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Abstract

There is a rich and growing literature on producing local contrastive/counterfactual
explanations for black-box models (e.g. neural networks). In these methods, for
an input, an explanation is in the form of a contrast point differing in very few
features from the original input and lying in a different class. Other works try to
build globally interpretable models like decision trees and rule lists based on the
data using actual labels or based on the black-box models predictions. Although
these interpretable global models can be useful, they may not be consistent with
local explanations from a specific black-box of choice. In this work, we explore
the question: Can we produce a transparent global model that is simultaneously
accurate and consistent with the local (contrastive) explanations of the black-box
model? We introduce a natural local consistency metric that quantifies if the local
explanations and predictions of the black-box model are also consistent with the
proxy global transparent model. Based on a key insight we propose a novel method
where we create custom boolean features from sparse local contrastive explanations
of the black-box model and then train a globally transparent model on just these,
and showcase empirically that such models have higher local consistency compared
with other known strategies, while still being close in performance to models that
are trained with access to the original data.

1 Introduction

With the ever increasing adoption of black-box artificial intelligence technologies in various facets of
society [12], a number of explainability algorithms have been developed to understand their decisions.
Two prominent types are: a) Local Explanations for a data point of interest [16, 20, 22, 25, 9] and
b) Constructing interpretable global models directly like decision trees, rule lists and boolean rules
[23, 10, 7]. One of the arguments for b) is that it is possible to construct interpretable global models
in such a way that for a single data point it can give a succinct local explanation in the form of a
sparse conjunction [23] while also highlighting non-trivial global behavior of the output. Methods
in a) naturally enjoy the parsimonious explanations on a single data point through either feature
importance scores or contrastive points that differ in very few features. Therefore, one generally
has the option of adopting an accurate black-box model (viz. Neural Network, XGBoost) with local
explanations obtained with additional computational effort or adopt a simpler but interpretable model
that can describe non local behavior as well as provide very fast local explanations. For tabular data
there is a growing set of techniques to build models of the later kind directly [23] that can compete in
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Figure 1: Above we see the main steps behind our approach, where the key idea is to make the
generated boolean clause match with predictions on the triplet (original point x, its PP p(x), its
PN n(x)) of the black-box (i.e. match input prediction and local explanation). To do this we first
obtain local explanations, then perform a custom discretization and binning obtaining upper and
lower bounds for PPs (g(i)

pu , g(i)
pl ) and PNs (g(i)

nu, g(i)
nl ) producing the final boolean clauses. g(i)

pl and

g
(i)
nu are just rounding of the PP and the PN values for feature i to the nearest grid point. While g(i)

pu

and g(i)
nl ensure that the clause would be local to x. A new dataset with clauses created as shown

above can serve as input to a simple model training algorithm.

terms of accuracy with complex black-box models. However, black-box models have demonstrated
performance in terms of higher accuracy and in many cases are still preferred [21, 1].

In domains such as finance and healthcare, one would like to offer explanations (local and global) that
are loyal to the model deployed. Proxy models that provide global interpretability [11, 10, 5] may not
capture the original model’s local behavior. This might be important in many practical applications
[19, 2], where we want the global interpretable proxy model to replicate the local behavior of the
black-box model as much as possible. Given this need, we in this paper address the following two
important questions: a) How do we measure if a simple model replicates the local behavior of a given
black-box? b) Given access to a black-box model and a local explainbility method, how do we better
train simple models belonging to a specific class that are accurate and good at mimicing the local
behavior of the black-box model? Moreover, we want to answer b), where we primarily have access
to local sparse explanations.

We consider local explanation methods [29, 8] that produce contrast point(s) for every input point.
Contrast points for a given data point are two different perturbations of the point such that the number
of features altered are minimal. The first type of perturbation retains minimal amount of information
from the original point so that the new point is still classified by the model in the same class and is
termed as a pertinent positive (PP). The second is a perturbation of the input point which would make
it classify into a different class and is termed as a pertinent negative (PN). For example in a loan
approval application, say a person’s loan was rejected whose debt was 30,000, age was 27 and salary
was 50,000. If reducing their debt to 20,000 still resulted in a rejection, where other factors had to
remain the same, then the profile of debt 20,000, age 27 and salary 50,000 would be a PP. If on the
other hand, their salary increasing to 70,000 with other things being the same, led to the loan being
approved, then the resultant point would be a PN.

With this, to address the first question above we propose a natural consistency metric where we
check if a candidate transparent model agrees in the classification of the original point along with
the contrast points produced by a local explanation method for some black-box model. To address
the second question, one of our key insights is that each sparse local explanation in the form of
contrast points can be transformed into a logical conjunction of conditions on few features with a
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custom discretization scheme. Ideally, an approach of building a global transparent model from local
explanations of a black-box model would retain the structure (sparse interaction of various features)
of the local explanations.

We thus propose a new algorithm that uses local explanations from a contrastive explanations method
to generate boolean clauses which are conjunctions. These boolean conjunctions can be used as
features, forming a new dataset, to train another simple model such as logistic regression or a
small decision tree. An illustration of the whole process that we just described is given in Figure
1. The algorithm binarizes local contrastive explanations depending on the difference in feature
values between the contrast point and the original. The binarization of features is directed by local
explanations based on ranges that are deemed locally important by the black-box model. One of the
most interesting aspects of this idea is that sparse interactions between original features required for
explaining, are directly captured by these boolean clauses that can be used to train transparent models
that generalize and thus effectively capture also global information.

2 Related Work

Most of the work on explainability in artificial intelligence can be said to fall under four major
categories: Local posthoc methods, global posthoc methods, directly interpretable methods and
visualization based methods.

Local Posthoc Methods: Methods under this category look to generate explanations at a per instance
level for a given black-box classifier that is uninterpretable. Methods in this category are either proxy
model based [22, 24] or look into the internals of the model [3, 8, 29, 20]. Some of these methods
also work with only black-box access [22, 9]. There are also a number of methods in this category
specifically designed for images [26, 3, 25].

Global Posthoc Methods: These methods try to build an interpretable model on the whole dataset
using information from the black-box model with the intention of approaching the black-box models
performance. Methods in this category either use predictions (soft or hard) of the black-box model to
train simpler interpretable models [11, 4, 5] or extract weights based on the prediction confidences
reweighting the dataset [10].

Directly Interpretable Methods: Methods in this category include some of the traditional models
such as decision trees or logistic regression. There has been a lot of effort recently to efficiently and
accurately learn rule lists [23] or two-level boolean rules [28] or decision sets [27]. There has also
been work inspired by other fields such as psychometrics [14] and healthcare [6].

Visualization based Methods: These try to visualize the inner neurons or set of neurons in a layer
of a neural network [13]. The idea is that by exposing such representations one may be able to gauge
if the neural network is in fact capturing semantically meaningful high level features.

The most relevant categories to our current endeavor are possibly the local and global posthoc
methods. The global posthoc methods although try to capture the global behavior of the black-box
models, the coupling is weak as it is mainly through trying to match the output behavior, and they do
not leverage or are necessarily consistent with the local explanations one might obtain.

3 Preliminaries

To learn our boolean features we first need a local explainability technique that can extract contrastive
explanations for us from arbitrary black-box models. The method we use is the model agnostic
contrastive explanations method [9], which generates PPs (pertinent positives) and PNs (pertinent
negatives) with just black-box access. Both PPs and PNs are contrast points that preserve or change
labels of the blackbox model with respect to the original point.

Base Value Vector: To find PPs/PNs the method in [9] requires specifying values for each feature that
are least interesting, which they term as base values. A user can prespecify semantically meaningful
base values or a default value of say median could be set as a base value. Classifiers essentially pick
out the correlation between variation from this value in a given co-ordinate and the target class y.
Therefore, we define a vector of base values b ∈ Rd. Variation away from the base value is used to
correlate with the target class. bj represents the base value of the j-th feature.
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Upper and Lower Bounds: Let Lj and Uj be lower and upper bounds for the j-th feature xj .

Consider a pre-trained classifier ζ and let C(x, y) denote the classifiers confidence score (a probabil-
ity) of class y given x.

Pertinent Positive: Let p(x) ∈ Rd denote the pertinent positive vector associated with a training
sample (x, y) ∈ D.

p(x) = argmin
δ

max{max
ỹ 6=y

C(δ, ỹ)} − C(δ, y),−κ}

s.t. Lj ≤ δj ≤ Uj and ‖δ − b‖0 ≤ k and δj ≤ xj , j : xj ≥ bj and δj ≥ xj , j : xj ≤ bj (1)

In other words, Pertinent positive is a sparse vector that the classifier ζ classifies in the same class as
the original input with high confidence. Being sparse, it is expected to have lesser variation away
from the base values than x.

Pertinent Negative: Let n(x) ∈ Rd denote the pertinent positive vector associated with a training
sample (x, y) ∈ D.

n(x) = argmin
x+δ

max{C(x + δ, y)−max
ỹ 6=y
{C(x + δ, ỹ)},−κ}

s.t. Lj ≤ δj ≤ Uj and ‖δ‖0 ≤ k and δj ≥ 0, j : xj ≥ bj and δj ≤ 0, j : xj ≤ bj (2)

In other words, Pertinent negative is a vector where there are few coordinates which are different from
x. It forces the classifier ζ to classify it in some other class with high confidence, and in coordinates
where it differs from x, those coordinates are farther from the base values than those of x.

4 Methodology

In this section, we first define a local consistency metric that quantifies the extent to which a
transparent model captures the local behavior of a black-box model. This is followed by a description
of our proposed method.

4.1 Local Consistency Metric

Consider a dataset consisting of samples (x, y) ∈ D. x ∈ Rd and y ∈ Y . Y is a finite set of class
labels. Let ζB(.) and ζT (.) denote the black-box and transparent classifiers respectively that map
inputs to labels (Rd → Z). Let p(x) ∈ Rd and n(x) ∈ Rd denote the PP and PN for sample (x, y)
based on ζB(.). Note that this implies that ζB(x) = ζB(p(x)) and ζB(x) 6= ζB(n(x)). Let λTB(.)
then denote the following loss function:

λTB(x) =


0, if ζB(x) = ζT (x) and ζB(x) = ζT (p(x)) and ζB(x) 6= ζT (n(x))

1, otherwise
(3)

The above loss for a sample x is thus zero only if i) the transparent model has the same prediction as
the black-box model, ii) the PP prediction for ζT (.) matches the prediction of ζB(.) on the original
sample and iii) the PN prediction for ζT (.) is different than the prediction of ζB(.) on the original
sample. Cases ii) and iii) together ensure that the transparent model is consistent with the local
explanation of the black-box model. Given this per-sample loss and if |.| denotes cardinality, we now
define the local consistency metric CTB for a transparent model ζT w.r.t ζB as:

CTB = 1− 1

|D|
∑

(x,y)∈D

λTB(x) (4)

The above metric is a natural way of measuring local consistency as it takes into account not just the
prediction of the black-box model, but also its behavior around each sample.

4.2 Generating Sparse Boolean Clauses from Pertinent Positives and Pertinent Negatives

The following is the key observation of our work that lets us mine interpretable Boolean features.
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Figure 2: An Illustration of how binning works (top row). A boolean rule generated for a datapoint
is also demonstrated (bottom row). The rules are thus formed by looking at the PP, PN (local
explanation) and the bin matrix and ∆.

Key Idea: For a given training point x, we observe that k-sparse PPs and PNs give rise to a 2k-sparse
Boolean AND clause, as we describe next. Note that this implies that the complexity of our boolean
features is tightly bounded by the complexity of the local explanations, which are likely to be sparse,
and hence, much more concise than the size of the input dimension.

Pertinent positives says simply that a specific feature has to have at least the variation of the pertinent
positive feature value for it to be classified into that class. Similarly, pertinent negatives say that a
specific feature can have a variation more than xj but not beyond δj . We have illustrated this key
idea in Figure 1.

Therefore, one can come up with the following Boolean Clause written as product of indicators: ∏
j:p[xj ]>bj

1(zj > p[xj ])

 ∏
j:p[xj ]<bj

1(zj < p[xj ])

 ∏
j:n[xj ]>bj

1(zj < n[xj ])

 ∏
j:n[xj ]<bj

1(zj > n[xj ])


(5)

Regularizing by bounds and binning using grid points: In practice, these explanations are very
local and hence adding further bounds will help in generalization. This is because if for some training
example x, 1(zj > p[xj ]) is the condition. Then points from some other class can also satisfy this
inequality which is an infinite interval on the real line. Since these clauses are derived from local
perturbations (because of `2 penalty in the optimization), they may not be valid very far from xj .
Also we need to reduce the number of distinct clauses. We address both of these issues by binning
each feature into multiple grid points, where the grid values closest to each feature value serve as
upper and lower bounds that are used by the resultant boolean formula.

In particular, we only use clauses involving grid points gsj where every coordinate j has at most
N + 1 grid points. We will call the matrix of {gsj} as the Grid Matrix G. We round off all the clauses
to the nearest grid points suitably and also add regularizing upper bounds using grid points that are ∆
far away from the grid point involved in the clause. In Figure1, the grid values for features 1 and 2
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are shown. In this case N is 3. The closest grid point less than p(x1) is gpl. We describe this in detail
below for 2 out of the 4 cases that arise in Algorithm 1.

Clause added for PP (refer to Line 8 in Algorithm 1) For some feature x, suppose the pertinent
positive p is such that b < p < x where b is the base value of the feature. We find two closest
grid points as follows: a) gi < p and closest to p and b) gj > x that is closest to x. Here, i and j
are their indices when you sort the grid points from the lowest to the highest. Then, instead of a
clause 1(x > p), i.e. that captures the condition that the feature has to be at least p, we will have
conjunction of two clauses: 1(x > gi)× 1(x < gj+∆). This new conjunction says the feature has to
be at least the grid value below and closest to p (due to binning) and it should not be too far away
from the original point (due to explicit regularization) . Here, ∆ is a skip parameter, that we optimize
over during cross validation. In Figure1, the PP clause for feature1 would yield x > g

(1)
pl × x < g

(1)
pu

When p < b, the inequalities flip and an analogous clause is given starting from Line 11.

Clause added for PN (refer to Line 16 in Algorithm 1) For a pertinent negative n for a feature
satisfying n > x > b, we find two grid points gi : n > gi > x and gi is the closest to n and
gj such that gj < x and gj is the closest to x and j < i. Now, instead of the clause 1(x < n)
i.e. that captures the condition that the feature has to be at most n, we substitute the conjunction
1(x < gi)× 1(x > gj−∆). This new conjunction says the feature has to be at most the grid value
below and closest to n (due to binning) and it should not be too far away from the original point (due
to explicit regularization) When the point x < b, the inequalities flips and the clause is given starting
from Line 19.

The boolean clause generation algorithm incorporating all these ideas is given in Algorithm 1 that
covers all relevant cases of relative ordering between base values, pertinent positives and negatives
and the feature values. Some visual intuition about the discretization is given in Figure 1.

Algorithm 1 Global Boolean Feature Learning (GBFL)
.
1: Input: Training set:D , Binning Matrix: G, Base Values vector: b, Pertinent Positives: p(D), Pertinent

Negatives: n(D), Skip Parameter: ∆.
2: Output: A set of Boolean clauses F .
3: for Training sample (x, y) ∈ D do
4: Q = 1
5: for j in [1 : d] do
6: if p[xj ] > bj then
7: ** Generating clauses for the PP. The clause depends on whether the PP for

a feature is above the base value or not **
8: g∗ ← argmin

gsj :bj<gsj<p(xj)

|gsj − p(xj)|, s∗ ← argmin
s:gsj>xj

|gsj − xj |

9: Q← Q ∗ 1(zj ≥ g∗) ∗ 1(zj < gs∗+∆)
10: else
11: g∗ ← argmin

gsj :bj>gsj>p(xj)

|gsj − p(xj)|, s∗ ← argmin
s:gsj<xj

|gsj − xj |

12: Q← Q ∗ 1(zj < g∗) ∗ 1(zj ≥ gs∗−∆)
13: end if
14: if xj > bj then
15: ** Generating clauses for the PN. The clause depends on whether the

original feature is above the base value or not **
16: g∗ ← argmin

gsj :n(xj)>gsj>xj

|gsj − n(xj)|, s∗ ← argmin
s:gsj<xj

|gsj − xj |

17: Q← Q ∗ 1(zj < g∗) ∗ 1(zj ≥ gs∗−∆)
18: else
19: g∗ ← argmin

gsj :n(xj)<gsj<xj

|gsj − n(xj)|, s∗ ← argmin
s:gsj≥xj

|gsj − xj |.

20: Q← Q ∗ 1(zj > g∗) ∗ 1(zj < gs∗+∆)
21: end if
22: end for
23: F ← F ∪Q
24: end for

KDE Binning: The binning technique used to determine the grid points is an important part of the
algorithm. We actually would like to place the grid points such that it creates equally spaced intervals
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such that every interval has equal probability. Consider the j-th feature xj . Suppose, Lj and Uj are
lower and upper bounds for this feature. We estimate the marginal density of this feature using a
KDE estimate by using an appropriate kernel with a bandwidth on the points taken from this feature
and obtain a cumulative density function Pj(x). Suppose N + 1 is the number of grid points we
desire. Now, using root finding techniques, we actually find k

N -th quantile for k ∈ {1, 2, 3..N − 1}.
This grid generation procedure is given in Algorithm 2. A toy example is provided in Figure 2.

Algorithm 2 KDE based Grid Point Generation (GPG)
.
1: Input: Number of grid points: N , Dataset: D, Bounds on Features:{Lj , Uj}j ,Bandwidth for KDE

estimator: B.
2: Output: Grid matrix G ∈ RN+1×d

3: for j in [1 : d] do
4: Collect the set of points Pj from feature j from dataset D. Obtain the KDE estimate pj(x) =

1
B|Pj |

∑
p∈Pj

K(x−p
B

).
5: Obtain the CDF function for this Pj(x). Set lower and upper bounds to the extreme grid points:

Gj0 ← Lj , GjN ← Uj .
6: for n in [1 : N − 1] do
7: Use root finding to set Gjn ← {x : Pj(x) = n

N
, Lj ≤ x ≤ Uj}

8: end for
9: end for

Algorithm 3 Model Generation using Local Explanations
.
1: Grid Matrix G← GPG(N,D, {Lj , Uj}j , B)
2: Use dataset D, a pre-trained black-box model ζ, find pertinent positives p(D) and negatives n(D) for every

training sample using (1) and (2). Obtain the set of boolean clauses: F ← GBFL(D,G,b,p(D),n(D))

3: Form a binary dataset DF ∈ {0, 1}|D|×|F| whose rows are obtained by evaluating a training point x ∈ D
through all clauses C ∈ F .

4: Fit a simple transparent learner to this new dataset: TL(DF )→ ζT .

Learning Algorithm: We assume that a transparent leaner (TL) is given to us like a Decision Tree
learner or a Logistic Regression based learner. Then algorithm 3 learns a transparent model based on
the boolean rules/features extracted using GBFL.

5 Experiments

We now empirically validate our method. We first describe the setup, followed by a discussion of the
experimental results. We provide quantitative results as well as present the most important boolean
features picked by the transparent models based on our construction for one of the datasets. A more
complete list of important boolean features is provided in the supplement.

Setup: We experimented on six publicly available datasets from Kaggle and UCI repository namely;
Sky Survey, Credit Card, Magic, Diabetes, Waveform and WDBC. The dataset characteristics are
given in the supplement. Deep neural networks (DNNs) with (different) architectures that provided
best results were chosen for each of the datasets as the black-box model (details in supplement).
Decision trees (DTs) with height ≤ 5 were the transparent learner based on the CART algorithm.
Gridding and ∆ information for GBFL is also provided in the supplement. Statistically significant
results that measure performance based on paired t-test are reported, which are computed over 5
randomizations with 75/25% train/test split. 10-fold cross-validation was used to find all parameters
including tree heights (≤ 5) for DT. All trees for the competitors ended up being of height strictly
< 5, which means that we are not restricting the expressive power of the other approaches to build
locally consistent models.

We compared our method against three other approaches. i) Standard: Train DT on original dataset,
ii) Distillation/Model Compression [5]: Train DT on black-box models predictions using original
input features and iii) Augmentation [15]: Train DT on PPs and PNs obtained for each sample of the
original data based on the black-box model augmented to the original data (i.e. data + PPs + PNs).
This is similar to [15], which showed the power of such augmentation, where they, although, had
human provided counterfactual explanations.
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Table 1: Below we see the performance of the different methods on consistency and accuracy metrics.
CPNT and CPPT imply consistency w.r.t. just PNs and PPs respectively. NA implies the explanation
method was not able to find PNs for those datasets. Best results based on paired-t test for the
transparent model (DT) are in bold. All numbers are percentages.

Metric Method Sky Survey Credit Card Magic Diabetes Waveform WDBC

CTB

Standard 31.08 3.51 54.04 61.97 12.52 18.79
GBFL 48.84 7.03 56.76 68.75 19.55 50.12

Distillation 33.59 4.52 56.04 64.58 5.48 22.47
Augmentation 3.86 2.01 57.24 58.85 7.03 5.92

CPN
TB

Standard 44.01 49.74 NA NA 59.69 29.01
GBFL 58.88 74.87 NA NA 65.18 61.01

Distillation 38.22 23.11 NA NA 29.15 33.03
Augmentation 12.16 51.75 NA NA 62.77 19.02

CPP
TB

Standard 75.67 61.80 59.36 68.23 82.33 88.78
GBFL 79.44 56.23 61.68 68.75 84.66 89.67

Distillation 78.57 66.43 59.32 68.22 72.72 79.99
Augmentation 75.17 57.28 61.96 66.67 80.39 91.99

Test Accuracy

Standard 99.2 60.7 79.24 75.10 75.92 93
GBFL 97.68 59.9 77.30 75 75.48 93

Distillation 92.88 48.6 79.96 77.08 61.2 92.01
Augmentation 96.21 58.4 77.8 71.87 74.72 95.07

Black-box 99.68 69.4 88.98 83 85.8 96.1

Quantitative Evaluation: In Table 1, we see that GBFL has higher local consistency than the other
competitors in most cases. For Magic and Diabetes where the explanation method we used was not
able to generate PNs we calculate CTB by ignoring the PN condition in equation 3. Interestingly, in
these two cases our gain in the consistency over other methods is either absent or relatively low. This
implies that our method is quite consistent w.r.t. PNs compared with other approaches. In fact, this is
verified by looking at CPNTB for datasets that we do have PNs (Sky Survey, Credit Card, Waveform
and WDBC) where our consistency w.r.t. PNs is much better than the other methods. Consistency
w.r.t. PPs (CPPTB ) is superior to other methods in most cases, but to a lesser degree.

In addition to being more locally consistent we note that our accuracy is still competitive with the
best performing methods in all cases. This is especially promising given that our features are built
only based on sparse local explanations without access to the original data, while all other methods
have access to it.

Qualitative Evaluation: We now show boolean features constructed by our method for the Sky
Survey dataset (more examples in supplement) using the contrastive explanations for the respective
black-box models that the base learner deems as most important. We see that although the boolean
features are composed of multiple input/original features, the resultant model is still transparent and
reasonably easy to parse. Definitely more so than the original black-box model.

Sky Survey Dataset: In Listing 1, we see the top 4 boolean features based on the decision tree which
is the base transparent learner. We observe that rules with nine features were created based on the
contrastive explanations, which are a union of the PP and PN features using algorithm 1. The different
boolean features thus have conditions i.e. upper and lower bounds on the same set of original features.

We can see that some of the original features such as redshift, mjd and dec have the same condition
across multiple boolean features indicating that them along with their ranges are likely to be most
important. On the other hand, ra has different ranges in most cases. The other features have in
between redundancy relative to ranges.

Listing 1: We present below the top 4 GBFL features used by DT on the Sky Survey dataset.

GBFL rank 1 f e a t u r e
1.51 >= d i r f 1 >=0.0 & 0.66 >= d i r f 2 >=0.0 & 0.26 >= d i r f 3 >=0.0 &
629.05 >= f i b e r i d >=419.36 & 0.80 >= r e d s h i f t >=0.0 & 233.35 >= ra >=137.26 &
57481 >=mjd >=42354.42 & 14.42 >= dec >=0.0 & 1770.52 >= p l a t e >=0.0

GBFL rank 2 f e a t u r e
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2.53 >= d i r f 1 >=0.50 & 0.49 >= d i r f 2 >=0.0 & 0.35 >= d i r f 3 >=0.0 &
2213.15 >= p l a t e >=442.63 & 14.42 >= dec >=0.0 & 0 . 8 0 r e d s h i f t >=0.0 &
262.10 >= f i b e r i d >=52.42 & 164.72 >= ra >=109.81 & 57481 >=mjd >=42354.42

GBFL rank 3 f e a t u r e
1.51 >= d i r f 1 >=0.0 & 0.49 >= d i r f 2 >=0.0 & 0.35 >= d i r f 3 >=0.0 &
260.81 >= ra >=233.35 & 0.80 >= r e d s h i f t >=0.0 & 524.21 >= f i b e r i d >=157.26 &
14.42 >= dec >=0.0 & 1770.52 >= p l a t e >=0.0 & 57481 >=mjd >=42354.42

GBFL rank 4 f e a t u r e
2.53 >= d i r f 1 >=0.50 & 0.49 >= d i r f 2 >=0.0 & 0.44 >= d i r f 3 >=0.089 &
576.63 >= f i b e r i d >=366.94 & 260.81 >= ra >=233.35 & 14.42 >= dec >=0.0 &
0.80 >= r e d s h i f t >=0.0 & 1770.52 >= p l a t e >=0.0 & 57481.0 >= mjd >=42354.42

6 Discussion

As systems get more complicated replicating their behavior using simple interpretable models might
become increasingly challenging. Transparent models could be the answer here where there is more
leeway to build more complicated models that can be traced for the decisions they make and hence
are auditable. Auditability is extremely important in domains such as finance, where decisions need
to be traceable and proxy models to explain black-boxes need to have stronger guarantees that they
truly are replicating the black-boxes behavior [9]. Moreover, transparent boolean classifiers have an
added advantage of efficiency where even large boolean formulas can potentially be made extremely
scalable by implementing them in hardware. Not to mention they can also be traced efficiently to
determine individual classifications [23].

In summary, we have proposed a novel method based on a key insight to create boolean features from
local contrastive explanations that lead to transparent models that in many cases are more locally
consistent than competing approaches, while still having comparable accuracy. Even though we train
on just features derived using these sparse explanations our models are comparable in accuracy to
standardly trained models. In the future, we would like to build other classifiers (viz. weighted rule
sets) using our boolean features. Moreover, we would also like to study the theoretically reasons
behind the good generalization and local consistency provided by our method. We conjecture that
this has connections to the stability results shown for stochastic gradient descent in deep learning
settings, given that the local explanation method primarily relies on gradient descent. We would also
like to experiment on other modalities than tabular, such as images and text, where local explanations
are generated using high level features [17] making our approach directly applicable.

Broader Impact

Explainable AI (XAI) has gained a lot of traction in industry and government given the proliferation
of black-box models such as neural networks. The General Data Protection Regulation (GDPR)
[30] passed in Europe requires automated systems making decisions that affect humans to be able
to explain themselves. There are mainly two types of explainability: local and global. Local
explainability is about per sample explanations, while global explainability is about understanding
the whole model. Although significant amount of work has been done for each type, there is little
work that tries to combine these two paradigms in an attempt to create global models that are also
locally consistent.

Our work tries to bridge this gap for contrastive/counterfactual explanations which have been deemed
as being one of the most important parts of an explanation [18]. The benefit of our method is thus that
one can create globally transparent models that are locally consistent more than other schemes. This
can be beneficial in appropriating trust in the black-box model with more confidence. The risks are
similar to other methods that build global models (viz. distillation, profweight) that such models are
still proxy models and hence, may not entirely replicate the reasoning done by the black-box model
they are trying to explain.
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[5] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.

[6] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible models for
healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’15, pages 1721–1730, New York, NY, USA, 2015. ACM.

[7] S. Dash, O. Günlük, and D. Wei. Boolean decision rules via column generation. Advances in
Neural Information Processing Systems, 2018.

[8] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam, and P. Das. Explanations
based on the missing: Towards contrastive explanations with pertinent negatives. In Advances
in Neural Information Processing Systems 31. 2018.

[9] A. Dhurandhar, T. Pedapati, A. Balakrishnan, P.-Y. Chen, K. Shanmugam, and R. Puri. Model
agnostic contrastive explanations for structured data. arxiv, 2019.

[10] A. Dhurandhar, K. Shanmugam, R. Luss, and P. Olsen. Improving simple models with confi-
dence profiles. Advances of Neural Inf. Processing Systems (NeurIPS), 2018.

[11] J. D. Geoffrey Hinton, Oriol Vinyals. Distilling the knowledge in a neural network. In
https://arxiv.org/abs/1503.02531, 2015.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[13] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell. Generating
visual explanations. In European Conference on Computer Vision, 2016.

[14] T. Idé and A. Dhurandhar. Supervised item response models for informative prediction. Knowl.
Inf. Syst., 51(1):235–257, Apr. 2017.

[15] D. Kaushik, E. Hovy, and Z. C. Lipton. Learning the difference that makes a difference with
counterfactually-augmented data. In Intl. Conference on Learning Representations, 2020.

[16] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances
in neural information processing systems, pages 4765–4774, 2017.

[17] R. Luss, P.-Y. Chen, A. Dhurandhar, P. Sattigeri, Z. Yunfeng, K. Shanmugam, and C.-C. Tu.
Generating contrastive explanations using monotonic attribute functions. In arXiv:1905.12698.
2019.

[18] T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 2018.

[19] C. Molnar. Interpretable machine learning, 2019.

10



[20] R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classifiers through diverse
counterfactual explanations. arXiv preprint arXiv:1905.07697, 2019.

[21] S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensembles for deep learning
on tabular data. arXiv preprint arXiv:1909.06312, 2019.

[22] M. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?” explaining the predictions of
any classifier. In ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining,
2016.

[23] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[24] S.-I. L. Scott Lundberg. Unified framework for interpretable methods. In In Advances of Neural
Inf. Proc. Systems, 2017.

[25] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pages 618–626, 2017.

[26] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. CoRR, abs/1312.6034, 2013.

[27] M. Sipser. Introduction to the Theory of Computation 3rd. Cengage Learning, 2013.

[28] G. Su, D. Wei, K. Varshney, and D. Malioutov. Interpretable two-level boolean rule learning for
classification. In https://arxiv.org/abs/1606.05798, 2016.

[29] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

[30] P. N. Yannella and O. Kagan. Analysis: Article 29 working party guidelines on automated
decision making under gdpr. 2018. https://www.cyberadviserblog.com/2018/01/analysis-article-
29-working-party-guidelines-on-automated-decision-making-under-gdpr/.

11


	Introduction
	Related Work
	Preliminaries
	Methodology
	Local Consistency Metric
	Generating Sparse Boolean Clauses from Pertinent Positives and Pertinent Negatives

	Experiments
	Discussion

