
A Additional empirical results

This section presents the empirical results more comprehensively.

First, Table 1 provides summary statistics for each of the 12 tasks considered:

X 6
graph X 8

graph X 10
graph X 12

graph X 8
tree X 10

tree X 12
tree X 14

tree X 16
tree X 18

tree X 20
tree X 22

tree

classes 3 21 231 6328 3 6 21 66 276 1128 5671 22730
degree (avg.) 4.0 4.7 5.4 6.0 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.8

diameter (avg.) 3.7 4.5 5.0 5.4 4.0 4.3 5.0 5.4 6.0 6.4 6.9 7.3
dataset size 10k 10k 40k 100k 10k 10k 40k 40k 40k 40k 40k 100k

Table 1: Details relevant to the 4 graph and 8 tree isomorphism tasks.

Some example graphs sampled are shown in Figure 4.

Figure 4: Example graphs sampled from two (Xa,Xb, 1) decompositions. Top: Xa and Xb contain
all connected graphs on v = 6 nodes (special case of Theorems 3.2 and 3.3). Bottom: Xa and Xb

contain all trees on 11 nodes (special case of Theorem 3.4). In both cases, there exists a τ = 1 cut
between the nodes Va controlled by Alice (in yellow) and nodes Vb controlled by Bob (in green).

Table 2 provides empirical evidence that, with a one-hot encoding of the node-ordering given as
features and a sufficiently large training set, MPNN of sufficient capacity can solve graph isomorphism.
In the current experiment, a large network (depth = 10 and width = 32) is seen to solve most
isomorphism instances. The network did not achieve perfect classification for larger graphs, but better
results can be achieved with more training data.

accuracy X 6
graph X 8

graph X 10
graph X 12

graph X 8
tree X 10

tree X 12
tree X 14

tree X 16
tree X 18

tree X 20
tree X 22

tree

training 100% 100% 100% 99.997% 100% 100% 100% 100% 100% 100% 100% 100%
validation 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 97.45% 82.82%

test 100% 100% 100% 99.96% 100% 100% 100% 100% 100% 100% 97.35% 82.92%

Table 2: The performance of a large-capacity MPNN.

The achieved accuracy of all networks considered is shown in Figures 5a and 5b for graph and tree
isomorphism tasks, respectively. In contrast to the figures of Section 4, these plots depict the training
as well as testing accuracy. For the majority of tasks the test and training accuracy is almost identical.
Overfitting can be a problem for larger graphs (e.g., trees of at least 20 nodes). The problem can be
mitigated by increasing the size of the training set.

Finally, Figures 6a and 6b demonstrate that depth and width are partially exchangeable. This implies
that the correlation between capacity and accuracy (see Figures 3a and 3b) cannot be explained by
only looking at the depth or width of a network. Here, the two figures depict the empirical test
accuracy (by the marker color and size) as a function of depth and width for all tasks. For each task,
the depth and width have been normalized by the square root of the critical capacity, corresponding
to the smallest communication capacity of any network that could achieve at least 50% accuracy. As
a consequence of the normalization, all networks in the top-right region (in white) possess sufficient
capacity for the task at hand. Moreover, networks plotted below (above) the main diagonal are deeper
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(a) graph isomorphism

(b) tree isomorphism

Figure 5: Training and test accuracy as a function of communication capacity.

than they are wide (wider than they are deep). As seen, the classification task can be solved by both
wide and deep networks of super-critical capacity, as long as the networks are not too shallow. Indeed,
networks of very small depth cannot see the entire graph and thus have poor accuracy.

(a) graph isomorphism (b) tree isomorphism

Figure 6: Accuracy as a function of capacity-normalized depth and width. Depth and width are
partially exchangeable for graph and tree isomorphism.

B Communication complexity: basics and beyond

B.1 Basic theory: protocols

Let us start by denoting by S the common set of symbols1 Alice and Bob use to communicate and
denote by s = |S| its cardinality. A protocol π is described in terms of a rooted s-ary tree, i.e., a
tree with a clearly defined root and in which every internal node has exactly s children. In addition,

1Though usually it is assumed that the parties communicate using binary symbols, i.e., S = {0, 1}, the set
could also be defined more abstractly to contain s symbols.
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every internal node i is owned by either Alice or Bob and each one of the node’s children symbolizes
a symbol sent by its owner. Specifically, the protocol associates i with a function πi that maps the
input of i’s owner to S (or equivalently to one of i’s children). The protocol operates as follows: first,
both parties set the current node to be the root of the tree. Say that the current node is i. If the owner
of i is Alice then she announces symbol πi(x) and otherwise Bob announces πi(y). Both parties
then update the current node to point to the child of i indicated by the value of πi. This procedure is
repeated until a leaf is found.

leaf

rootA

B

A

1(xa)=0

2(xb)=1

3(xa)=1

Figure 7: The execution of π over input (xa, xb) is a path within the s-ary tree. The decision of
which symbol to send is taken by the node’s owner (Alice or Bob) as a function of the current
path and input. In this example there are s = 2 symbols S = {0, 1} and the path moves to the
left/right child when the symbol 0/1 is sent. The protocol terminates at the leaf and the output is
π(xa, xb) = ((A, 0), (B, 1), (A, 1)).

By definition, the number of symbols ‖π(xa, xb)‖m Alice and Bob need to send in order to jointly
compute f(xa, xb) using protocol π equals the length of the path from the root to the leaf π(xa, xb).
Moreover, the number of symbols sent by a protocol in the worst case (i.e., for any input) is at most
equal to the depth of the protocol tree (Fact 1.1 in [33]).

B.2 Basic theory: monochromatic rectangles

To understand how protocols operate one needs to consider the concept of rectangles. A rectangle is a
subset of Xa ×Xb that can be expressed as X ′a ×X ′b for some X ′a ⊂ Xa and X ′b ⊂ Xb. Intuitively, if
one represents Xa×Xb as a matrix X of size |Xa| × |Xa|, then a rectangle is any principal submatrix
X ′ of X , i.e., a matrix that contains a subset of rows and columns.

As it turns out, every protocol can be described in terms of rectangles. LetRi ⊆ Xa × Xb be the set
of inputs leading to a path that crosses a node i ∈ π. Moreover, define the following sets:

X i
a = {x ∈ Xa : ∃y ∈ Xb such that (xa, xb) ∈ Ri}
X i

b = {y ∈ Xb : ∃x ∈ Xa such that (xa, xb) ∈ Ri}
The following result clarifies the connection between protocols and rectangles.

Lemma B.1 (Lemma 1.4 in [33]). For every protocol π and node i, Ri is a rectangle with Ri =
X i

a ×X i
b . Further, the rectanglesR� given by the leafs � ∈ Lπ of the protocol tree form a partition

of Xa ×Xb.

Effectively, at any point in a protocol, a rectangle describes the different possible outputs of f given
the messages that have been exchanged. Every new message that the two parties exchange, eliminates
some possible outputs, decreasing the size of the rectangle.

With this in place, it is not hard to realize that, for every leaf � ∈ Lπ, the function f should always
take the same value at every (xa, xb) ∈ R� in order for both parties to be able to compute the
output from π(xa, xb). Such rectangles are referred to as monochromatic: concretely, a rectangle
R ⊂ Xa ×Xb is monochromatic if f(xa, xb) = f(x′a, x

′
b) for every (xa, xb), (x

′
a, x

′
b) ∈ R. Indeed,

if leaf rectangles were not monochromatic, Alice and Bob would not be able to identify the output of
f based onR�.

The following theorem is obtained by combining Lemma B.1 with the fact that the minimum depth
of any s-ary tree with sc leafs is c.
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Theorem B.1 (Theorem 1.6 by Rao and Yehudayoff [33]). If the communication complexity of
f : Xa × Xb → Y is cboth

f , then Xa × Xb can be partitioned into at most sc
both
f monochromatic

rectangles.

The following is a direct corollary:

Corollary B.1 (Rao and Yehudayoff [33]). If Xa ×Xb cannot be partitioned into sc monochromatic
rectangles, then cboth

f ≥ c.

A simple way to satisfy the requirement of the corollary is to prove that no large monochromatic
rectangle exists. For instance, if it is shown that all monochromatic rectangles have size bounded
by k2 then every monochromatic partitioning must contain at least |Xa ×Xb|/k2 rectangles and the

complexity is at least cboth
f ≥ logs

(|Xa ×Xb|/k2
)
. I will rely on this method in the following to

derive lower bounds on the worst-case communication complexity of different functions.

B.3 A different perspective: expected communication complexity

The following lemma connects the expected communication complexity ED[cf (π)] to the entropy of
the categorical distribution induced by the leafs of the protocol tree.

Lemma B.2. Let the random variables X = (Xa, Xb) ∼ D be sampled from some distribution
D and, moreover, suppose that the random variable Lπ is the leaf for a protocol π that computes
f(Xa, Xb). The expected communication complexity of f is

min
π

Hs(Lπ) ≤ cmf (D) ≤ min
π

Hs(Lπ) + 1,

where Hs(Lπ) is the Shannon entropy (base s) of Lπ under D.

Proof. The expected length of a protocol π is

ED

[
cmf (π)

]
=
∑
xa,xb

‖π(xa, xb)‖m · P(Xa = xa, Xb = xb)

=
∑
�∈Lπ

depth(t) · P(Lπ = �)

= ED[depth(Lπ)] .

Note that the set Lπ contains the leafs of the protocol tree and Lπ is a categorical random variable
over leafs with

P(Lπ = �) =
∑

x,y : π(xa,xb)=�

P(Xa = xa, Xb = xb) ,

which is also equal to the probability P
(
(Xa, Xb) ∈ R�

)
that a randomly drawn input belongs toR�.

To understand cmf (D) it helps to realize the connection between protocols and coding theory: rather

than sending information between Alice and Bob, one may think of sending the leafs over a channel
by using a codebook. In this analogy, each leaf corresponds to a code and the path from the root of
the protocol tree to every internal node at depth t corresponds to code prefix of length t. Furthermore,
the probability of encountering the leaf is P (Lπ = t) and the depth of the protocol tree for every

input (xa, xb) ∈ R� is equal to the length of the code required to send the associated symbol.

From the above it follows that the act of designing a protocol with minimal cmf (π) is equivalent to

finding a tree with minimum expected path length from the root to the leafs. The latter is, in turn,
equivalent to minimizing the length of the expected code length for a categorical distribution Lπ.
Therefore, based on Shannon’s source coding theorem we have that

min
π

Hs(Lπ) ≤ cmf (D) ≤ min
π

Hs(Lπ) + 1,

matching the lemma statement.
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Figure 8: An example of the reduction employed in the proof of Lemma 2.1. The yellow and green
subgraphs correspond respectively to Ga and Gb. The global state (external memory) is shown in
orange. Each edge is annotated based on its capacity in the maximum flow reduction.

C Deferred proofs

C.1 Proof of Lemma 2.1

The number of symbols that can be transmitted from Alice to Bob in layer � is bounded by the
maximum flow of the following multi-source multi-sink maximum flow problem with node capacities:

• The nodes Va are the senders and the nodes Vb are the sinks.

• Each edge has capacity m�.

• Each node in V has capacity w�, whereas v0 has capacity γ�.

This problem can be reduced to a simple maximum flow problem (single source single-sink without
node capacities) in three steps:

1. All nodes in Va (resp. Vb) are connected to a new node A (resp. B) with edges of infinite
capacity.

2. Each node vi (with the exception of A,B and v0) is split into two nodes ini and outi
connected by an edge of capacity w�. Incoming edges to vi are connected to ini and
outgoing edges are connected to outi.

3. The same splitting procedure is performed for node v0, but now the internal edge has
capacity γ�.

Consider the transformed flow network as shown in Figure 8b. By the max-flow min-cut theorem,
the maximum value of the flow is equal to the minimum capacity over all cuts that separate Va ∪A
from Vb ∪B. The latter however can always be bounded by cut(A,B) + γ�. The first term of this
equation gives the weight of the smallest cut separating A and B in the reduced graph, excluding
those (orange) edges that touch v0: since the edges from A to Va have infinite capacity (resp. from B
to Vb), every such cut also separates Va and Vb. Notice also that every path from A to B includes at
least one internal edge of capacity w� and one normal edge of capacity m�. Combining the previous
observations one finds that cut(A,B) ≤ cut(Va,Vb)min{w�,m�}, where cut(Va,Vb) is the size of
the smallest cut that separates Va and Vb on G (the undirected and unweighted graph prior to the
reduction). The internal edge capacity of v0 in accounted by term γ�. The final expression is obtained
by summing the bound over all d layers.

C.2 Proof of Theorem 3.2

The proof consists of two main steps. First, the number of monochromatic rectangles of fisom will be
controlled using the number of graph isomorphism classes in X . Then, invoking Corollary B.1 will
result in a bound for cboth

fisom
. Second, the identified lower bound will be translated to a bound regarding

cone
fisom

based on Lemma D.1.
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There are 2(
v
2) labeled graphs on v nodes (i.e., counting orderings), the overwhelming majority of

which are connected. The number of connected labeled graphs on v nodes is

|Xa| = |Xb| = 2(
v
2)
(
1− 2v

2v
+ o

(
1

2v

))
= 2(

v
2)
(
1−O

( v

2v

))
,

which, for sufficiently large v, is very close to 2(
v
2) [49, p. 138]. Specifically, one may write

log2 |Xa| = log2 |Xb| = log2

(
2(

v
2)
(
1−O

( v

2v

)))
=

(
v

2

)
log2 2 + log2

(
1−O

( v

2v

))

≥ v(v − 1)

2
−O

( v

2v

)
(log(1− x) ≥ −O(1)x for x = o(1))

=
v(v − 1)

2
+ o(1)

and, similarly, log2 |Xa| = log2 |Xb| ≤ v(v−1)
2 . The number of permutations on v nodes is v!, which

implies that the number c(v) of isomorphism classes of v-node graphs is bounded by

log2 c(v) ≥ log2

( |Xa|
v!

)
(4)

=
v(v − 1)

2
− log2 (v!) + o(1) (5)

≥ v(v − 1)

2
− v log2

(v
e

)
− log2

(√
ve2
)
+ o(1) (since x! ≤

√
xe2 (x/e)x)

=
v2

2
− v log2

(
v
√
2

e

)
− log2

(√
ve2
)
+ o(1) (6)

By construction, X contains at least c(v)(1 + c(v))/2 classes. To obtain this bound, one assumes
that there do not exist any classes that differ only w.r.t. Gc and then notes that each unique class of X
may be build either by gluing two distinct or identical classes on v nodes (corresponding to graphs in
Xa and Xb). The bound then follows by counting all pairs of elements (there are c(v) of those) with
repetitions (e.g., for {a, b, c} the set of possible pairs are {(aa), (ab), (ac), (bb), (bc), (cc)}).
The number of monochromatic rectangles of fisom is at least the number of classes and thus Corol-
lary B.1 asserts:

cboth
fisom

log2 s = log2

({
minimum number of

monochromatic
rectangles

})

≥ log2

(
c(v)(c(v) + 1)

2

)

= 2 log2 c(v) + log2

(
1 +

1

c(v)

)
− 1 ≥ 2 log2 c(v)− 1 (7)

Substituting (6) into (7) gives:

cboth
fisom

log2 s ≥ v2 − 2v log2

(
v
√
2

e

)
− 2 log2

(√
ve2
)
− 1 + o(1)

= v2 − 2v log2

(
v
√
2

e

)
− log2

(
2ve2

)
+ o(1)

A bound on cone
fisom

can be derived with the help of Lemma D.1:

cone
fisom

log2 s ≥ cboth
fisom

log2 s− max
Gb,Gc

logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|) log2 s
= 2 log2 c(v)− 1− log2 c(v)

≥ v2

2
− v log2

(
v
√
2

e

)
− log2

(
2e
√
v
)
+ o(1).
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This lower bound derivation finishes by factoring cone
fisom

as a function of cboth
fisom

.

To conclude the proof, one notes the following elementary upper bound: to compute fisom(G), Bob
and Alice can simply send their entire edge-sets to each other and proceed to compute f(Ga, Gb, Gc)
independently. Then, since the number of edges of a graph v nodes are |Ea|, |Eb| ≤ v(v − 1)/2, it
suffices to exchange cfisom

≤ v(v − 1)/ log2 s = O(v2) symbols.

C.3 Proof of Theorem 3.3

I will begin by proving a more general result. Specifically, it will be shown that the expected
communication complexity is directly bounded by the entropy of the isomorphism class of a graph
sampled from G.

Lemma C.1. The expected number of symbols that Alice and Bob need to exchange to jointly compute
the isomorphism class fisom(G) of a graph sampled from G = (Ga, Gb, Gc) ∼ G is at least

cboth
fisom

(G) ≥ min
Gc

Hs(fisom(G)|Gc) .

Proof. The first step is to condition the expected communication complexity on Gc:

cfisom
(G) = min

π
EG[cfisom

(π)]

= min
π

∑
Gc

P(Gc) EG[cfisom
(π)|Gc] (due to the law of total expectation)

= min
π

∑
Gc

P(Gc) EG[cfc(π)] (by the definition fc(·, ·) := fisom(·, ·, Gc))

≥
∑
Gc

P(Gc)min
π

EG[cfc(π)] ≥ min
Gc

cfc(G).

Denote by Lπ the set of leafs of a protocol π that computes fc and by Lπ the random variable induced
by the distribution G (for brevity, the conditioning on Gc remains implicit in the following). We have
that

Hs(Lπ) =
∑
�∈Lπ

P(Lπ = �) logs

(
1

P(Lπ = �)

)
. (8)

Upon closer consideration, there are |Y| types of leafs such that Lπ =
⋃|Y|

y=1 Lπ,y, with each

subset Ll
π containing all leafs for which the protocol outputs the graph isomorphism class y. From

Lemma D.2 and because Lπ,1, . . . ,Lπ,|Y| form a partitioning of Lπ , we may write:

Hs(Lπ) ≥
|Y|∑
y=1

P(Lπ ∈ Lπ,y) logs

(
1

P(Lπ ∈ Lπ,y)

)
.

The term P(Lπ ∈ Lπ,y) seen above corresponds to the probability that class y will appear in our
sample:

P(Lπ ∈ Lπ,y) = P(f(Ga, Gb, Gc) = y)

therefore, minπ Hs(Lπ) ≥ Hs(f(G)|Gc) and the claim follows.

Coming back to the setting of the main theorem, denote by ky = |Ea|+ |Eb| the number of edges of
the graphs in class y (disregarding the edges Ec). For every Gc, we have that

P(fisom(G) = y |Gc) = ic(v) p
ky (1− p)2(

v
2)−ky = ic(v) p

ky (1− p)v(v−1)−ky .

Term ic(v) corresponds to the size of the corresponding isomorphism class. Specifically, when p is
not too small and cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1, it can be inferred that each isomorphism
class in the universe contains at most 2(v!)2 labeled graphs. The remaining n!− 2(v!)2 permutations
yield isomorphic graphs with cut larger than one.
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Claim C.1. For any δ > 0, cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1, and p ≥ (δ + logv)/v, we have
ic(v) ≤ 2(v!)2 with probability at least e−2e−δ

+ o(1).

Proof. To see this consider a labeled graph G ∈ X and let G′ = (V ′, E ′) be a second labeled graph
that is isomorphic to G, induced by a the label permutation V ′ = (Π(u) : u ∈ V). I claim that, if
there exist vi, vj ∈ Va for which Π(vi) ∈ Va and Π(vj) ∈ Vb, then G′ /∈ X (and the same holds if
there exist vi, vj ∈ Vb for which Π(vi) ∈ Vb and Π(vj) ∈ Vb).

The claim is proven by contradiction: suppose (for now) that Ga and Gb are connected. Then, for
every set S of cardinality v that is a strict subset of both Va and Vb (S corresponds to the nodes with
labels (1, · · · , v) in G′) the cut between S and its complement must be cut(S,V \S) =∑vi,vj

{vi ∈
S and vj /∈ S} =∑vi,vj

{vi ∈ S and vj ∈ (Va \S)}+
∑

vi,vj
{vi ∈ S and vj ∈ (Vb \S)} ≥ 1+1.

The latter, however, is impossible as we have assumed that ∀G′ ∈ X , we must have cut(V ′a,V ′\V ′a) =
cut(V ′b,V ′ \ V ′b) = 1. Therefore, the only valid permutations Π are those that abide to either (a) if

vi ∈ Va → Π(vi) ∈ Va and if vi ∈ Vb → Π(vi) ∈ Vb (there are (v!)2 such permutations), or (b) if
vi ∈ Va → Π(vi) ∈ Vb and if vi ∈ Va → Π(vi) ∈ Va (there are (v!)2 such permutations).

In the studied distribution, there is a non-zero probability that a disconnected graph appears. However,
the probability is exponentially small when p > log v/v. It is well known (see e.g., Theorem 4.1

by Frieze and Karoński [50]) that, for any δ > 0 and p = δ+log v
v , a random graph on v nodes is

connected with probability

P(Ga is connected) = P(Gb is connected) = e−e−δ

+ o(1)

and, by independence, P(G is connected) = e−2e−δ

+ o(1).

Based on the above observation, the conditional entropy of f(G) can be rewritten as

H2(fisom(G)|Gc) =
∑
y∈Y

P(fisom(G) = y|Gc) log2

(
1

P(fisom(G) = y|Gc)

)

≥
v(v−1)∑
k=0

(
v(v−1)

k

)
ic(v)

ic(v) p
k(1− p)v(v−1)−ky log2

(
1

ic(v) pk(1− p)v(v−1)−k

)

=

v(v−1)∑
k=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−k

(
− log2 ic(v) + v(v − 1) log2

(
1

1− p

)
+ k log2

(
1− p

p

))

= log2

(
1− p

p

)⎛⎝v(v−1)∑
k=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−kk

⎞
⎠+ v(v − 1) log2

(
1

1− p

)
− log2 ic(v)

Let B be a binomial random variable with parameters v(v − 1) and p. The summation term is
equivalent to the expectation of B:

v(v−1)∑
m=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−kk = E[B] = v(v − 1)p

and, therefore,

H2(Lπ) ≥ log2

(
1− p

p

)
v(v − 1)p+ v(v − 1) log2

(
1

1− p

)
− log2 ic(v)

= v(v − 1)H2(p)− log2 ic(v) (by definition H2(p) = log2

(
1−p
p

)
p+ log2

(
1

1−p

)
)

= v(v − 1)H2(p)− 2 log2 v!− 1 (see Claim C.1 ic(v) ≤ 2(v!)2)

≥ v(v − 1)H2(p)− 2

(
v log2

(v
e

)
+

1

2
log2

(
ve2
))− 1 (since x! ≤

√
xe2 (x/e)x)

= v2 H2(p)− v
(
2 log2

(v
e

)
+H2(p)

)
− log2

(
2ve2

)
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Invoking Lemma C.1, one obtains:

cboth
fisom

(Bv,p) ≥ min
Gc

H2(fisom(G)|Gc)

log2 s

≥ v2 Hs(p)− v
(
2 logs

(v
e

)
+Hs(p)

)
− logs

(
2ve2

)
= β (9)

Then Lemma D.1 gives:

cone
fisom

(Bv,p) log2 s ≥ cboth
fisom

(Bv,p) log2 s− max
Gb,Gc

logs (|{fisom(Ga, Gb, Gc) : Ga ∈ Xa}|) log2 s

= cboth
fisom

(Bv,p) log2 s− log2

( |Xa|
v!

)

= cboth
fisom

(Bv,p) log2 s−
v(v − 1)

2
+ log2 (v!)

≥ v(v − 1)

(
H2(p)− 1

2

)
−
(
v log2

(v
e

)
+

1

2
log2

(
ve2
))− 1

= v2H2(p)− v

2

(
2 log2

(v
e

)
+H2(p)

)
− 1

2
log2

(
2ve2

)− v2 − v + vH2(p) + 1

2

=
β log2 s− v2 + v(1−H2(p))− 1

2

implying cone
fisom

(Bv,p) ≥ β
2 − v2−v(1−H2(p))+1

2 log2 s .

C.4 Proof of Theorem 3.4

According to Otter [51], the number of unlabeled trees on v nodes grows like

t(v) ∼ c αv v−5/2,

where the values c and α known to be approximately 0.5349496 and 2.9557652 (sequence A051491
in the OEIS). Moreover, it was shown in the proof of Theorem 3.2, the number of monochromatic
rectangles is at least (t(v) + 1) t(v)/2.

Corollary B.1 then implies

cboth
fisom

≥ logs

(
(t(v) + 1) t(v)

2

)

≥ logs

(
t(v)2

2

)

∼ 2 logs

(
αv v−5/2

)
− logs (c

2/2) ∼ 2v logs α− 5 logs v + logs 7 = β

Further, from Lemma D.1 one can derive:

cone
fisom

≥ cboth
fisom

− max
Gb,Gc

logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|)
= cboth

fisom
− logs t(v)

∼ logs

(
αv v−5/2

)
− logs (c/2) ∼ v logs α−

5

2
logs v +

1

2
logs 14

implying cone
fisom

≥ β+logs 2
2 .

Let me now consider the case that G is sampled uniformly at random from the set of all trees in X .
It is a consequence of Lemma C.1 that when the graph (Ga, Gb, Gc) ∼ G (conditioned on Gc) is
sampled uniformly at random from a collection of isomorphism classes, the expected communication
complexity is at least

cboth
fisom

(Tv) ≥ min
Gc

logs |{f(Ga, Gb, Gc) : G ∈ X s.t. Gc}|.
This can be seed to be identical to the worst-case bound encountered above. The derivation thus can
be carried out analogously (and the same holds for cone

fisom
(Tv) by Lemma D.1).

Finally, the upper bound O(v) follows by the same argument as in the proof of Theorem 3.2, where
now the number of edges of each of Ga and Gb is v − 1.
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C.5 Proof of Lemma 3.1

In general terms, the impossibility statement comes as a consequence of the definition of communica-
tion complexity: if the number of required exchanged symbols exceeds the symbols the learner can
exchange (i.e., its communication capacity) then the latter will not be able to identify exactly fisom.

The specifics depend on the appropriate definition:

Majority-voting necessitates |MG| ≥ μ, meaning that when |MG| ≥ μ > n − 2v at least one of
the two parties should have gathered sufficient information to determine fisom(G) at the final layer.
Therefore, m should be “one”. With consensus on the other hand, we have that |MG| ≥ n−μ > n−v
which implies that both parties need to know the class.

The worst-case communication complexity definition guarantees that there exists at least one input

for which the required number of symbols is c
(m)
fisom

. Thus, since D is densely supported on X , the

impossibility must occur with strictly positive probability. The impossibility also applies to any
universe X ′ that is a strict superset of X . This can be easily derived by conditioning on X ⊂ X ′
(which can only decrease the communication complexity) and repeating the analysis identically.

The implications of the expected complexity bound, are two-fold:

First, if g is adaptive, its capacity cg is a random variable over the input distribution. The bound then
asserts that E[cg] ≥ cmfisom

(D).

For networks of fixed size, one may derive a bound on the probability of error. Specifically, fix π∗ to
be the protocol that achieves minimal expected length and let βm be an upper bound of π∗ length
over all inputs. By Lemma D.3, for any δ ∈ [0, 1] one has

P
(‖π∗(G)‖m > δ cmfisom

(D)
) ≥ 1− δ

(βm/cmfisom
(D))− δ

.

The above is a bound on the probability of error for a network that satisfies cg ≤ 2δ cmfisom
(D).

One can also generalize the previous result to distributions D′ defined on a strict superset X ′ of X
that is (up to normalization) identical with D within X :

for all G ∈ X : P(G ∼ D
′) = cP(G ∼ D) with c =

∑
G∈X

P(G ∼ D
′) .

Then, the probability of error w.r.t. D′ is at least c 1−δ
(βm/cmfisom

(D))−δ .

D Helpful lemmata

Lemma D.1. In the universe considered in Section 3, the following hold for any D:

cone
f ≥ cboth

f − max
Gb,Gc

logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|)
cone
f (D) ≥ cboth

f (D)− max
Gb,Gc

logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|).

Proof. Consider the setting of cone
f , where for a successful termination it suffices for one party to

compute the output of f . Suppose w.l.o.g., that this party is Alice. In particular, Alice determines class
y = f(Ga, Gb, Gc) based on a protocol π of minimal length. In this setting, Bob does not know y but

he is aware of X �
b (and Gc), where � is the leaf of the protocol tree at input (Ga, Gb, Gc). Therefore,

both parties know that the class must belong to the set {f(Ga, Gb, Gc) : Gb ∈ X �
b and Ga ∈ Xa}.

It is a consequence that there exists a protocol π′ of length

‖π′(Ga, Gb, Gc)‖both ≤ ‖π(Ga, Gb, Gc)‖one + logs |{f(Ga, Gb, Gc) : Gb ∈ X �
b and Ga ∈ Xa}|

that results in both parties knowing y. The protocol π′ entails first simulating π and then Alice
sending to Bob the index of y in the set of feasible classes. Moreover, since f corresponds to the
graph isomorphism problem, for Alice to know y, she must also know the isomorphism class of Bob.
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Therefore, the feasible set of classes contains only the feasible subgraph isomorphism classes of Ga,
which are at most

|{f(Ga, Gb, Gc) : Gb ∈ X �
b and Ga ∈ Xa}| ≤ max

Gb,Gc

|{f(Ga, Gb, Gc) : Ga ∈ Xa}|

The claimed inequalities then follow by the optimality of the protocol π and since the same construc-
tion can be repeated for every input.

Lemma D.2. Let X be a categorical random variable with sample space X . For any partitioning
X = A1, · · · ,Ak we have that

Hs(X) ≥
k∑

i=1

P(X ∈ Ai) logs

(
1

P(X ∈ Ai)

)

Proof. The proof is elementary. It relies on the inequality P(X = x) ≤ P(X ∈ Ai) that holds for
all x ∈ Ai:

H2(X) =
k∑

i=1

P(X ∈ Ai)
∑
x∈Ai

P(X = x)

P(X ∈ Ai)
logs

(
1

P(X = x)

)

≥
k∑

i=1

P(X ∈ Ai) min
x∈Ai

logs

(
1

P(X = x)

)

=

k∑
i=1

P(X ∈ Ai) logs

(
1

maxx∈Ai
P(X = x)

)

≥
k∑

i=1

P(X ∈ Ai) logs

(
1∑

x∈Ai
P(X = x)

)
=

k∑
i=1

P(X ∈ Ai) logs

(
1

P(X ∈ Ai)

)
,

as claimed.

Lemma D.3. For any random variable X ≤ β and δ ∈ [0, 1] we have P(X > δ E[X]) ≥ 1−δ
r−δ ,

where r = β/E[X].

Proof. For any t ≤ β,

E[X] =
∑
x≤t

P(X)x+
∑
x>t

P(X)x ≤ P(X ≤ t) t+ P(X > t)β = (1− P(X > t))t+ P(X > t)β

or, equivalently, P(X > t) ≥ (E[X] − t)/(β − t). The final inequality is obtained by setting
t = δE[X].
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