
Supplementary Material

A Runtime

Due to trees are acyclic graphs, we can adopt a well-designed dynamic programming algorithm to
reduce the computational complexity to linear w.r.t vertex number. Besides, in order to improve the
efficiency on GPU devices, we parallelize the algorithm along with batches, channels, and nodes of
the same depth. As shown in Fig. 4, the empirical runtime of our method is far less than that of the
Non-Local network [12], which uses an extremely sophisticated tensor library. We believe that the
efficiency of LTF-V2 can be further improved through device-oriented code optimization.
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Figure 4: Comparisons of the runtime on a Tesla V100 GPU among LTF-V1, LTF-V2 and Non-Local
network. The number of feature channels is set to 512

B Visualization

In this section, as shown in Fig. 5 and Fig. 6, we present several visualization results of the base-
line (w/o context block) and the proposed LTF-V2 module for instance-aware tasks and semantic
segmentation, respectively.
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Groudtruth Baseline LTF-V2

Figure 5: Visualization results on COCO 2017 val set. We use different colors to distinguish between
instances that do not represent categories. The results demonstrate the superiority of the LTF-V2
module in terms of both semantics and details
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LTF-V2LTF-V2BaselineBaselineImageImage

Figure 6: Visualization results on Cityscapes val set. The red dotted ellipses indicate the area of the
major difference between the baseline and the LTF-V2 module
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C Additional Ablation Study

Table 7: Comparisons among different positions and different groups on COCO 2017 val set when
using ResNet-50 as our backbone. Enc and Dec denote embedding the blocks in the backbone and
the FPN, respectively

Model Position Groups APbox AP50
box AP75

box APseg AP50
seg AP75

seg #FLOPs #Params

+LTF-V1
Dec 16 39.6 60.0 43.4 35.8 56.9 38.0 +0.45B +0.02M
Enc 1 39.6 59.6 43.1 35.6 56.5 37.9 +0.09B +0.01M
Enc 16 40.0 60.4 43.7 36.1 57.5 38.4 +0.31B +0.06M

+LTF-V2

Dec 16 39.9 60.1 43.6 36.0 57.1 38.4 +1.23B +0.06M
Enc 1 40.2 60.5 44.0 36.3 57.5 38.8 +0.13B +0.01M
Enc 4 40.9 61.3 44.5 36.8 58.4 39.4 +0.24B +0.04M
Enc 8 40.9 61.4 44.3 36.8 58.4 39.2 +0.39B +0.07M
Enc 16 41.2 61.6 45.2 37.0 58.4 39.5 +0.68B +0.14M
Enc 32 41.1 61.6 44.8 37.0 58.7 39.4 +1.28B +0.29M

(a) Affinity maps of LTF-V1 (top) and LTF-V2 (bottom) with different groups

(b) Affinity maps of LTF-V2 for different instances

(c) Affinity maps of LTF-V2 in different stages

Figure 7: Visualization of the affinity maps in specific positions (marked by the red cross in each
image). The responses of different groups, instances, and stages are illustrated in (a), (b), and (c),
respectively. The figure (a) intuitively shows that the diversity of the LTF-V2 module is significantly
higher than that of the LTF-V1 module due to the relaxation of geometric constraints. The figure (b)
reveals that the LTF-V2 module is aware of the structure of instance, even when the instances of the
same category are overlapping. Besides, the heat maps (from left to right) in (c) correspond to stage3,
stage4, and stage5 in the encoder, respectively.
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D Algorithm Proof

In this section, we present the detailed proofs for the claims about the learnable tree filter. Please note
that the symbols follow the definitions in the main paper.
Lemma 1. Given a Markov Random Field on the tree GT , whose unary and pairwise terms are the
Eq. 9 and the Eq. 10 respectively, the marginal probability of latent variable satisfies PGT

(hi = j) =
1
zi
SGT

(Ej,i).
φi(hi, xi) ≡ 1, (9)

ψi,j(hi, hj) :=

{
δ(hi − hj) hi /∈ DescGT

(i, j)
exp(−ωi,j)δ(hi − hj) hi ∈ DescGT

(i, j)
(10)

Proof. To obtain the marginal probability of the Markov Random Field on an acyclic graph, we adopt
the belief propagation algorithm as shown on Eq. 11, where Ni denotes the set of adjacent nodes of
node i in the tree.

PGT
(hi) =

1

zi
φi(hi, xi)

∏
∀j∈Ni

mj,i(hi),

mj,i(hi) =
∑

∀hj∈V

φj(hj , xj)ψj,i(hj , hi)
∏

∀k∈Nj\i

mk,j(hj).
(11)

For hi = i, the marginal probability is

PGT
(hi = i) =

1

zi

∏
∀j∈Ni

mj,i(i)

=
1

zi

∏
∀j∈Ni

(
∑

∀hj∈V

δ(hj − i)
∏

∀k∈Nj\i

mk,j(hj))

=
1

zi

∏
∀j∈Ni

∏
∀k∈Nj\i

mk,j(i)

=
1

zi

∏
∀j∈Ni

∏
∀k∈Nj\i

∏
∀u∈Nk\k

· · · 1

=
1

zi
.

(12)

For hi = u and u 6= i, the marginal probability is

PGT
(hi = u) =

1

zi

∏
∀j∈Ni∩{p|xu∈Desc(i,p)}

mj,i(u)

=
1

zi

∑
∀hj∈V

ψj,i(hj , u)
∏

∀k∈Nj\i

mk,j(hj)

=
1

zi

∑
∀hj∈V

exp(−ωj,i)δ(hj − u)
∏

∀k∈Nj\i

mk,j(hj)

=
1

zi
exp(−ωj,i)

∏
∀k∈Nj\i

mk,j(u)

=
1

zi
exp(−ωj,i)exp(−ωk,j) · · ·

∏
∀v∈Nu\par(u)

mv,u(u)

=
1

zi
exp(−ωj,i)exp(−ωk,j) · · · exp(−ωu,par(u))

=
1

zi

∏
∀(k,m)∈Ej,i

exp(−ωk,m).

(13)
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Therefore, PGT
(hi = j) = 1

zi
SGT

(Ej,i).

Lemma 2. Given a Markov Random Field on the tree GT , whose unary and pairwise terms are
the Eq. 9 and the Eq. 10, respectively. When denoting node i as the root of the tree GT and node
v (distant) as one of the descendants node of node u (nearby), the marginal probability of latent
variable satisfies PGT

(hi = v) ≤ PGT
(hi = u).

Proof. Since the edge distance satisfies ωk,m ≥ 0, the marginal probability of latent variable satisfies

PGT
(hi = v) =

1

zi
SGT

(Ev,i)

=
1

zi
SGT

(Eu,i)SGT
(Ev,u)

= PGT
(hi = u)

∏
∀(k,m)∈Ev,u

exp(−ωk,m)

≤ PGT
(hi = u).

(14)

Lemma 3. Given a Markov Random Field on the tree GT , whose unary and pairwise terms are the
Eq. 15 and the Eq. 10, respectively. When denoting node i as the root of the tree GT and node v
(distant) as one of the descendants of node u (nearby), there exists a specific pair of f(·) and β, such
that the marginal probability of latent variable satisfies PGT

(hi = v) > PGT
(hi = u).

φi(hi, xi) :=

{
f(xi) hi = i

exp(−β) hi 6= i
(15)

Proof. For hi = v, the marginal probability is

PGT
(hi = v) =

1

zi
exp(−β)|Ev,i|f(xv)SGT

(Ev,i)

=
1

zi
exp(−β)|Eu,i|SGT

(Eu,i)f(xv)exp(−β)|Ev,u|SGT
(Ev,u)

= PGT
(hi = u)

f(xv)

f(xu)

∏
∀(k,m)∈Ev,u

exp(−ωk,m − β).

(16)

When f(xv)
f(xu)

∏
∀(k,m)∈Ev,u

exp(−ωk,m − β) > 1, the marginal probability of latent variable satisfies
PGT

(hi = v) > PGT
(hi = u).
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