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Abstract

Bregman divergences generalize measures such as the squared Euclidean distance
and the KL divergence, and arise throughout many areas of machine learning.
In this paper, we focus on the problem of approximating an arbitrary Bregman
divergence from supervision, and we provide a well-principled approach to ana-
lyzing such approximations. We develop a formulation and algorithm for learning
arbitrary Bregman divergences based on approximating their underlying convex
generating function via a piecewise linear function. We provide theoretical ap-
proximation bounds using our parameterization and show that the generalization
error Op(m−1/2) for metric learning using our framework matches the known
generalization error in the strictly less general Mahalanobis metric learning setting.
We further demonstrate empirically that our method performs well in comparison to
existing metric learning methods, particularly for clustering and ranking problems.

1 Introduction

Bregman divergences arise frequently in machine learning. They play an important role in clus-
tering [3] and optimization [7], and specific Bregman divergences such as the KL divergence and
squared Euclidean distance are fundamental in many areas. Many learning problems require di-
vergences other than Euclidean distances—for instance, when requiring a divergence between two
distributions—and Bregman divergences are natural in such settings. The goal of this paper is to
provide a well-principled framework for learning an arbitrary Bregman divergence from supervision.
Such Bregman divergences can then be utilized in downstream tasks such as clustering, similarity
search, and ranking.

A Bregman divergence [7] Dφ : X × X → R+ is parametrized by a strictly convex function
φ : X → R such that the divergence of x1 from x2 is defined as the approximation error of the
linear approximation of φ(x1) from x2, i.e. Dφ(x1,x2) = φ(x1) − φ(x2) − ∇φ(x2)T (x1 −
x2). A significant challenge when attempting to learn an arbitrary Bregman divergences is how to
appropriately parameterize the class of convex functions; in our work, we choose to parameterize
φ via piecewise linear functions of the form h(x) = maxk∈[K] a

T
k x + bk, where [K] denotes the

set {1, . . . ,K} (see the left plot of Figure 1 for an example). As we discuss later, such max-affine
functions can be shown to approximate arbitrary convex functions via precise bounds. Furthermore
we prove that the gradient of these functions can approximate the gradient of the convex function that
they are approximating, making it a suitable choice for approximating arbitrary Bregman divergences.

The key application of our results is a generalization of the Mahalanobis metric learning problem
to non-linear metrics. Metric learning is the task of learning a distance metric from supervised
data such that the learned metric is tailored to a given task. The training data for a metric learning
algorithm is typically either relative comparisons (A is more similar to B than to C) [19, 24, 26] or
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Figure 1: (Left) Approximating a quadratic function via a max-affine function. (Middle-left)
Bregman divergence approximation from every 2-d sample point to the specific point A in the data,
as x varies around the circle. x to the specific point A in the data (Middle-right) Switches the roles
of x and A (recall the BD is asymmetric) (Right) distances from points x to A using a Mahalanobis
distance learned via linear metric learning (ITML). When this BD is used to define a Bregman
divergence, points within a given class have a small learned divergence, leading to clustering, k-nn,
and ranking performance of 98%+ (see experimental results for details).

similar/dissimilar pairs (B and A are similar, B and C are dissimilar) [10]. This supervision may be
available when underlying training labels are not directly available, such as from ranking data [20],
but can also be obtained directly from class labels in a classification task. In each of these settings,
the learned similarity measure can be used downstream as the distance measure in a nearest neighbor
algorithm, for similarity-based clustering [3, 19], to perform ranking [23], or other tasks.

Existing metric learning approaches are often divided into two classes, namely linear and non-linear
methods. Linear methods learn linear mappings and compute distances (usually Euclidean) in the
mapped space [10, 26, 11]; this approach is typically referred to as Mahalanobis metric learning.
These methods generally yield simple convex optimization problems, can be analyzed theoretically
[4, 8], and are applicable in many general scenarios. Non-linear methods, most notably deep metric
learning algorithms, can yield superior performance but require a significant amount of data to train
and have little to no associated theoretical properties [28, 16]. As Mahlanaobis distances themselves
are within the class of Bregman divergences, this paper shows how one can generalize the class of
linear methods to encompass a richer class of possible learned divergences, including non-linear
divergences, while retaining the strong theoretical guarantees of the linear case.

To highlight our main contributions, we

• Provide an explicit approximation error bound showing that piecewise linear functions can
be used to approximate an underlying Bregman divergence with error O(K−1/d)

• Discuss a generalization error bound for metric learning in the Bregman setting of
Op(m−1/2), where m is the number of training points; this matches the bound known
for the strictly less general Mahalanobis setting [4]

• Empirically validate our approach problems of ranking and clustering, showing that our
method tends to outperform a wide range of linear and non-linear metric learning baselines.

Due to space constraints, many additional details and results have been put into the supplementary
material; these include proofs of all bounds, discussion of the regression setting, more details on
algorithms, and additional experimental results.

2 Related work

To our knowledge, the only existing work on approximating a Bregman divergence is [27], but this
work does not provide any statistical guarantees. They assume that the underlying convex function is
of the form φ(x) =

∑N
i=1 αih(xTxi), αi ≥ 0, where h(·) is a pre-specified convex function such

as |z|d. Namely, it is a linear superposition of known convex functions h(·) evaluated on all of the
training data. In our preliminary experiments, we have found this assumption to be quite restrictive
and falls well short of state-of-art accuracy on benchmark datasets. In contrast to their work, we
consider a piecewise linear family of convex functions capable of approximating any convex function.
Other relevant non-linear methods include the kernelization of linear methods, as discussed in [19]
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and [10]; these methods require a particular kernel function and typically do not scale well for large
data.

Linear metric learning methods find a linear mapping G of the input data and compute (squared)
Euclidean distance in the mapped space. This is equivalent to learning a positive semi-definite matrix
M = GTG where dM (x1,x2) = (x1 − x2)TM(x1 − x2) = ‖Gx1 −Gx2‖22. The literature on
linear metric learning is quite large and cannot be fully summarized here; see the surveys [19, 5]
for an overview of several approaches. One of the prominent approaches in this class is information
theoretic metric learning (ITML) [10], which places a LogDet regularizer on M while enforcing
similarity/dissimilarity supervisions as hard constraints for the optimization problem. Large-margin
nearest neighbor (LMNN) metric learning [26] is another popular Mahalanobis metric learning
algorithm tailored for k-nn by using a local neighborhood loss function which encourages similarly
labeled data points to be close in each neighborhood while leaving the dissimilar labeled data points
away from the local neighborhood. In Schultz and Joachims [24], the authors use pairwise similarity
comparisons (B is more similar to A than to C) by minimizing a margin loss.

3 Problem Formulation and Approach

We now turn to the general problem formulation considered in this paper. Suppose we observe data
pointsX = [x1, ...,xn], where each xi ∈ Rd. The goal is to learn an appropriate divergence measure
for pairs of data points xi and xj , given appropriate supervision. The class of divergences considered
here is Bregman divergences; recall that Bregman divergences are parameterized by a continuously
differentiable, strictly convex function φ : Ω → R, where Ω is a closed convex set. The Bregman
divergence associated with φ is defined as

Dφ(xi,xj) = φ(xi)− φ(xj)−∇φ(xj)
T (xi − xj).

Examples include the squared Euclidean distance (when φ(x) = ‖x‖22), the Mahalanobis distance,
and the KL divergence. Learning a Bregman divergence can be equivalently described as learning the
underlying convex function for the divergence. In order to fully specify the learning problem, we
must determine both a supervised loss function as well as a method for appropriately parameterizing
the convex function to be learned. Below, we describe both of these components.

3.1 Loss Functions

We can easily generalize the standard empirical risk minimization framework for metric learning,
as discussed in [19], to our more general setting. In particular, suppose we have supervision in the
form of m loss functions `t; these `t depend on the learned Bregman divergence parameterized by φ
as well as the data points X and some corresponding supervision y. We can express a general loss
function as

L(φ) =

m∑
t=1

`t(Dφ, X, y) + λr(φ),

where r is a regularizer over the convex function φ, λ is a hyperparameter that controls the tradeoff
between the loss and the regularizer, and the supervised losses `t are assumed to be a function of the
Bregman divergence corresponding to φ. The goal in an empirical risk minimization framework is to
find φ to minimize this loss, i.e., minφ∈F L(φ), where F is the set of convex functions over which
we are optimizing.

The above general loss can capture several learning problems. For instance, one can capture a
regression setting, e.g., when the loss `t is the squared loss between the true Bregman divergence
and the divergence given by the approximation. In the metric learning setting, one can utilize
a loss function `t such as a triplet or contrastive loss, as is standard. In our experiments and
generalization error analysis, we mainly consider a generalization of the triplet loss, where the loss is
max(0, α+Dφ(xit ,xjt)−Dφ(xkt ,xlt)) for a tuple (xit ,xjt ,xkt ,xlt); see Section 3.3 for details.

3.2 Convex piecewise linear fitting

Next we must appropriately parameterize φ. We choose to parameterize our Bregman divergences
using piecewise linear approximations. Piecewise linear functions are used in many different applica-
tions such as global optimization [22], circuit modeling [17, 14] and convex regression [6, 2]. There
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are many methods for fitting piecewise linear functions including using neural networks [12] and local
linear fits on adaptive selected partitions of the data [15]; however, we are interested in formulating a
convex optimization problem as done in [21]. We use convex piecewise linear functions of the form
FP,L =̇ {h : Ω → R | h(x) = maxk∈[K] a

T
k x + bk , ‖ak‖1 ≤ L}, called max-affine functions.

In our notation [K] denotes the set {1, . . . ,K}. See the left plot of Figure 1 for a visualization of
using a max-affine function.

We stress that our goal is to approximate Bregman divergences, and as such strict convexity and
differentiability are not required of the class of approximators when approximating an arbitrary
Bregman divergence. Indeed, it is standard practice in learning theory to approximate a class of
functions within a more tractable class. In particular, the use of piecewise linear functions has
precedence in function approximation, and has been used extensively for approximating convex
functions (e.g. [1]).

Conventional numerical schemes seek to approximate a function as a linear superposition of fixed
basis functions (eg. Bernstein polynomials). Our method could be directly extended to such basis
functions and can be kernelized as well. Still, piecewise linear functions offer a benefit over linear
superpositions. The max operator acts as a ridge function resulting in significantly richer non-linear
approximations.

In the next section we will discuss how to formulate optimization over FP,L in order to solve the loss
function described earlier. In particular, the following lemma will allow us to express appropriate
optimization problems using linear inequality constraints:

Lemma 1. [6] There exists a convex function φ : Rd → R, that takes values

φ(xi) = zi (1)

if and only if there exists a1, . . . ,an ∈ Rd such that

zi − zj ≥ aTj (xi − xj), i, j ∈ [n]. (2)

Proof. Assuming such φ exists, take aj to be any sub-gradient of φ(xj) then (2) holds by convexity.
Conversely, assuming (2) holds, define φ as

φ(x) = max
i∈[n]

aTi (x− xi) + zi. (3)

φ is convex due to the proposed function being a max of linear functions. φ(xi) = bi using (2).

As a direct consequence of Lemma 1, one can see that a Bregman divergence can take values

Dφ(xi,xj) = zi − zj − aTj (xi − xj), (4)

if and only if conditions in (2) hold.

A key question is whether piecewise linear functions can be used to approximate Bregman divergences
well enough. An existing result in [1] says that for any L-Lipschitz convex function φ there exists
a piecewise linear function h ∈ FP,L such that ‖φ − h‖∞ ≤ 36LRK−

2
d , where K is the number

of hyperplanes and R is the radius of the input space. However, this existing result is not directly
applicable to us since a Bregman divergence utilizes the gradient ∇φ of the convex function. As
a result, in section 3.4, we bound the gradient error ‖∇φ−∇h‖∞ of such approximators. This in
turn allows us to prove a result demonstrating that we can approximate Bregman divergences with
arbitrary accuracy under some regularity conditions.

3.3 Metric Learning Algorithm

We now briefly discuss algorithms for solving the underlying loss functions described in the previous
section. A standard metric learning scenario considers the case where the supervision is given as
relative comparisons between objects.

Suppose we observe Sm = {(xit ,xjt ,xkt ,xlt) | t ∈ [m]}, where D(xit ,xjt) ≤ D(xkt ,xlt) for
some unknown similarity function and (it, jt, kt, lt) are indices of objects in a countable set U (e.g.
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set of people in a social network). To model the underlying similarity function D, we propose a
Bregman divergence of the form:

D̂(xi,xj) , φ̂(xi)− φ̂(xj)−∇∗φ̂(xj), (5)

where φ̂(x) , maxi∈Um aTi (x − xi) + zi , ∇∗ is the biggest sub-gradient, Um is the set of all
observed objects indices Um , ∪mt=1{it, jt, kt, lt} and ai’s and zi’s are the solution to the following
linear program:

min
zi,ai,L

m∑
t=1

max(ζt, 0) + λL

s.t.


zit − zjt − aTjt(xit − xjt) + zlt − zkt + aTlt(xkt − xlt) ≤ ζt − 1 t ∈ [m]

zi − zj ≥ aTj (xi − xj) i, j ∈ Um
‖ai‖1 ≤ L i ∈ Um

We refer to the solution of this optimization problem as PBDL (piecewise Bregman divergence
learning). Note that one may consider other forms of supervision, such as pairwise similarity
constraints, and these can be handled in an analogous manner. Also, the above algorithm is presented
for readability for the case where K = n; the case where K < n is discussed in the supplementary
material.

In order to scale our method to large datasets, there are several possible approaches. One could
employ ADMM to the above LP, which can be implemented in a distributed fashion or on GPUs.

3.4 Analysis

Now we present an analysis of our approach. Due to space considerations, proofs appear in the
supplementary material. Briefly, our results: i) show that a Bregman divergence parameterized by
a piecewise linear convex function can approximate an arbitrary Bregman divergence with error
O(K−

1
d ), where K is the number of affine functions; ii) bound the Rademacher complexity of the

class of Bregman divergences parameterized by piecewise linear generating functions; iii) provide
a generalization for Bregman metric learning that shows that the generalization error gap grows as
Op(m−

1
2 ), where m is the number of training points.

In the supplementary material, we further provide additional generalization guarantees for learning
Bregman divergences in the regression setting. In particular, it is worth noting that, in the regression
setting, we provide a generalization bound of Op(m−1/(d+2)), which is comparable to the lower-
bound for convex regression Op(m−4/(d+4)).

Approximation Guarantees. First we would like to bound how well one can approximate an
arbitrary Bregman divergence when using a piecewise linear convex function. Besides providing
a quantitative justification for using such generating functions, this result is also used for later
generalization bounds.
Theorem 1. For any convex φ : Ω→ R, which:
1) is defined on the∞-norm ball, i.e:

B(R) = {x ∈ Rd, ‖x‖∞ ≤ R} ⊂ Ω

2) is β-smooth, i.e:
‖∇φ(x)−∇φ(y)‖1 ≤ β‖x− y‖∞.

There exists a max-affine function h with K hyper-planes such that:
1) it uniformly approximates φ:

sup
x∈B(R)

|φ(x)− h(x)| ≤ 4βR2K−2/d. (6)

2) Any of its sub-gradients ∇h(x) ∈ ∂h(x) away from boundaries of the norm ball, uniformly
approximates∇φ(x).

sup
x∈B(R−ε)

‖∇φ(x)−∇h(x)‖1 ≤ 16βRK−1/d, (7)
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3) The Bregman divergence parameterized by h away from boundaries of the norm ball, uniformly
approximates Bregman divergence parameterized by φ

sup
x,x′∈B(R−ε)

|Dφ(x,x′)−Dh(x,x′)| ≤ 36βR2K−1/d, (8)

ε ≤ 8RK−1/d.

Rademacher Complexity. Another result we require for proving generalization error is the
Rademacher complexity of the class of Bregman divergences using our choice of generating functions.
We have the following result:
Lemma 2. The Radamacher complexity of Bregman divergences parameterized by max-affine
functions, Rm(DP,L), is bounded by Rm(DP,L) ≤ 4KLR

√
2 ln(2d+ 2)/m.

Generalization Error. Finally, we consider the case of classification error when learning a Bregman
divergence under relative similarity constraints. Our result bounds the loss on unseen data based on
the loss on the training data. We require that the training data be drawn iid. Note that while there
are known methods to relax these assumptions, as shown for Mahalanobis metric learning in [4], we
assume here for simplicity that data is drawn iid.1 In particular, we assume that each instance is a
quintuple, consisting of two pairs (xit ,xjt ,xkt ,xlt) drawn iid from some distribution µ over X 4.
Theorem 2. Consider Sm = {(xit ,xjt ,xkt ,xlt), t ∈ [m]} ∼ µm, where D(xit ,xjt) ≤
D(xkt ,xlt). Set R = maxi ‖xi‖∞. The generalization error of the learned divergence in (1)
when using K hyper-planes satisfies

E
[
1[D̂(xit ,xjt) ≥ D̂(xkt ,xlt)]

]
≤ 1

m

m∑
t=1

max
(
0, 1 + D̂(xit ,xjt)− D̂(xkt ,xlt)

)
+ 32KLR

√
2 ln (2d+ 2)/

√
m

+
√

4 ln(4 log2 L) + ln (1/δ)/
√
m

with probability at least 1− δ for receiving the data Sm.

See the supplementary material for a proof.
Discussion of Theorem 2: Not that n stands for number of unique points in all comparisons, where
m stands for number of comparisons, i.e: n = #Um, so n will increase with m.

case 1: (K<n) We discuss details of the algorithm about the case where K < n in appendix A6; this
is another approach we have used in our experiments which yielded similar results. Using standard
cross-validation to select K is the simplest and most effective way to select a value of K, and also
ensures that the theoretical bounds are applicable. Also its almost obvious that doing further cross
validation to choose K would result in improvement over the choice of K = n. However we liked to
use K = n in the reported experiments as it results in a faster algorithm and reduces the time needed
for cross validation.

case 2: (K=n) For the theoretical bound to hold we need n << m. This could be true in the example
of the social network if we extract some kind of similarity information between people. Regardless
of this we found acceptable results in our experiments with this setting.

i.i.d setup: The i.i.d setup while training is enforced by randomly choosing the similarity comparisons
from the fixed classification data-set {xi, yi}ni=1. This makes sense in a practical sense too as having
or computing relative comparisons between all triplets would make m = O(n3) which is impractical
when n is large. However we test the divergence in different tasks (i.e. ranking and clustering).

4 Experiments

Due to space constraints, we focus mainly on comparisons to Mahalanobis metric learning methods
and their variants for the problems of clustering and ranking. In the supplementary, we include

1In many cases this is justified. For instance, in estimating quality scores for items, one often has data
corresponding to item-item comparisons [25]; for each item, the learner also observes contextual information.
The feedback, yt depends only on the pair (xit ,xjt), and as such is independent of other comparisons.
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Table 1: Learning Bregman divergences (PDBL) compared to existing linear and non-linear metric
learning approaches on standard UCI benchmarks. PDBL performs first or second among these
benchmarks in 14 of 16 comparisons, outperforming all of the other methods. Note that the top two
results for each setting are indicated in bold.

Clustering Ranking

Data-set Algorithm Rand-Ind % Purity % AUC % Ave-P %

PBDL 94.5± 0.8 95.6± 0.7 96.5± 0.4 93.5± 0.7
ITML [10] 96.4± 0.8 97.0± 0.7 97.5± 0.3 95.3± 0.5
LMNN [26] 90.0± 1.3 91.0± 1.3 94.3± 0.6 89.9± 0.8

Iris GB-LMNN [18] 88.7± 1.5 89.9± 1.5 94.0± 0.6 89.7± 0.8
GMML [29] 93.8± 0.9 94.5± 0.9 95.7± 0.4 92.0± 0.6
Kernel NCA [11] 89.9± 1.3 90.3± 1.1 93.4± 0.6 88.3± 0.9
MLR-AUC [23] 79.7± 2.6 80.1± 2.7 84.2± 2.4 76.2± 2.6
Euclidean 87.8± 0.8 89.2± 0.8 93.5± 0.3 88.8± 0.5

PBDL 84.4± 0.7 87.8± 0.5 86.0± 0.4 82.9± 0.5
ITML 68.9± 0.9 77.5± 0.7 80.1± 0.7 74.3± 0.8
LMNN 69.5± 1.8 77.0± 1.7 75.9± 1.3 70.0± 1.2

Balance Scale GB-LMNN 71.4± 1.5 79.7± 1.4 78.1± 1.1 72.2± 1.0
GMML 72.9± 0.8 80.2± 0.8 79.0± 0.4 72.8± 0.5
NCA 58.9± 0.5 65.9± 0.8 66.7± 0.2 61.7± 0.3
Kernel NCA 65.3± 1.5 73.0± 1.6 68.7± 1.8 63.7± 1.9
MLR-AUC 48.0± 2.6 53.6± 2.9 56.9± 3.3 55.8± 3.1
Euclidean 59.3± 0.6 66.5± 0.9 67.9± 0.3 66.2± 0.4

PBDL 83.7± 2.9 85.0± 3.2 91.0± 0.9 86.7± 1.2
ITML 82.8± 2.6 82.5± 3.1 89.1± 1.1 84.6± 1.4
LMNN 70.0± 0.8 68.8± 1.2 82.4± 0.8 76.2± 1.1

Wine GB-LMNN 70.6± 0.9 69.3± 1.4 83.7± 0.1 78.5± 1.3
GMML 83.2± 2.9 81.0± 3.2 91.0± 0.7 88.5± 0.7
Kernel NCA 70.4± 1.3 71.3± 1.4 75.1± 0.9 67.7± 1.1
MLR-AUC 33.1± 1.0 40.4± 1.4 52.5± 1.5 52.4± 1.5
Euclidean 71.2± 0.7 70.6± 0.8 77.7± 0.7 66.1± 0.8

PBDL 57.9± 1.2 75.9± 0.7 54.9± 0.4 68.2± 0.6
ITML 60.2± 1.0 75.8± 0.7 54.2± 0.4 66.4± 0.7
LMNN 59.4± 1.3 76.3± 0.6 54.0± 0.5 67.1± 0.7

Transfusion GB-LMNN 58.9± 1.2 76.3± 0.6 54.8± 0.6 67.2± 0.7
GMML 59.3± 1.3 76.6± 0.7 54.0± 0.5 67.5± 0.7
Kernel NCA 63.7± 0.7 76.2± 0.7 52.2± 0.8 65.7± 0.8
MLR-AUC 62.6± 1.8 74.9± 2.2 42.8± 1.3 60.9± 1.8
Euclidean 60.6± 0.6 76.4± 0.4 54.2± 0.3 67.0± 0.5

several additional empirical results: i) additional data sets, ii) comparisons on k-nearest neighbor
classification performance with the learned metrics, iii) results for the regression learning setting.

In the following, all results are represented using 95% confidence intervals, computed using 100 runs.
Our optimization problems are solved using Gurobi solvers [13]. We compared against both linear and
kernelized Mahalanobis metric learning methods, trying to include as many popular linear and non-
linear approaches within our space limitations. In particular, we compared to 8 baselines: information-
theoretic metric learning (ITML) [10], large-margin nearest neighbors (LMNN) [26], gradient-boosted
LMNN (GB-LMNN)[18], geometric mean metric learning (GMML)[29], neighbourhood components
analysis (NCA) [11], kernel NCA, metric learning to rank (MLR)[23], and a baseline Euclidean
distance. Note that we also compared to the Bregman divergence learning algorithm of Wu et al. [27]
but found its performance in general to be much worse than the other metric learning methods; see
the discussion below. Code for all experiments is available on our github page2.

2https://github.com/Siahkamari/Learning-to-Approximate-a-Bregman-Divergence.git
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4.1 Bregman clustering and similarity ranking from relative similarity comparisons

In this experiment we implement PBDL on four standard UCI classification data sets that have
previously been used for metric learning benchmarking. See the supplementary material for additional
data sets. We apply the learned divergences to the tasks of semi-supervised clustering and similarity
ranking. To learn a Bregman divergence we use a cross-validation scheme with 3 folds. From two
folds we learn the Bregman divergence or Mahalanobis distance and then test it for the specified task
on the other fold. All results are summarized in Table 1.

Data: The pairwise inequalities are generated by choosing two random samples x1,x2 from a random
class and another sample x3 from a different class. We provided the supervision D(x1,x2) ≤
D(x1,x3). The number of inequalities provided was 2000 for each case.

Divergence learning details: The λ in our algorithm (PBDL) were both chosen by 3-fold cross
validation on training data on a grid 10−8:1:4. For implementing ITML we used the original code
and the hyper-parameters were optimized by a similar cross-validation using their tuner for each
different task. We used the code provided in Matlab statistical and machine learning toolbox for a
diagonal version of NCA. We Kernelized NCA by the kernel trick where we chose the kernel by cross
validation to be either RBF or polynomial kernel with bandwidth chosen from 20:5. For GB-LMNN
we used their provided code. We performed hyper-parameter tuning for GMML as described in their
paper. For MLR-AUC we used their code and guidelines for hyper-parameter optimization.

For the clustering task, it was shown in [3] that one can do clustering similarly to k-means for any
Bregman divergence. We use the learned Bregman divergence to do Bregman clustering and measure
the performance under Rand-Index and Purity. For the ranking task, for each test data point x we
rank all other test data points according to their Bergman divergence. The ground truth ranking is
one where for any data point x all similarly labeled data points are ranked earlier than any data from
other classes. We evaluate the performance by computing average-precision (Ave-P) and Area under
ROC curve (AUC) on test data as in [23].

Also [9] considers extensions of the framework considered in this paper to the deep setting; they
show that one can achieve state-of-the-art results for image classification, and the Bregman learning
framework outperforms popular deep metric learning baselines on several tasks and data sets. Thus,
we may view a contribution of our paper as building a theoretical framework that already has shown
impact in deep settings.

4.2 Discussion and Observations

On the benchmark datasets examined, our method yields the best or second-best results on 14 of the
16 comparisons (4 datasets by 4 measures per dataset); the next best method (GMML) yields best or
second-best results on 8 comparisons. This suggests that Bregman divergences are competitive for
downstream clustering and ranking tasks.

We spent quite a bit of time working with the method of [27], which learns a convex function of the
form φ(x) =

∑N
i=1 αih(xTxi), αi ≥ 0, but we found that the algorithm did not produce sensible

results. More precisely: the solution oscillated between two solutions, one that classifies every-pair
as similar and the other one classifying every pair as dis-similar. Also, when tuning the learning
rate carefully, the oscillations converged to αi = 0,∀i. We think the problem is not only with the
algorithm but with the formulation as well. The authors of [27] recommend two different kernels:
φ(x) =

∑
i exp(xTxi) and φ(x) =

∑
i αi(x

Txi)
2. Adding n exponential functions results in a

very large and unstable function. The same holds for adding quadratic functions. In our formulation
we are taking max of n linear functions so at each instance only one linear functions is active.

4.3 Conclusions

We developed a framework for learning arbitrary Bregman divergences by using max-affine generating
functions. We precisely bounded the approximation error of such functions as well as provided
generalization guarantees in the regression and relative similarity setting.
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Broader Impacts

The metric learning problem is a fundamental problem in machine learning, attracting considerable
research and applications. These applications include (but are certainly not limited to) face verification,
image retrieval, human activity recognition, program debugging, music analysis, and microarray
data analysis (see [19] for a discussion of each of these applications, along with relevant references).
Fundamental work in this problem will help to improve results in these applications as well as lead to
further impact in new domains. Moreover, a solid theoretical understanding of the algorithms and
methods of metric learning can lead to improvements in combating learning bias for these applications
and reduce unnecessary errors in several systems.
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