formulation and its solution� � is usually called the
optimal transport map, or Monge map. The vectora � � � (a) is called the displacement vector of
the optimal transport map� � ona. One limitation for the Monge formulation (2) is that, it may be
infeasible in some extreme cases, say, when� is a Dirac measure but� is not. To overcome such an
limitation, Kantorovich considered the following set of "couplings" [64],

�( �; � ) = f � 2 P (Rp � Rp) s:t: 8 Borel set A; B � Rp;
� (A � Rp) = � (A); � (Rp � B ) = � (B )g:

Kantorovich then formulated the optimal transport problem as �nding the optimal coupling, i.e., the
joint probability measure� from �( �; � ), that minimizes the expected cost,

� � = inf
� 2 �( �;� )

Z
kx � yk2d� (x; y): (3)

Formulation (3) is usually called the Kantorovich formulation and its solution� � is called the optimal
transport plan or optimal coupling. Consider the cases when both� and� are continuous probability
measures that vanish outside a compact set, and both measures have continuous densities with respect
to the Lebesgue measure. Under the above setups, the celebrated Brenier theorem [7] guarantees
the existence of the Monge map, and it is shown that the solution of the Monge formulation (2) is
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equivalent to the solution of the Kantorovich formulation (3) [32, 31]. For mathematical simplicity,
we assume the Monge map exists when studying the theoretical properties of the proposed method.
However, the proposed algorithm is developed upon the optimal coupling, and it does not require the
existence of the Monge map. Furthermore, the numerical results in Section 5 indicate the proposed
method empirically works well when the Monge map does not exist.

3 Motivation and Methodology

To motivate the development of the proposed method, we �rst re-examine a popular SDR approach,
named principal support vector machine (PSVM). Such an approach is �rst proposed in [36], and
is further developed in [5, 80, 60, 61]. Recall that SVM is a classi�cation method that draws an
optimal hyperplane to separate the data respecting different categories. Consider the data with the
binary-response. [36] �rst observed that the normal vectors of the hyperplane that learned by SVM,
are as much as possible aligned with the directions in which the regression surface varies, i.e., the
directions that form the SDR subspace. Consequently, these normal vectors can be naturally utilized
to construct the SDR subspace. In particular, the authors in [36] proposed to combine these normal
vectors by principal component analysis to form the basis of the SDR subspace.

Figure 2:Illustration for PSVM and POTD on a 3D synthetic binary-
response dataset. The data respecting difference response categories are
marked by blue and red, respectively. Panel (a) shows the hyperplane
learned by SVM, and the normal vectors of this hyperplane are labeled as
dashed arrows. Panel (b) shows all the displacement vectors of the optimal
transport map between two classes. We observe that the displacement
vectors in (b) show highly consistent patterns as the normal vectors in (a).

We provide an example to illus-
trate the idea of PSVM. Fig. 2(a)
shows a synthetic 3D sample
with a binary-response, and the
subsample respecting different
response categories are marked
in blue and red, respectively.
For these two subsamples, their
marginal distributions ofe1 have
the same mean and different vari-
ances, their marginal distribu-
tions of e2 have the same vari-
ance and different means, and
their marginal distributions ofe3
are the same. Consequently, the
SDR subspace of this example is
spanned by(e1; e2).

The PSVM approach �rst uses SVM to calculate the optimal hyperplane that separates the two classes.
The hyperplane is illustrated by the grey curved surface in Fig. 2(a). Using the principal component
analysis, the normal vectors of this hyperplane, shown as the dashed arrows, are then used to form
the basis of the SDR subspace. The PSVM approach is superior to the classic SIR and SAVE method
in this example. Note that SIR and SAVE only utilizes the �rst-moment and the second-moment
information of the predictors, respectively. Neither SIR and SAVE could successfully recover the full
SDR subspace in this example, since the former can only identify the subspace spanned bye2 and the
latter can only identify the subspace spanned bye1. Despite the advantages, one limitation for the
PSVM approach is that the explicit form of the desired normal vectors are only available for linear
SVM but are not available for kernel SVM. Although several nonlinear dimension reduction methods
are developed, still lacking are the linear dimension reduction methods for the cases when the data
respecting different response categories are not linearly separable, e.g., the example in Fig.1(a).

To address the aforementioned issue, we propose to utilize the optimal transport technique to
construct surrogates for the desired normal vectors. The key intuition is that, the displacement
vectors of the optimal transport map that maps one subsample to the other subsample are as much as
possible orthogonal to the hyperplane that can best separate these two subsamples. As a result, these
displacement vectors are highly consistent with the normal vectors of the hyperplane estimated by
SVM. For illustration, we plot the displacement vectors respecting the synthetic dataset in Fig. 2(b),
and it is clear that these vectors show highly consistent patterns as the normal vectors in Fig. 2(a).
Consequently, using optimal transport, we can obtain the desired vectors directly and explicitly,
without calculating the optimal hyperplane. Analogous to the PSVM approach, we propose to
combine the displacement vectors by principal component analysis to form the basis of the SDR
subspace. To extend the proposed method for binary-response cases to multi-class response cases,
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two popular strategies could be used, namely the one-vs-one strategy and the one-vs-rest strategy.
We opt to adopt the former in this paper, and we �nd using the latter yields similar results.

We now provide more details of the proposed method. Letk � 2 be the number of response categories,
X 2 Rn � p be the pooled sample matrix, and we assume thatX T X = I p, without lose of generality.
Let ni be the number of samples respecting to thei -th class,X ( i ) 2 Rn i � p be the subsample matrix
respecting to thei -th class, anda i = ( ai 1; : : : ; ain i )

| be the given weight vector corresponding
to X ( i ) . Without loss of generality, we assume theL 1 norm ofa i equals one,i = 1 ; : : : ; k. Such
an assumption ensures that the optimal transport problems, between the data respecting difference
response categories, are valid. In the cases whenf a i gk

i =1 do not have the same value, one can simply
replacef a i gk

i =1 by f a i =jja i jj1gk
i =1 before implementing the proposed method.

For anyi; j 2 f 1; : : : ; kg, we calculate the empirical optimal transport coupling matrixG ij 2 Rn i � n j

between the weighted samples(X ( i ) ; a i ) and(X ( j ) ; a j ). The matrixG ij is then used to construct
the "displacement matrix"� ij 2 Rn i � p,

� ij = diag(a i )X ( i ) � G ij X ( j ) ;

wherediag(a i ) 2 Rn i � n i is the diagonal matrix such that its diagonal vector equalsa i . In the
literature,G ij X ( j ) is usually termed the barycentric projection ofX ( j ) . In particular, letb� � be
the empirical optimal transport map between(X ( i ) ; a i ) and(X ( j ) ; a j ), if it exists. It is thus easy
to check that, forl = 1 ; : : : ; ni , thel-th row of � ij equalsail (X ( i ) l � b� � (X ( i ) l )) | , which is the
displacement vector of thel-th observation inX ( i ) weighted byail .

Next, to apply the one-vs-one strategy, we let� ( i ) 2 Rn i (k � 1) � d be the matrix that vertically stacks
all the� ij s, j = 1 ; : : : ; i � 1; i + 1 ; : : : ; k. Furthermore, we let� 2 Rn (k � 1) � d be the matrix that
vertically stacks all the� ( i ) s, i = 1 ; : : : ; k. The �nal SDR subspace then can be constructed using
the leading right singular vectors of� . Algorithm 1 summarizes the proposed method.

Algorithm 1 Principal Optimal Transport Direction (POTD)

Input: X 2 Rn � d, Y 2 f 1; : : : ; kg, a 2 Rn , the structure dimensionr
for i in 1 : k do

for j in f 1; : : : ; i � 1; i + 1 ; : : : ; kg do
G ij  OT[(X ( i ) ; a i ); (X ( j ) ; a j ); cost= jj � jj 2]
� ij = diag(a i )X ( i ) � G ij X ( j )

end for

� ( i ) =

 
� i 1
: : :
� ij

!

end for

� =

0

@
� (1)
: : :

� (k )

1

A

Output: v1; : : : ; v r , i.e., the �rst r right singular vectors of�

Computational cost. In practice, the coupling matrixG ij in Algorithm 1 can be calculated using
the Sinkhorn algorithm [19]. In the cases when allk classes have roughly similar sample sizes, the
computational cost for calculatingG ij is at the order ofO((n=k)2 log(n=k)p). The total number of
coupling matrices that need to be calculated isk(k � 1), and thus the overall computational cost for
optimal transport is of the orderO(n2 log(n)p). Furthermore the computational cost for calculating
the SVD for the matrix� is at the order ofO(knp2). Thus, the overall computational cost for
Algorithm 1 isO(n2 log(n)p + knp2): Besides, one may use other optimal transport algorithms, like
Greenkhorn [2] and Nys-Sink [1], for potentially faster calculations.

Estimation of structure dimension. In Algorithm 1, we assume the structure dimensionalr is
known. This information, however, may not be available in practice. In the literature of suf�cient
dimension reduction, there exist several methods to determiner . For example, a chi-squared test was
developed in the SIR method [40]. However, the extension of the test beyond SIR is still lacking.
The BIC-type approach is another widely-used procedure [81, 82]. Neither of these approaches is
applicable to our algorithm since they are developed based on the asymptotic normality, which is
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rarely the case in our setting. Based on our empirical studies, we suggest using the cumulative ratio
of the singular values to choose the structure dimension [30]. Such a procedure is commonly used by
classical dimension reduction methods such as principal component analysis.

4 Theoretical results

For ease of exposition, throughout this section, we only consider the suf�cient dimension reduction
model (1) with binary-response cases, i.e.,Y 2 f 0; 1g. We also assume the optimal transport map
exists. We propose a predictor ofY , calledY � , and study some properties ofY � from the perspective
of the optimal transport theory.

Now we reformulate the binary-response suf�cient dimension reduction problem as a transport
problem. Without loss of generality, one class of sample is called the source sample, and the other
class of sample is the target sample. Given the pooled sample consisting of both the source sample
and the target sample, we randomly take a sample point, sayX , and its associated label (response)
Y , which equals zero if the sample pointX is from the source sample and one otherwise. Here,Y
follows a Bernoulli distribution, whereY is equal to one with the probabilityP(X ). GivenP(�), we
employ the predictorY � = I (P(X ) � 0:5), whereI (�) is the indicator function, to predict labelY
of the corresponding sample pointX . Obviously, for error-degenerated cases, i.e., when all class
labels have been correctly predicted, we haveY � = Y .

Analogous to the central subspaceSY jX , we now de�ne the subspaceSY � jX . Suppose there exists
someB 2 Rp� r such that

Y � ?? X jB T X: (4)
The subspaceSY � jX is de�ned as the intersection of the spaces spanned by all possibleB that
satisfy equation (4). Note that one hasSY � jX � S Y jX , sinceY � can be represented as a function of
E(Y jX ), which equalsP(X ). Consider the case that the binary-responseY is a functionY(Y � ; � )
of Y � conditioning onX = x and a random variable� , which follows a Bernoulli distribution and is
independent of the predictorX , indicates whether the response has been correctly observed as the
true class label. We thus haveSY jX � S Y � jX . Consequently,Y andY � contain exactly the same
information aboutX in this situation. This is to say, we haveSY � jX = SY jX under the condition

Y ?? X jY � : (5)

Speci�cally, for the binary outcome data, when one explanatory variable or a combination of
explanatory variables can perfectly predicts all the labels, condition (5) naturally holds. This is known
as the "separation" property in statistics, and we refer to [34, 29, 57] for more detailed discussion and
general view of the concept of "separation". Consequently, we haveSY � jX = SY jX as long as the
data enjoys the "separation" property.

Let � and� be the probability measures ofX jY � = 1 andX jY � = 0 , respectively. Let� � be the
optimal transport map from the set� = f � : Rp ! Rp j� (� ) = � ; � � 1(� ) = � g, respecting theL 2

norm. We consider the so-called "second-order displacement matrix" of� � , which is de�ned as

� =
Z �

(I � � � )(X )
��

(I � � � )(X )
� T

d� (X ): (6)

Let � 1 � : : : � � p be the eigenvalues of� . Given an integerc � p, let V c be the matrix whose
columns are the �rstc eigenvectors of matrix� , i.e.,V c = ( v1; : : : ; vc) 2 Rp� c and its orthonormal
columns satisfy� vj = � j vj for j = 1 ; : : : ; c. To avoid trivial cases, we only consider the scenarios
thatp > 4 in this section. We now present some essential regularity conditions for our main results.

(H.1) The subspaceSY � jX exists and is unique.

(H.2) Let r be the structure dimension, i.e., the dimension ofSY � jX . Suppose� r � � r +1 � � for
some� > 0, and� p+1 = �1 for simpli�cation.

(H.3) Supposef (Yi ; X i )gn
i =1 are independent and identically distributed. The probability distribu-

tions of bothX jY � = 1 andX jY � = 0 have positive densities in the interior of their convex
supports and have �nite moments of order4 + � for some� > 0.

(H.4) Let N (�; �; � ) be the minimal number of� -balls whose union has� measure at least1 � � .
We assumeN (�; �; � 2p=(p� 4) ) � � � p andN (�; �; � 2p=(p� 4) ) � � � p:
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(H.5) Let n0 andn1 be the number of observations such thatY � = 0 andY � = 1 , respectively. We
assumen0=(n0 + n1) ! C, for some constantC 2 (0; 1), asn = n0 + n1 ! 1 .

Condition (H.1) naturally holds when classi�cation probabilityP(X ) can be represented as a function
of B T X , for someB 2 Rp� r , up to some unknown latent factors which are independent ofX .
This is quite common under the logistic regression setting. The so-called eigen-gap condition (H.2),
ensuring that the signal associated with the largestr eigenvalues is separable from the noise associated
with the rest eigenvalues, is a quite common assumption in the statistical learning literature, see [71].
Conditions (H.3)–(H.5) are the convergence conditions of the estimated optimal transport map and
are widely used in the optimal transport theory, see [21, 51]. We now present our main theorem, the
proof of which is relegated to the Supplementary Material.

Theorem 1. Let � � be the optimal transport map under the assumptions (H.1) – (H.2), we have

S(V r ) = SY � jX � S Y jX ;

whereS(V r ) is the column space of a matrixV r .

Theorem 1 indicates that one can recover the subspaceSY � jX via the column space ofV r , i.e, the
space spanned by the �rstr eigenvectors of� . Recall that we haveSY � jX = SY jX as long as the
class labels contain no error, or the data enjoys the "separation" property. In those cases, Theorem 1
provides a theoretical guarantee to recover the SDR subspace exclusively.

In practice, optimal transport map� � and matrix� need to be estimated from the data. Letb� �

be the estimated optimal transport map,b� = n� 1
1 (X � b� � (X ))T (X � b� � (X )) , be the empirical

second-order displacement matrix with eigenvaluesb� 1 � : : : � b� p, and bV r = ( bv1; : : : ; bvr ) 2 Rp� r

be the matrix whose columns are the �rstr eigenvectors ofb� .

Theorem 2. Assume assumptions (H.1)–(H.5) hold. We have

jj sin(V r ; bV r )jjF := jjPV r P bV ?
r

jjF = Op(n� 1=p);

wherek � kF denotes the Frobenius norm,PV r is the projection matrix on the column space ofV r ,
andP bV ?

r
is the projection matrix on the orthogonal complement of column space ofbV r .

Theorem 2 states that column space ofbV r , the space spanned by eigenvectors ofb� , converges to the
column space ofV r , the central dimension reduction subspaceSY � jX .

Based on the discussion above, the spaceSY � jX can be recovered by the optimal transport map
� � and its corresponding displacement matrix� . Note that whenY � = Y, the spaceSY � jX is
equivalent to the spaceSY jX . Recall that we haveY � = Y in the error-degenerated cases, which
are quite common in practice. For example, in image classi�cation, one may assume all images are
correctly labeled. For simplicity, we assumeY � = Y in the next section.

5 Numerical experiments

Simulation studies.We evaluate the �nite sample performance of the proposed POTD method on
synthetic data. For comparison, we consider �fteen popular supervised linear dimension reduc-
tion methods: AMMC[44], ANMM[ 65], DAGDNE[23], DNE[74], ELDE[24], LDE[13], LDP[75],
LPFDA[76], LSDA[8], MMC[39], MODP[73], MSD[62], ODP[37], SAVE[16], PHD[41], where the
�rst thirteen are implemented in R packageRdimtools and the last two are implemented indr . All
parameters are set as default. We did not consider SIR [40] here since the dimension of the true SDR
subspace in our studies is larger than one, while SIR can estimate at most one direction for binary
classi�cation problems.

Throughout the simulation, we setn = 400 andp = 10; 20; 30. We generate the binary-response
data from the following four models:

I: Y = signf sin(X 1)=X 2
2 + 0 :2� g;

II: Y = signf (X 1 + 0 :5)(X 2 � 0:5)2 + 0 :2� g;
III: Y = signf log(X 2

1 )(X 2
2 + X 2

3 =2 + X 2
4 =4) + 0 :2� g;

IV: Y = signf sin(X 1)=(X 2X 3X 4) + 0 :2� g;
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