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Abstract

We begin with the hypothesis that a model-free agent whose representations are
predictive of properties of future states (beyond expected rewards) will be more
capable of solving and adapting to new RL problems. To test that hypothesis,
we introduce an objective based on Deep InfoMax (DIM) which trains the agent
to predict the future by maximizing the mutual information between its internal
representation of successive timesteps. We test our approach in several synthetic
settings, where it successfully learns representations that are predictive of the future.
Finally, we augment C51, a strong RL baseline, with our temporal DIM objective
and demonstrate improved performance on a continual learning task and on the
recently introduced Procgen environment.

1 Introduction

In reinforcement learning (RL), model-based agents are characterized by their ability to predict
future states and rewards based on past states and actions [Sutton and Barto, 1998, Ha and Schmid-
huber, 2018, Hafner et al., 2019a]. Model-based methods can be seen through the representation

learning [Goodfellow et al., 2017] lens as endowing the agent with internal representations that are
predictive of the future conditioned on its actions. This ultimately gives the agent means to plan – by
e.g. considering a distribution of possible future trajectories and picking the best course of action.

In contrast, model-free methods do not explicitly model the environment, and instead learn a policy
that maximizes reward or a function that estimates the optimal values of states and actions [Mnih
et al., 2015, Schulman et al., 2017, Pong et al., 2018]. They can use large amounts of training data
and excel in high-dimensional state and action spaces. However, this is mostly true for fixed reward
functions; despite success on many benchmarks, model-free agents typically generalize poorly when
the environment or reward function changes [Farebrother et al., 2018, Tachet des Combes et al., 2018]
and can have high sample complexity.

Viewing model-based agents from a representation learning perspective, a desired outcome is an agent
that understands the underlying generative factors of the environment that determine the observed
state/action sequences, leading to generalization to other environments built from the same generative
factors. In addition, learning a predictive model affords a richer learning signal than those provided
by reward alone, which could reduce sample complexity compared to model-free methods.

Our work is based on the hypothesis that a model-free agent whose representations are predictive of
properties of future states (beyond expected rewards) will be more capable of solving and adapting to
new RL problems and, in a way, incorporate aspects of model-based learning. To learn representations
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with model-like properties, we consider a self-supervised objective derived from variants of Deep
InfoMax [DIM, Hjelm et al., 2018, Bachman et al., 2019, Anand et al., 2019]. We expect this type
of contrastive estimation [Hyvarinen and Morioka, 2016] will give the agent a better understanding
of the underlying factors of the environment and how they relate to its actions, eventually leading
to better performance in transfer and lifelong learning problems. We examine the properties of the
learnt representations in simple domains such as disjoint and glued Markov chains, and more complex
environments such as a 2d Ising model, a sequential variant of Ms. PacMan from the Atari Learning
Environment [ALE, Bellemare et al., 2013], and all 16 games from the Procgen suite [Cobbe et al.,
2019]. Our contributions are as follows:

• We propose a simple auxiliary objective that maximizes concordance between representa-
tions of successive states, given the action. We also introduce a simple adaptive mechanism
that adjusts the time-scales of the contrastive tasks based on the likelihood of subsequent
actions under the current RL policy.

• We present a series of experiments showing how our objective can be used as a measure of
similarity and predictability, and how it behaves in partially deterministic systems.

• Finally, we show that augmenting a standard RL agent with our contrastive objective can i)
lead to faster adaptation in a continual learning setting, and ii) improve overall performance
on the Procgen suite.

2 Background

Just as humans are able to retain old skills when taught new ones [Wixted, 2004], we strive for RL
agents that are able to adapt quickly and reuse knowledge when presented a sequence of different tasks
with variable reward functions. The reason for this is that real-world applications or downstream tasks
can be difficult to anticipate before deployment, particularly with complex environments involving
other intelligent agents such as humans. Unfortunately, this proves to be very challenging even for
state-of-the-art systems [Atkinson et al., 2018], leading to complex deployment scenarios.

Continual Learning (CL) is a learning framework meant to benchmark an agent’s ability to adapt to
new tasks by using auxiliary information about the relatedness across tasks and timescales [Kaplanis
et al., 2018, Mankowitz et al., 2018, Doan et al., 2020]. Meta-learning [Thrun and Pratt, 1998, Finn
et al., 2017] and multi-task learning [Hessel et al., 2019, D’Eramo et al., 2019] have shown good
performance in CL by explicitly training the agent to transfer well between tasks.

In this study, we focus on the following inductive bias: while the reward function may change or vary,
the underlying environment dynamics typically do not change as much2. To test if that inductive
bias is useful, we use auxiliary loss functions to encourage the agent to learn about the underlying
generative factors and their associated dynamics in the environment, which can result in better sample
efficiency and transfer capabilities (compared to learning from rewards only). Previous work has
shown this idea to be useful when training RL agents: e.g., Jaderberg et al. [2016] train the agent to
predict future states given the current state-action pair, while Mohamed and Rezende [2015] uses
empowerment to measure concordance between a sequence of future actions and the end state. Recent
work such as DeepMDP [Gelada et al., 2019] uses a latent variable model to represent transition and
reward functions in a high-dimensional abstract space. In model-based RL, various agents, such as
PlaNet [Hafner et al., 2019b], Dreamer [Hafner et al., 2019a], or MuZero [Schrittwieser et al., 2019],
have also shown strong asymptotic performance.

Contrastive representation learning methods are based on training an encoder to capture information
that is shared across different views of the data in the features it produces for each input. The similar
(i.e. positive) examples are typically either taken from different “locations” of the data [e.g., spatial
patches or temporal locations, see Hjelm et al., 2018, Oord et al., 2018, Anand et al., 2019, Hénaff
et al., 2019] or obtained through data augmentation [Wu et al., 2018, He et al., 2019, Bachman et al.,
2019, Tian et al., 2019, Chen et al., 2020]. Contrastive models rely on a variety of objectives to
encourage similarity between features. Typically, a scoring function [e.g., dot product or cosine
similarity between pairs of features, see Wu et al., 2018] that lower-bounds mutual information is
maximized [Belghazi et al., 2018, Hjelm et al., 2018, Oord et al., 2018, Poole et al., 2019].

2This is not true in all generalization settings. Generalization still has a variety of specifications within RL.
In our work, we focus on the setting where the rewards change more rapidly than the environment dynamics.
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A number of works have applied the above ideas to RL settings. Contrastive Predictive Coding [CPC,
Oord et al., 2018] augments an A2C agent with an autoregressive contrastive task across a sequence
of frames, improving performance on 5 DeepMind lab games [Beattie et al., 2016]. EMI [Kim
et al., 2019] uses a Jensen-Shannon divergence-based lower bound on mutual information across
subsequent frames as an exploration bonus. CURL [Srinivas et al., 2020] uses a contrastive task using
augmented versions of the same frame (does not use future frames) as an auxiliary task to an RL
algorithm. Finally, HOMER [Misra et al., 2019] produces a policy cover for block MDPs by learning
backward and forward state abstractions using contrastive learning objectives. It is worth noting that
HOMER has statistical guarantees for its performance on certain hard exploration problems.

Our work, DRIML, predicts future states conditioned on the current state-action pair at multiple scales,
drawing upon ideas encapsulated in Augmented Multiscale Deep InfoMax [AMDIM, Bachman et al.,
2019] and Spatio-Temporal DIM [ST-DIM, Anand et al., 2019]. Our method is flexible w.r.t. these
tasks: we can employ the DIM tasks over features that constitute the full frame (global) or that are
specific to local patches (local) or both. It is also robust w.r.t. time-scales of the contrastive tasks,
though we show that adapting this time scale according to the predictability of subsequent actions
under the current RL policy improves performance substantially.

3 Preliminaries

We assume the usual Markov Decision Process (MDP) setting (see Appendix for details), with the
MDP denoted as M, states as s, actions as a, and the policy as ⇡. Since we focus on exploring the
role of auxiliary losses in continuous learning, we use C51 [Bellemare et al., 2017], which extends
DQN [Mnih et al., 2015] to predict the full distribution of potential future rewards, for training the
agent due to its strong performance on control tasks from pixels. C51 minimizes the following loss:

LRL = DKL(bT Z(s, a)c51||Z(s, a)), (1)

where DKL is the Kullback-Leibler divergence, Z(s, a) is the distribution of future discounted returns
under the current policy (E[Z(s, a)] = Q(s, a)), T is the distributional Bellman operator [Bellemare
et al., 2019] and b·c51 is an operator which projects Z onto a fixed support of 51.

3.1 State-action mutual information maximization

Mutual information (MI) measures the amount of information shared between a pair of random
variables and can be estimated using neural networks [Belghazi et al., 2018]. Recent representation
learning algorithms [Oord et al., 2018, Hjelm et al., 2018, Tian et al., 2019, He et al., 2019] train
encoders to maximize the MI between features taken from different views of the input – e.g., different
patches in an image, different timesteps in a sequence, or different versions of an image produced by
applying data augmentation to it.

Let k be some fixed temporal offset. Running a policy ⇡ in the MDP M generates a distribution
over tuples (st, at, st+k), where st corresponds to the state of M at some timestep t, at to the action
selected by ⇡ in state st and st+k to the state of M at timestep t+ k, reached by following ⇡. St, At

and St+k stand for the corresponding random variables. We also denote the joint distribution of these
variables, as well as their associated marginals, using p. We are interested in learning representations
of state-action pairs that have high MI with the representation of states later in the trajectory. The MI
between e.g. state-action pairs (St, At) and their future states St+k is defined as follows:

I([St, At], St+k;⇡) = Ep⇡(st,at,st+k)


log

p⇡(st, at, st+k)

p⇡(st, at)p⇡(st+k)

�
, (2)

where p⇡ denotes distributions under ⇡. Estimating the MI can be done by training a classifier that
discriminates between a sample drawn from the joint distribution – the numerator of Eq. 2 – and a
sample from the product of marginals – its denominator. A sample from the product of marginals
is usually obtained by replacing st+k (positive sample) with a state picked at random from another
trajectory (negative sample). Letting S

� denote a set of such negative samples, the infoNCE loss
function [Gutmann and Hyvärinen, 2010, Oord et al., 2018] that we use to maximize a lower bound
on the MI in Eq. 2 (with the added encoders for the states and actions) takes the following form:

LNCE := �Ep⇡(st,at,st+k)ES�


log

exp(�( (st, at),�(st+k)))P
s02S�[{st+k} exp(�( (st, at),�(s

0)))

�
, (3)
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where  (s, a),�(s) are features that depend on state-action pairs and states, respectively, and � is a
function that outputs a scalar-valued score. Minimizing LNCE with respect to �, , and � maximizes
the MI between these features. In practice, we construct S� by including all states s̃t+k from other
tuples (s̃t, ãt, s̃t+k) in the same minibatch as the relevant (st, at, st+k). I.e., for a batch containing
N tuples (st, at, st+k), each S

� would contain N � 1 negative samples.

4 Architecture and Algorithm

We now specify forms for the functions �, , and �. We consider a deep neural network ⇥ : S !Q5
i=1 Fi which maps input states onto a sequence of progressively more “global” (or less “local”)

feature spaces. In practice,⇥ is a CNN composed of functions that sequentially map inputs to features
{fi 2 Fi}1i5 (lower to upper “levels” of the network). For ease of explanation, we formulate our
model using specific features (e.g., local features f3 and global features f4), but our model covers
any set of features extracted from ⇥ used for the objective below as well as other choices for ⇥.

The features f5 are the output of the network’s last layer and correspond to the standard C51 value
heads (i.e., they span a space of 51 atoms per action) 3. For the auxiliary objective, we follow a variant
of Deep InfoMax [DIM, Hjelm et al., 2018, Anand et al., 2019, Bachman et al., 2019], and train
the encoder to maximize the mutual information (MI) between local and global “views” of tuples
(st, at, st+k). The local and global views are realized by selecting f3 2 F3 and f4 2 F4 respectively.
In order to simultaneously estimate and maximize the MI, we embed the action (represented as a one-
hot vector) using a function  a : A! Ã. We then map the local states f3 and the embedded action
using a function 3 : F3⇥ Ã! L, and do the same with the global states f4, i.e., 4 : F4⇥ Ã! G.
In addition, we have two more functions, �3 : F3 ! L and �4 : F4 ! G that map features without
the actions, which will be applied to features from “future” timesteps. Note that L can be thought of
as a product of local spaces (corresponding to different patches in the input, or equivalently different
receptive fields), each with the same dimensionality as G.

We use the outputs of these functions to produce a scalar-valued score between any combination of
local and global representations of state st and st+k, conditioned on action at:

�NtM (st, a, st+k) :=  N (fN (st), a(at))
>�M (fM (st+k)), M,N 2 {3, 4}. (4)

In practice, for the functions that take features and actions as input, we simply concatenate the values
at position f3 (local) or f4 (global) with the embedded action  a(a), and feed the resulting tensor
into the appropriate function  3 or  4. All functions that process global and local features are
computed using 1⇥ 1 convolutions. See Figure 4 for a visual representation of our model.

We use the scores from Eq. 4 when computing the infoNCE loss [Oord et al., 2018] for our objective,
using (st, at, st+k) tuples sampled from trajectories stored in an experience replay buffer:

LNtM

DIM
:= �Ep⇡(st,at,st+k)ES�


log

exp(�NtM (st, at, st+k))P
s02S�[{st+k} exp(�NtM (st, at, s0))

�
. (5)

Combining Eq. 5 with the RL update in Eq. 1 yields our full training objective, which we call
DRIML 4. We optimize ⇥, 3,4,a, and �3,4 jointly using a single loss function:

LDRIML = LRL +
X

M,N2{3,4}

�NtMLNtM

DIM
(6)

3⇥ can equivalently be seen as the network used in a standard C51.
4Deep Reinforcement and InfoMax Learning
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Note that, in practice, the compute cost which Eq. 6 adds to the core RL algorithm is minimal, since
it only requires additional passes through the (small) state/action embedding functions followed by
an outer product.

Algorithm 1: Deep Reinforcement and InfoMax Learning (DRIML)
Input :Batch B sampled from the replay buffer, {�NtM}N,M2{3,4}, strictly positive integer k
Update ⇥ using Eq. 1;
s, a, s

0
, x B[st],B[at],B[st+k],B[st0 6=t+k];

for N in {3,4} do
for M in {3,4} do

if �NtM > 0 then
Compute LNtM

DIM
using Eq. 5 (see Appendix 8.5 for PyTorch code);

Update ⇥, 3,4,a, and �3,4 using gradients of �NtMLNtM

DIM
;

end
end

end

Figure 1: (a) Example model architecture used for the encoder used for the RL and DIM objectives
and (b) distribution of reference, positive and negative samples within training batch B. Note that in
our experiments, we either use only the local head, only the global head, or both.

The proposed Algorithm 1 introduces an auxiliary loss which improves predictive capabilities of
value-based agents by boosting similarity of representations close in time.

5 Finding the Best Task Timescale

The above DRIML algorithm fixes the temporal offset for the contrastive task, k, which needs to be
chosen a-priori. However, different games are based on MDPs whose dynamics operate at different
timescales, which in turn means that the difficulty of predictive tasks across different games will
vary at different scales. We could predict simultaneously at multiple timescales [as in Oord et al.,
2018], yet this introduces additional complexity that could be overcome by simply finding the right

timescale. In order to ensure our auxiliary loss learns useful insights about the underlying MDP, as
well as make DRIML more generally useful across environments, we adapt the temporal offset k
automatically based on the distribution of the agent’s actions.

We propose to select an adaptive, game-specific look-ahead value k, by learning a function q⇡(ai, aj)
which measures the log-odds of taking action aj after taking action ai when following policy ⇡ in the
environment (i.e. p⇡(At+1 = aj |At = ai)/p⇡(At+1 = aj)). The values q⇡(ai, aj) are then used to
sample a look-ahead value k 2 {1, .., H} from a non-homogeneous geometric (NHG) distribution.
This particular choice of distribution was motivated by two desirable properties of NHG: (a) any
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discrete positive random variable can be represented via NHG [Mandelbaum et al., 2007] and (b) the
expectation of X ⇠ NHG(q1, .., qH) obeys the rule 1/maxi qi  E[X]  1/mini qi. The intuition
is that, if the state dynamics are regular, this should be reflected in the predictability of the future
actions conditioned on prior actions. Our algorithm captures this through a matrix A, whose i-th row
is the softmax of q⇡(ai, ·). q⇡(ai, aj) is learned off-policy using the same data from the buffer as the
main algorithm; it is updated at the same frequency as the main DRIML parameters and trained to
approximate the relevant log odds. This modification is small in relation to the DRIML algorithm,
but it substantially improves results in our experiments. The sampling of k is done via Algorithm 2,
and additional analysis of the adaptive temporal offset is provided in Figure 2.

Algorithm 2: Adaptive lookahead selection
Input :Tuple (st, at, at+1, ..., at+H), maximal horizon H , stochastic matrix A of size A⇥A
Output :Lookahead value k : 1  k  H

for i in 1, ..., H do
k  i; // Updating value of k
b ⇠ Bernoulli(Aat+i�1,at+i);
if b == 0 then

break;
end

end

Figure 2 shows the impact of adaptively selecting k using the NHG sampling method. For instance,
(i) depending on the nature of the game, DRIML-ada tends to repeat movement actions in navigation
games and repeatedly fire in shooting games, and (ii) the value of k tends to converge to 1 for
games like Bigfish and Plunder as training progresses, which hints to an exploration-exploitation like
trade-off.

Since many Procgen games do not have special actions such as fire or diagonal moves, DRIML-ada
considers the actual actions (15 of them) and the visible actions (at most 15 of them) together in the
adaptive lookahead selection algorithm.

Figure 2: (a) Average number of movement, no-op and special actions taken by DRIML-ada on 4
Procgen games and (b) change in the average, max and min across batch values of k as a function of
training steps.
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6 Experiments

In this section, we first show how our proposed objective can be used to estimate state similarity
in single Markov chains. We then show that DRIML can capture dynamics in locally deterministic
systems (Ising model), which is useful in domains with partially deterministic transitions. We then
provide results on a continual version of the Ms. PacMan game where the DIM loss is shown to
converge faster for more deterministic tasks, and to help in a continual learning setting. Finally, we
provide results on Procgen [Cobbe et al., 2019], which show that DRIML performs well when trained
on 500 levels with fixed order. All experimental details can be found in Appendix 8.6.

6.1 DRIML learns a transition ratio model

We first study the behaviour of DRIML’s loss on a simple Markov chain describing a biased random
walk in {1, · · · ,K}. The bias is specified by a single parameter ↵. The agent starting at state i

transitions to i + 1 with probability ↵ and to i � 1 otherwise. The agent stays in states 1 and K

with probability 1 � ↵ and ↵, respectively. We encode the current and next states (represented as
one-hots) using a 1-hidden layer MLP5 (corresponding to  and � in equation 3), and then optimize
the NCE loss LDIM (the scoring function � is also 1-hidden layer MLP, equation 3) to maximize the
MI between representations of successive states. Results are shown in Fig. 3b, they are well aligned
with the true transition matrix (Fig. 3c).

This toy experiment revealed an interesting observation: DRIML’s objective involves comput-
ing the ratio of the Markov transition operator over the stationary distribution, implying that
the convergence rate is affected by the spectral gap of the average Markov transition operator,
T⇡

ss0 = Ea⇠⇡(s,·)[T (s, a, s
0)] for transition operator T . That is, it depends on the difference between

the two largest eigenvalues of T⇡ , namely 1 and �(2). In the case of the random walk, the spectral gap
of its transition matrix can be computed in closed-form as a function of ↵. Its lowest value is reached
in the neighbourhood ↵ = 0.5, corresponding to the point where the system is least predictable (as
shown by the mutual information, Fig 3c). However, since the matrix is not invertible for ↵ = 0.5,
we consider ↵ = 0.499 instead. Derivations are available in Appendix 8.6.1, and more insights on
the connection to the spectral gap are presented in Appendix 8.4.

Figure 3: (a) Ratio of transition matrix over stationary vector for the random walk with ↵ = 0.499,
(b) the prediction matrix of being a pair of successive states learnt by LDIM , (c) the closed-form
mutual information between consecutive states in time as a function of ↵ (with simplified endpoint
conditions) and (d) the true inverse spectral gap (�(1) � �(2))

�1 as a function of ↵.

6.2 DRIML can capture complex partially deterministic dynamics

The goal of this experiment is to highlight the predictive capabilities of our DIM objective in a
partially deterministic system. We consider a dynamical system composed of N ⇥N pixels with
values in {�1, 1}, S(t) = {sij(t) | 1  i, j  N}. At the beginning of each episode, a patch
corresponding to a quarter of the pixels is chosen at random in the grid. Pixels that do not belong
to that patch evolve fully independently (p(sij(t) = 1 | S(t � 1)) = p(sij(t) = 1) = 0.5). Pixels
from the patch obey a local dependence law, in the form of a standard Ising model6: the value of a
pixel at time t only depends on the value of its neighbors at time t � 1. This local dependence is
obtained through a function f : p(sij(t)|S(t� 1)) = f({si0j0(t� 1) | |i� i

0| = |j � j
0| = 1}) (see

5The action is simply ignored in this setting.
6https://en.wikipedia.org/wiki/Ising_model
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Appx 8.6.2 for details). Figure 4 shows the system at t = 32 during three different episodes (black
pixels correspond to values of �1, white to 1). The patches are very distinct from the noise. We then
train a convolutional encoder using our DIM objective on local “views” only (see Section 4).

Figure 4: 42 ⇥ 42 Ising model with temperature �
�1 = 0.4 overlaid onto a 84 ⇥ 84 lattice of

uniformly random spins {�1,+1}. The grayscale plots show each of the 3 systems at t = 32; the
color plots show the DIM similarity scores between t = 2 and t = 3.

Figure 4 shows the similarity scores between the local features of states at t = 2 and the same features
at t = 3 (a local feature corresponds to a specific location in the convolutional maps)7. The heatmap
regions containing the Ising model (larger-scale patterns) have higher scores than the noisy portions
of the lattice. Local DIM is able to correctly encode regions of high temporal predictability.

6.3 A continual learning experiment on Ms. PacMan

We further complicate the task of the Ising model prediction by building on top of the Ms. PacMan
game and introducing non-trivial dynamics. The environment is shown in the appendix.

In order to assess how well our auxiliary objective captures predictability in this MDP, we define its
dynamics such that P[Ghosti takes a random move] = ". Intuitively, as "! 1, the enemies’ actions
become less predictable, which in turn hinders the convergence rate of the contrastive loss. The
four runs in Figure 5a correspond to various values of ". We trained the agent using our LDRIML

objective. We can see that the convergence of the auxiliary loss becomes slower with growing ",
as the model struggles to predict st+1 given (st, at). After 100k frames, the NCE objective allows
to separate the four MDPs according to their principal source of randomness (red and blue curves).
When " is close to 1, the auxiliary loss has a harder time finding features that predict the next state,
and eventually ignores the random movements of enemies.

The second and more interesting setup we consider consists in making only one out of 4 enemies
lethal, and changing which one every 5k episodes. Figure 5b shows that, as training progresses, the
blue curve (C51) always reaches the same performance at the end of the 5k episodes, while DRIML’s
steadily increases. The blue agent learns to ignore the harmless ghosts (they have no connection to
the reward signal) and has to learn the task from scratch every time the lethal ghost changes. On
the other hand, the DRIML agent (red curve) is incentivized to encode information about all the
predictable objects on the screen (including the harmless ghosts), and as such adapts faster and faster
to changes. Figure 5c shows the same PacMan environment with a quasi-deterministic Ising model
evolving in the walled areas of the screen (details in appendix). For computational efficiency, we
only run this experiment for 10k episodes. As before, DRIML outperforms C51 after the lethal ghost
change, demonstrating that its representations encode more information about the dynamics of the
environment (in particular about the harmless ghosts). The presence of additional distractors - the
Ising model in the walls - did not impact that observation.

6.4 Performance on Procgen Benchmark

Finally, we demonstrate the beneficial impact of adding a DIM-like objective to C51 (DRIML) on
the 500 first levels of all 16 Procgen tasks [Cobbe et al., 2019]. All algorithms are trained for 50M
environment frames with the DQN [Mnih et al., 2015] architecture. The mean and standard deviation
of the scores (over 3 seeds) are shown in Table 1; bold values indicate best performance.

Similarly to CURL, we used data augmentation on inputs to DRIML-fix to improve the model’s
predictive capabilities in fast-paced environments (see App. 8.6.4). While we used the global-global

7We chose early timesteps to make sure that the model does not simply detect large patches, but truly
measures predictability.
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Figure 5: (a) average training NCE loss for various values of " as a function of timesteps, (b) average
training reward with only one harmful enemy per level (dashed line indicates average terminal blue
curve performance after each task) and (c) average training reward on PacMan + Ising noise in walled
areas.

Table 1: Average training returns collected after 50M of training frames, ± one standard deviation.

Env C51 CPC-1! 5 CURL DRIML-noact DRIML-randk DRIML-fix DRIML-ada

bigfish 1.33± 0.12 1.17± 0.16 2.70± 1.30 1.19± 0.04 1.12± 1.03 2.02± 0.18 4.45 ± 0.71
bossfight 0.57±0.05 0.52±0.07 0.60±0.06 0.47±0.01 0.56±0.03 0.67±0.02 1.05±0.19
caveflyer 9.19±0.29 6.40±0.56 6.94±0.25 8.26±0.26 7.92±0.15 10.2±0.41 6.77±0.04
chaser 0.22±0.04 0.21±0.02 0.35±0.04 0.23±0.02 0.26±0.01 0.29±0.02 0.38±0.04
climber 1.68±0.10 1.71±0.11 1.75±0.09 1.57±0.01 2.21±0.48 2.26±0.05 2.20±0.08
coinrun 29.7±5.44 11.4±1.55 21.2±1.94 13.2±1.21 21.6±1.97 27.2±1.92 22.88±0.4
dodgeball 1.20±0.08 1.05±0.04 1.09±0.04 1.22±0.04 1.19±0.03 1.28±0.02 1.44±0.06
fruitbot 3.86±0.96 4.56±0.93 4.89±0.71 5.42±1.33 6.84±0.24 5.40±1.02 9.53±0.29
heist 1.54±0.10 0.93±0.08 1.06±0.05 1.04±0.02 1.00±0.05 1.30±0.05 1.89±0.02
jumper 13.2±0.83 2.28±0.44 10.3±0.61 4.31±0.64 5.62±0.27 12.6±0.64 12.2±0.42
leaper 5.03±0.14 4.01±0.71 3.94±0.46 5.40±0.09 4.24±1.17 6.17±0.29 6.35±0.46
maze 2.36±0.09 1.14±0.08 0.82±0.20 1.44±0.26 1.18±0.03 1.38±0.08 2.62±0.10
miner 0.13±0.01 0.13±0.02 0.10±0.01 0.12±0.01 0.15±0.01 0.14±0.01 0.19±0.02
ninja 9.36±0.01 6.23±0.82 5.84±1.21 6.44±0.22 8.13±0.26 9.21±0.25 8.74±0.28
plunder 2.99±0.07 3.00±0.06 2.77±0.14 3.20±0.05 3.34±0.09 3.37±0.17 3.58±0.04
starpilot 2.44±0.12 2.87±0.05 2.68±0.09 3.70±0.30 3.93±0.04 4.56±0.21 2.63±0.16

Norm.score 1.0 0.23 0.52 0.59 0.92 1.48 1.9

loss in DRIML’s objective for all Procgen games, we have found that the local-local loss also had
a beneficial effect on performance on a smaller set of games (e.g. starpilot, which has few moving
entities on a dark background).

7 Discussion

In this paper, we introduced an auxiliary objective called Deep Reinforcement and InfoMax Learning
(DRIML), which is based on maximizing concordance of state-action pairs with future states (at the
representation level). We presented results showing that 1) DRIML implicitly learns a transition
model by boosting state similarity, 2) it can improve performance of deep RL agents in a continual
learning setting and 3) it boosts training performance in complex domains such as Procgen.
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Broader Impact

This work proposes an auxiliary objective for model-free reinforcement learning agents. The objective
shows improvements in a continual learning setting, as well as on average training rewards for a
suite of complex video games. While the objective is developed in a visual setting, maximizing
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mutual information between features is a method that can be transported to other domains, such as
text. Potential applications of deep reinforcement learning are (among others) healthcare, dialog
systems, crop management, robotics, etc. Developing methods that are more robust to changes in
the environment, and/or perform better in a continual learning setting can lead to improvements in
those various applications. At the same time, our method fundamentally relies on deep learning tools
and architectures, which are hard to interpret and prone to failures yet to be perfectly understood.
Additionally, deep reinforcement learning also lacks formal performance guarantees, and so do deep
reinforcement learning agents. Overall, it is essential to design failsafes when deploying such agents
(including ours) in the real world.
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