
We would like to thank all reviewers; the comments are very helpful and we believe that we have addressed the1

concerns. The modifications have led to a much improved paper. Below we provide a point-by-point response.2

Additional result: Adaptive DRIML In our original submission, we fixed the temporal offset k of DRIML and found3

that performance varied across games (see Procgen results in Table 4). This supports a hypothesis that different games4

express their dynamics at different time scales, so it might be important to look farther ahead (larger k) in DRIML5

for slower games. We learn an “adaptive” k (dependent on the game) directly from the RL policy, using a simple6

single-hidden-layer neural network trained with SGD that predicts the next action conditioned on the previous action7

given the current policy. During representation learning, given the sequence of actions from the same trajectory we8

are drawing states (i.e., the buffer), we sample the length of the sequence of actions k under this transition model by9

sequential sampling as a Markov process. As can be seen from our results below, DRIML-ada outperforms DRIML-10

fixed, achieving nearly double the average score of C51. While this modification is small in terms of the auxiliary loss11

(it learns k without modifying the core algorithm), this addition is novel, insightful, and useful to performance.12

[Differences with and comparison to CURL and CPC] DRIML encourages consistency in state representations13

across multiple time steps conditioned on the action through a contrastive loss between pairs of global and local14

(corresponding to a patches) state representations at different time steps (offset by k time steps). CURL only does15

contrastive learning between augmented copies of the same global state, and does so by relying only on data augmen-16

tation and without action-conditioning. We tested data augmentation a la CURL on DRIML (results in Table 3), on17

some games perf improved, not so much on others. Like DRIML, CPC also predicts future states, but it does not use18

action-conditioning and relies on autoregression modeled by an RNN. We include additional results below, which are19

from the best agents on 3 seeds over 50M timesteps: our implementation of 5-step CPC; DRIML-fix and DRIML-ada;20

CURL (using their code); and DRIML-noact (without actions). All baselines were tuned with the same computation21

budget. The last row shows the cumulative score over all 16 games normalized by max-min performance as in Cobbe22

et al. (2019), and wrt C51. We conclude that the additions from DRIML are essential to achieving good performance23

on ProcGen, as DRIML is the only method that significantly outperforms C51 alone.24

[PacMan + Ising] As suggested by R1, we also ran DRIML-fix and C51 on our simple PacMan game augmented with25

an Ising model in irrelevant parts of the screen (e.g. walls). The figure below shows the training returns over 8,00026

episodes. This further supports already-established conclusions from the paper.27

[DRIML and DeepMDP] DeepMDP is an interesting representation-learning method that learns latent reward and28

transition models from a bisimulation perspective. An important property of maximal bisimulations is that states from29

which the optimal action sequences are identical are merged. This will make the DeepMDP encoder ignore all state30

information irrelevant to the optimal policy. In our PacMan experiment, the embedding will not include any knowledge31

about the harmless ghosts (as they do not impact the actions to take). Upon change of the harmful ghost’s color, the32

encoder will thus need extra samples to adapt. We will expand our discussion of DeepMDP.33

[Other comments] 1) We report performance on Procgen instead of Atari / MuJoCo as Procgen allows for extremely34

fast procedural generation of multiple levels, and is better suited for testing continual learning/multi-level setups. 2)35

We will move their theory to the Appendix as we agree they are not an essential component of the paper. 3) The36

choice of α = 0.499 for the MC experiment is to approach 0.5 (lowest MI possible) while allowing the matrix to be37

invertible. Fig. 2d shows that for this class of MC, the spectral gap encodes the ”predictivity” of the system, and hence38

infoNCE is expected to converge faster on α values further from 0.5. 4) Our implementation relies on rlpyt (Stooke39

and Abbeel, 2019), parameters such as gradient clipping, n-step returns and soft updates were taken to be default40

values in that library. In Fig.3, the similarity scores are computed between t = 2 and t = 3, but the grayscale plots41

show t = 32 for visibility (at t = 2 the difference between random noise and Ising is barely visible). 5) The reviewers42

correctly pointed out some typos and presentation issues (e.g. font size), which will be fixed in the next version.43

Env C51 CPC-1→ 5 CURL DRIML-noact DRIML-fix DRIML-ada

bigfish 1.33±0.12 1.17±0.16 2.7±1.3 1.19±0.04 2.02±0.18 4.45±0.71
bossfight 0.57±0.05 0.52±0.07 0.6±0.06 0.47±0.01 0.67±0.02 1.05±0.19
caveflyer 9.19±0.29 6.4±0.56 6.94±0.25 8.26±0.26 10.18±0.41 6.77±0.04
chaser 0.22±0.04 0.21±0.02 0.35±0.04 0.23±0.02 0.29±0.02 0.38±0.04
climber 1.68±0.1 1.71±0.11 1.75±0.09 1.57±0.01 2.26±0.05 2.2±0.08
coinrun 29.7±5.44 11.4±1.55 21.17±1.94 13.15±1.21 27.24±1.92 22.88±0.4
dodgeball 1.2±0.08 1.05±0.04 1.09±0.04 1.22±0.04 1.28±0.02 1.44±0.06
fruitbot 3.86±0.96 4.56±0.93 4.89±0.71 5.42±1.33 5.4±1.02 9.53±0.29
heist 1.54±0.1 0.93±0.08 1.06±0.05 1.04±0.02 1.3±0.05 1.89±0.02
jumper 13.22±0.83 2.28±0.44 10.27±0.61 4.31±0.64 12.64±0.64 12.16±0.42
leaper 5.03±0.14 4.01±0.71 3.94±0.46 5.4±0.09 6.17±0.29 6.35±0.46
maze 2.36±0.09 1.14±0.08 0.82±0.2 1.44±0.26 1.38±0.08 2.62±0.1
miner 0.13±0.01 0.13±0.02 0.1±0.0 0.12±0.01 0.14±0.01 0.19±0.02
ninja 9.36±0.01 6.23±0.82 5.84±1.21 6.44±0.22 9.21±0.25 8.74±0.28
plunder 2.99±0.07 3.0±0.06 2.77±0.14 3.2±0.05 3.37±0.17 3.58±0.04
starpilot 2.44±0.12 2.87±0.05 2.68±0.09 3.7±0.3 4.56±0.21 2.63±0.16

Norm.score 1.0 0.23 0.52 0.59 1.48 1.9

44


