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Overview

We provide additional analytical and experimental results to support the content presented in the
main manuscript. Section 1 of this document presents a detailed discussion on the Rumi-LSGAN. In
Section 2, we impose the Rumi formulation on f -GANs [1], and in Section 3, we generalize it to
include integral probability metric (IPM) based GANs such as the Wasserstein GAN (WGAN) [2]. In
Section 4, we compare the performance of Rumi-SGAN, Rumi-LSGAN, and Rumi-WGAN on the
MNIST dataset. Finally, in Section 5, we provide additional results and comparisons on CelebA and
CIFAR-10 datasets.

1 Rumi-LSGAN

Recall the Rumi-LSGAN formulation:

LLSD = β+ Ex∼p+d

[(
D(x)− b+

)2]
+ β− Ex∼p−d

[(
D(x)− b−

)2]
+ Ex∼pg

[
(D(x)− a)

2
]
,

LLSG = β+ Ex∼p+d

[
(D∗(x)− c)2

]
+ β− Ex∼p−d

[
(D∗(x)− c)2

]
+ Ex∼pg

[
(D∗(x)− c)2

]
,

where LLSG must be subjected to the integral and non-negativity constraints

Ωpg :

∫
X⊆Rn

pg(x) dx = 1, and Φpg : pg(x) ≥ 0, ∀ x,

respectively. Incorporating the constraints using a Lagrangian formulation and expressing the
expectations as integrals results in

LLSD =

∫
X

(
β+
(
D(x)− b+

)2
p+d + β−

(
D(x)− b−

)2
p−d + (D(x)− a)

2
pg

)
dx, and (1)

LLSG =

∫
X

(
(D∗(x)− c)2 (β+p+d + β−p−d + pg) + λppg + µp(x)pg

)
dx− λp , (2)

where λp and µp(x) are the Karush-Kuhn-Tucker (KKT) multipliers. The cost functions in Equa-
tions (1) and (2) have to be optimized with respect to the discriminator D and the generator
pg, respectively. Since it is a functional optimization problem, we have to invoke the Calcu-
lus of Variations. If the integrand is continuously differentiable everywhere over the support
X = Supp(p+d ) ∪ Supp(p−d ) ∪ Supp(pg) ⊆ Rn, then the optimization of the integral cost car-
ries over point-wise to the integrand. The optimal discriminator turns out to be

D∗(x) =
b+β+p+d + b−β−p−d + apg

β+p+d + β−p−d + pg
.
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The optimal generator turns out to be the solution to a quadratic equation with roots

p∗g = β+

(
±(a− b+)√

(a− c)2 + λp + µp
− 1

)
p+d + β−

(
±(a− b−)√

(a− c)2 + λp + µp
− 1

)
p−d . (3)

The positive root is the minimizer of the cost. The optimal KKT multiplier µ∗p(x) is the one that
satisfies the complementary slackness condition µ∗pp

∗
g = 0, ∀ x ∈ X , and the feasibility criterion

µ∗p(x) ≤ 0, ∀x ∈ X . Since p∗g is a weighted mixture of p+d and p−d , the support of the solution could
be split into three regions corresponding to: (i) p+d > 0 and p−d > 0; (ii) p+d > 0 and p−d = 0; and
(iii) p+d = 0 and p−d > 0. Enforcing the complementary slackness condition in each region, with

suitable assumptions on the class labels and weights such as a ≤ b+ + b−

2
and β+ > 0, β− > 0,

yields µ∗p(x) = 0, ∀x ∈ X , as the only feasible solution with a consistent value for λ∗p over all three
regions constituting the support. Enforcing the integral constraint Ωpg and solving for λ∗p gives

λ∗p =

(
β+(a− b+) + β−(a− b−)

1 + β+ + β−

)2

− (a− c)2.

Substituting for µ∗p and λ∗p in (3) yields the optimal generator:

p∗g(x) = β+η+p+d (x) + β−η−p−d (x),

where

η+ =

(
(1 + β−)(a− b+)− β−(a− b−)

β+(a− b+) + β−(a− b−)

)
,

and

η− =

(
(1 + β+)(a− b−)− β+(a− b+)

β+(a− b+) + β−(a− b−)

)
.

The solutions for µ∗p and λ∗p are also intuitively satisfying as the optimal generator obtained under
these conditions automatically satisfies the non-negativity constraint. With this choice of the class
labels and weights, the solution obtained by applying only the integral constraint Ωpg automatically
satisfies the non-negativity constraint.

As a special case, observe that setting β+ =
a− b−

b− − b+
results in η− = 0. Subsequently, any choice

of a, b+, b−, and β− such that β+η+ = 1 gives p∗g = p+d . Similarly, setting β− =
a− b+

b+ − b−
and

β−η− = 1 yields p∗g = p−d . Lastly, when a =
b+ + b−

2
, we have

p∗g =

(
β+(1− 2β−)

β+ + β−

)
p+d +

(
β−(1 + 2β+)

β+ + β−

)
p−d ,

which is a mixture of p+d and p−d .

2 The Rumi-f -GANs

The Rumi formulation is extendable to all the f -GAN variants presented by Nowozin et al. [1].
Consider a GAN that minimizes the generalized divergence metric

Df (pg, pd) =

∫
X
pd(x)f

(
pg(x)

pd(x)

)
dx,

which was shown to be equivalent to minimizing the loss functions [1]:

LfD = −Ex∼pd [T (x)] + Ex∼pg [f c(T (x))], and

LfG = Ex∼pd [T (x)]− Ex∼pg [f c(T (x))],

with respect to D(x) and pg, respectively, where f c is the Fenchel conjugate of the divergence f ,
and T (x) = g(D(x)) with g explicitly representing the activation function employed at the output
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of the discriminator network. The Rumi-f -GAN minimizes D+
f = Df (pg, p

+
d ), while maximizing

D−f = Df (pg, p
−
d ), weighted by γ+ and γ−, respectively, which is given as

LRfD = −γ+Ex∼p+d
[T (x)] + γ−Ex∼p−d

[T (x)] + Ex∼pg [f c(T (x))], and (4)

LRfG = γ+Ex∼p+d
[T (x)]− γ−Ex∼p−d

[T (x)]− Ex∼pg [f c(T (x))], (5)

where γ+ − γ− = 1, and LRfG is subjected to the integral and non-negativity constraints Ωpg and
Φpg , respectively. As shown in Section 1, we enforce only Ωpg , showing that the optimal solution
satisfies Φpg without having to enforce it explicitly.
Lemma 2.1. The optimal Rumi-f -GAN: Consider the f -GAN optimization problem defined through
Equations (4) and (5). Assume that the weights satisfy γ+ − γ− = 1. The optimal discriminator and
generator are the solutions to

∂fc

∂T
=
γ+p+d − γ−p

−
d

pg
, and (6)

f c(T ∗) = λp, (7)

respectively, where T ∗ = g(D∗).

Proof: The integral Rumi-f -GAN costs can be optimized as in the case of Rumi-LSGAN. Optimiza-
tion of the integrand in Equation (4) yields the necessary condition that the optimal discriminator
D∗(x) must satisfy, which gives us Equation (6). Differentiating the integrand in (5), we get(

(γ+p+d − γ
−p−d )− pg

∂fc

∂T ∗

)
∂T ∗

∂pg
− f c(T ∗) + λp = 0.

Enforcing the condition given in (6) yields the necessary condition that p∗g must satisfy. �

Table 1 shows the optimal discriminator and generator functions obtained in the case of each of the
f -GAN variants presented by Nowozin et al. [1]. We observe that all f -GANs learn a weighted
mixture of p+d and p−d , akin to the Rumi-SGAN presented in the main manuscript. The weights are
a function of γ+, γ−, and λp. The optimal λ∗p in each case can be found by enforcing the integral
constraint Ωpg . Also observe that the Rumi-Pearson-χ2 GAN in Table 1 is a special case of the
Rumi-LSGAN, where a− c = 1, (a− b+) =

√
λp + 1 + 1 and (a− b−) =

√
λp + 1− 1.

Finally, we note that setting γ+ ∈ [0, 1] in addition to γ+−γ− = 1 result in solutions for all f -GANs
that automatically satisfy the non-negativity constraint.

Table 1: Rumi formulation of f -GANs: The optimal Rumi discriminator D∗ and generator p∗g for a
given f -GAN defined through its activation function g and Fenchel conjugate f c of the divergence
metric. T = g(D).

f -divergence g(D) f c(T ) D∗(x) p∗g(x)

Kullback-
Leibler (KL)

D eT−1 1 + log
(
γ+p+d −γ

−p−d
pg

)
γ+

log(λp)
p+d −

γ−

log(λp)
p−d

Reverse KL −e−D −1−log(−T ) log
(
γ+p+d −γ

−p−d
pg

)
γ+

eλp+1 p
+
d −

γ−

eλp+1 p
−
d

Pearson-χ2 D 1
4T

2 + T 2
(
γ+p+d −γ

−p−d −pg
pg

)
γ+√
λp+1

p+d −
γ−√
λp+1

p−d

Squared-
Hellinger

1− e−D T
1−T

1
2 log

(
γ+p+d −γ

−p−d
pg

)
γ+

(λp+1)2 p
+
d −

γ−

(λp+1)2 p
−
d

SGAN − log(1−e−D) − log(1−eT ) log
(
γ−p−d −γ

+p+d
pg

)
γ+λp
1−λp p

+
d −

γ−λp
1−λp p

−
d
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3 Rumi-WGAN

All integral probability metric (IPM) based GANs [2–4] can be reformulated under the Rumi
framework. As an example, we consider the Rumi flavor of the Wasserstein GAN (Rumi-WGAN).
The Rumi-WGAN minimizes the earth-mover distance (EMD) between p+d and pg , while maximizing
the EMD between p−d and pg. Both these terms can be independently brought to the Kantarovich-
Rubinstein dual-form as in WGANs [2]:

D∗ = arg max
D,‖D‖L≤1

(
γ+
(
Ex∼p+d

[D(x)]− Ex∼pg [D(x)]
)

+ γ−
(
Ex∼p−d

[D(x)]− Ex∼pg [D(x)]
))

,

p∗g = arg min
pg

(
γ+
(
Ex∼p+d

[D(x)]− Ex∼pg [D(x)]
)
− γ−

(
Ex∼p−d

[D(x)]− Ex∼pg [D(x)]
))

,

which directly result in the Rumi-WGAN costs:

LWD = −γ+
(
Ex∼p+d

[D(x)]− Ex∼pg [D(x)]
)
− γ−

(
Ex∼p−d

[D(x)]− Ex∼pg [D(x)]
)
, and

LWG = γ+
(
Ex∼p+d

[D∗(x)]− Ex∼pg [D∗(x)]
)
− γ−

(
Ex∼p−d

[D∗(x)]− Ex∼pg [D∗(x)]
)
,

with the constraint that D(x) is Lipschitz-1. Similar to WGAN-GP [5], we enforce the Lipschitz
constraint through the gradient penalty: (‖∇xD(x)‖2 − 1)2, which is evaluated in practice by a sum
over points interpolated between p+d and pg , and p−d and pg:

ΩGP :
∑
x̂

(‖∇x̂D(x̂)‖2 − 1)2 +
∑
x̃

(‖∇x̃D(x̃)‖2 − 1)2,

where x̂ = (1− ξ)xg + ξx+ and x̃ = (1− ζ)xg + ζx− such that xg ∼ pg,x
+ ∼ p+d , x− ∼ p−d ,

and ξ, ζ are uniformly distributed over [0, 1].

4 Comparison of Rumi-GAN Variants

In this section, we compare the performance of Rumi-SGAN, Rumi-LSGAN, and Rumi-WGAN-GP
with their baseline variants on the MNIST dataset. We consider the following test scenarios:

1. Even digits as the positive class;
2. Overlapping positive and negative classes as described in the main manuscript (Section 4.2);
3. One vs. rest learning where the positive class comprises all samples from the digit class 5,

with the rest of the digit classes representing the negative class data.

Scenario 3 above simulates an important variant of learning from unbalanced data.

Experimental Setup: The network architectures and hyper-parameters are as described in the main
manuscript (Section 4). For Rumi-SGANs, we set α+ = 0.8 and α− = −0.2. Rumi-LSGAN uses
class labels (a, b−, c, b+) = (0, 0.5, 1, 2) with weights β+ = 1 and β− = 0.5. For Rumi-WGAN-GP,
we use γ+ = 5 and γ− = 1.

Results: Figures 1, 2, and 3 show the samples generated by the various GANs under consideration.
From Figure 1, we observe that the Rumi formulation always results in an improvement in the visual
quality of the images generated. In the case of SGAN, the baseline approach experienced mode
collapse (Fig. 1(a)), while its Rumi counterpart (Fig. 1(b)) learnt the target distribution accurately.
Observe that the Rumi-SGAN and Rumi-WGAN variants learn to generate a few random samples
from the negative class as well — this validates our claim that these variants always learn a mixture
of the positive and negative class densities. Similar improvements in the visual quality of images are
also seen in Scenario 2, which considers overlapping classes (Fig. 2), or Scenario 3, which considers
one vs. the rest learning (Fig. 3).

The Fréchet inception distance (FID) plots and precision-recall (PR) curves in Figure 4 quantitatively
validate our findings. The Rumi variants achieve a higher precision and recall, and saturate to better
FID values than their respective baselines. Also, Rumi-SGAN and Rumi-LSGAN show equivalent
performance. As training the LSGAN is relatively more stable than training the SGAN, we prefer the
Rumi-LSGAN to Rumi-SGAN when considering complex datasets such as CelebA.
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Baseline Rumi counterpart

(a) SGAN (b) Rumi-SGAN

(c) LSGAN (d) Rumi-LSGAN

(e) WGAN (f) Rumi-WGAN

Figure 1: ( Color Online) Illustrating the strength of the Rumi framework. Scenario 1: Training
GANs to generate even digits from the MNIST dataset. The Rumi counterparts learn qualitatively
better images than the corresponding baselines. The SGAN seems to have mode-collapsed unlike its
Rumi counterpart.

Baseline Rumi counterpart

(a) SGAN (b) Rumi-SGAN

(c) LSGAN (d) Rumi-LSGAN

(e) WGAN (f) Rumi-WGAN

Figure 2: ( Color Online) Scenario 2: Training GANs on overlapping MNIST classes. The Rumi
counterparts generate visually better images than the baselines. The mode-collapse effect is prominent
in the baselines unlike the Rumi counterparts.
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Baseline Rumi counterpart

(a) SGAN (b) Rumi-SGAN

(c) LSGAN (d) Rumi-LSGAN

(e) WGAN (f) Rumi-WGAN

Figure 3: ( Color Online) Scenario 3: Training GANs to learn the digit class 5. The Rumi variants
generate sharper images compared with the corresponding baselines.

Even MNIST Overlapping MNIST Single digit MNIST
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Figure 4: ( Color Online) Comparison of FID vs. iterations and PR curves for various GANs
trained on the MNIST dataset with positive class data being: (a) & (b) Even numbers; (c) & (d)
Overlapping subsets; and (e) & (f) Single digit class 5. Rumi variants possess better precision and
recall characteristics, and also achieve better FID values than the baseline models.
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5 Validation on CIFAR-10 and CelebA Datasets

We now present additional experimental results on CIFAR-10 and CelebA datasets. The experimental
setup is identical to that explained in the main manuscript (Sections 4 and 5). All the models are
trained for 105 iterations. CelebA images are rescaled to 32× 32× 3 unless stated otherwise.

Experimental Setup: On the CIFAR-10 dataset, we consider the case of learning disjoint positive and
negative classes. The animal classes are labelled as positive, and the vehicle classes as negative. This
is a scenario where the negative class samples have very little resemblance to those in the positive
class. In the main manuscript, for CelebA, we presented results of learning the class of female
celebrities as the positive class while setting the males to be the negative class. Here, we consider the
converse situation — positive class of male celebrities and the negative class of female celebrities.
We also present additional experimental results on learning minority classes in CelebA. Splitting
the data based on the bald or the hat class label of CelebA gives about 5,000 positive samples and
195,000 negative class samples in each case.

Results: Figure 5 presents the samples generated by SGAN, LSGAN, and their Rumi counterparts,
alongside those generated by sampling an ACGAN trained purely on the animal classes of CIFAR-10.
We observe that the Rumi-SGAN and Rumi-LSGAN generate images of superior visual quality. The
Rumi variants also have better FID and PR performance than the baselines (Figures 8(a) & (b)).
From Figure 5(b), we observe that, in the context of Rumi-SGAN, no visually discernible features
from the negative class of vehicles are present. This shows that although, in principle, the optimal
Rumi-SGAN learns a mixture of the positive and negative classes, in practice, on real-world image
datasets such as CIFAR-10, the influence of the negative class in the mixture is negligible.

The images generated by LSGAN, Rumi-LSGAN and ACGAN on CelebA are given in Figure 6.
Rumi-LSGAN generates visually better images than the baseline LSGAN and ACGAN in all the three
cases considered. In the case on unbalanced data, the ACGAN latches on to the more-represented
negative class. whereas Rumi-LSGAN is able to generate images exclusively from the target positive
class. The FID and PR curves are presented in Figures 8(c)-(f). In the case of unbalanced data,
although ACGAN has a comparable PR score as that of Rumi-LSGAN, a majority of the samples
generated correspond to the undesired (negative) class — the positive/negative class label is something
that the embeddings used to evaluate the PR measure are oblivious to. We attribute the relatively
poorer PR performance of all models on the CelebA Bald dataset to insufficient reference positive
class samples, resulting in poorer estimates of the model statistics.

Finally, we show results on high-resolution CelebA images (128× 128× 3). We train Rumi-LSGAN
on both the simulated unbalanced class data (Females/Males classes with 5% positive samples and
the other class negative) and true unbalanced classes (Bald and Hat classes). From the results shown
in Figure 7, we observe that Rumi-LSGAN generalizes well to the high-resolution scenario as well,
generating a diverse set of images from the desired positive class in all cases.

Source Code

The TensorFlow source code and models for all the experiments reported in this paper are available at
the following GitHub Repository: https://github.com/DarthSid95/RumiGANs.git.
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Figure 7: ( Color Online) High-resolution CelebA images generated by Rumi-LSGAN.
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CIFAR-10 - Animals CelebA - Males CelebA - Bald
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Figure 8: ( Color Online) Comparison of FID vs. iterations and PR curves of various GANs when
the training is carried out on: (a) & (b) CIFAR-10 animal classes; (c) & (d) CelebA male class; and
(e) & (f) CelebA bald class. Rumi-LSGAN outperforms the baselines in terms of FID and PR values.
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