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A Case-by-case evaluation of learning rules (extension of Section 2.3)

In Table S1, we provide a case-by-case evaluation of the REINFORCE [7], REINFORCE with baseline, Action-
Averaged REINFORCE (AAR), and Reward-Agnostic REINFORCE (RAR) learning rules for every action taken at
and every correct response ȳt. Here, pR ≡ pR(xt,wt) = exp(xt·wt)

1+exp(xt·wt)
from Eq. 1, and all of the other notation is the

same as in text.

Table S1: Update to the k-th weight component according to different learning rules, after each pair of a chosen action,
at and the correct action, ȳt. The trial index t is omitted from the values in the table. Sub-tables represent four learning
rules, (a) REINFORCE, (b) REINFORCE with baseline, (c) action-agnostic REINFORCE, and (d) reward-agnostic
REINFORCE, the first two of which correspond to equations in text.

a. REINFORCE (Eq. 4)
at = L at = R

ȳt = L −αk(pR)[x]k 0

ȳt = R 0 αk(1− pR)[x]k

b. REINFORCE with baseline (Eq. 5)
at = L at = R

ȳt = L −αk(1− βk)pR[x]k −αkβk(1− pR)[x]k

ȳt = R αkβkpR[x]k αk(1− βk)(1− pR)[x]k

c. AAR
at = L at = R

ȳt = L −αkpR(1− pR)[x]k

ȳt = R αkpR(1− pR)[x]k

d. RAR
at = L at = R

ȳt = L −αk(pR)[x]k

ȳt = R αk(1− pR)[x]k
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B Inference of weight trajectory (extension of Section 2.4)

Here, we elaborate on our inference procedure for weights w and hyperparameters φ. Our weights on a trial t are the
K-element vector wt corresponding to the K-elements in the input vector on that trial, xt. We arrange all of the {wt}
into a single vector by concatenating the kth element from each wt into a vector of length T , then concatenating those
K vectors into a single vector of length KT . That is, w = [wk=1,t=1, . . . , w1,T , w2,1, . . . , wK,T ].

The prior distribution on our weights w is given according to N (u, C) with mean u = D−1v and covariance
C−1 = D>Σ−1D. Here D is a difference matrix, constructed as K copies of a T × T matrix stacked block
diagonally, where each T × T block has +1 along the main diagonal and −1 along the lower off-diagonal. Practically,
[∆w]t = [Dw]t, whileD−1 is effectively taking a cumulative sum. Σ is aKT×KT diagonal matrix where the diagonal
vector is assembled by replicating each of the σk hyperparameters T -times, diag(Σ) = [σ1, . . . , σ1, σ2, . . . , σK ]. Using
Eq. 1, we define the likelihood of the model as L =

∏N
t=1 p(yt|xt,wt).

Using log-prior and log-likelihood, we can numerically optimize the log-posterior w.r.t. w for a fixed set of hy-
perparameters φ (using the BFGS algorithm [5]). Defining our maximum a posteriori estimate to the weights as
wMAP, we can then use the Hessian matrix, H , at wMAP to make a Laplace approximation to the posterior distribution:
p(w|D;φ) = N (wMAP,−H−1). We are now able to approximate the marginal likelihood, or evidence, of our model:

p(y|x, φ) =
p(y|x,w) p(w|φ)

p(w|D;φ)
≈ L · N (w|u, C)

N (w|wMAP,−H−1)
. (S1)

We then numerically maximize the model evidence with respect to the hyperparameters, φ (see Alg. 1 for pseudocode).

Algorithm 1 Inference of weight trajectories and hyperparameters
Require: inputs x, choices y
Require: initial hyperparameters φ0, initial weights w0

1: repeat
2: repeat
3: numerically optimize log-posterior w.r.t. w, given current φ (Eq. 6)
4: until w converges return wMAP and the Hessian H
5: determine Laplace approximation to the posterior distribution, N (wMAP,−H−1)
6: calculate model evidence (Eq. S1)
7: take one step in numerical optimization of log-evidence w.r.t φ
8: until φ converges return current wMAP and φ

C Additional information about datasets studied (extension of Section 3)

Here we provide additional details about the datasets we analyzed in Section 3.

C.1 Mouse visual detection task

We obtained the publicly available behavioral dataset associated with [4] from [6]. This dataset comprises decision-
making data from 101 mice across seven laboratories We restrict our analysis here to the mice from one of the seven
laboratories, resulting in the 13 animals mentioned in the text. This gave us a large enough cohort for examining
commonalities in learning across animals, while also being small enough that we could fit all models to all animals with
reasonable compute resources. For each of the 13 mice we studied, we fit all of our models to their first 6000 trials of
training. During these trials, most animals progressed from chance level (50%) accuracy to above 70% (and often much
higher) accuracy on the “easy” stimuli (different stimuli are introduced over time, so we plot the learning curves using
only the “easy” stimuli that are present at all sessions); see Fig. S1 for the learning curves for these animals.

C.2 Rat auditory discrimination task

We obtained the publicly available dataset associated with [2] from [1]. We analyzed the first 6000 trials from each
of the 19 rats in this dataset (excluding pre-training trials, where the task rule was not enforced and all choices were
rewarded; see [1]). During this stage of training, most rats progress from chance level (50%) accuracy to 55-70% (this
is a particularly difficult task for the animals to learn due, to the delay between tones); see Fig. S2 for the learning
curves for these animals.
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Figure S1: Accuracy on “easy” stimuli (different stimuli are introduced over time, so we plot the learning curves using
only the “easy” stimuli that are present at all sessions) across 10,000 trials for 13 mice learning IBL visual detection
task. Vertical lines indicate session boundaries; individual data points indicate accuracy for a given session.
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Figure S2: Accuracy across 6,000 trials for 19 rats learning auditory discrimination task. Vertical lines indicate session
boundaries; individual data points indicate accuracy for a given session.
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D Different learning rates for different weights (extension to Section 3.3)

In Fig. S3, we graphically explore the consequences of having different learning rates for different weights. Panel
(a) corresponds to having a single learning rate for all weights. For a task like the IBL task, the stochastic gradient
ascent update associated with the REINFORCE learning rule points in the direction of the gradient of the expected
reward (since a REINFORCE update for any sampled stimulus-action pair will cause the animal to improve for any
other stimulus). Thus, for a single learning rate parameter, the direction of the weight update is in the direction of
the gradient of the expected reward landscape. In comparison, when different learning rates are permitted for each
weight, the weight update direction may not be in the direction of steepest ascent in the reward landscape (panel (b)).
Consequently, having separate learning rates for each weight allows for a broader range of learning trajectories in the
expected reward landscape (panel (c)).

less learnable
dimension

more learnable
dimension

a b c
learning
trajectories

expected reward
landscape

Figure S3: Schematic for the interpretation of having different learning rates for different weights. (a) Single learning
rate for all weights. (b) Different learning rates for different weights. (c) In the case of different learning rates, the
learning trajectory may not follow the path of steepest ascent in the reward landscape.

E Additional recovery analyses (extension to Section 3.1)

In Figure S4, we perform an equivalent analysis to that shown in Figure 2 and show that we can recover the REINFORCE
with baseline learning rule parameters in simulation. Meanwhile, in Figure S5, we explore the effect of Model Mismatch.
In panel (c), we show that AIC allows us to correctly identify the generative model from RF0, RF1, RFK and RFβ when
data is simulated from each of these models and then fit with each of these models.

F Noise and RFβ model (extension to Section 3.4)

In Figure S6, we explore the necessity of including a noise term (i.e. allowing σk 6= 0) with the RFβ model. As
shown in Figure 3, the REINFORCE with baseline model does a good job of capturing the trial-to-trial updates in
the weights governing an animal’s policy. This then begs the question of whether it is necessary to include the noise
term in the weight update of Equation 2. In Figure S6, we explore the effect of including and excluding a noise term
when recovering weights generated from an RFβ model with a small amount of noise (using the noise hyperparameters
recovered from fitting real animal data), and we see that the model without noise fails to appropriately capture many of
the trial-to-trial updates in the simulated weight trajectory. Additionally, AIC is worse for the noiseless model. Hence,
it is important to include the noise term when fitting real animals’ data with the RFβ model.
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Figure S4: Recovery of weights in t (a) Here we simulate a set of weights (in grey) using our REINFORCE with
baseline model (similar to Fig. 2 for REINFORCE). We see that our recovered weights (plotted with a 95% credible
interval) closely follow the true simulated weights. (b) Here we plot the learning components of the weights in (a). (c)
Here we plot the noise components of the weights in (a). (d) Here we recover the six hyperparameters of the model.
The σ and α hyperparameters are recovered in log2 space. We found that our optimization has a more robust recovery
of the quantity α · β rather than the baseline hyperparameters β directly. This α · β quantity is recovered in non-log
space. All error bars are calculated in non-log space and represent ±1SE. All hyperparameters are accurately recovered.
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Figure S5: Exploring the impact of model mismatch. (a) Here we simulate four sets of weight trajectories (grey lines)
from four of our models: no learning, REINFORCE with a single learning rate, REINFORCE with multiple learning
rates, and REINFORCE with baselines. These four simulated trajectories (model indicated by row) are then recovered
using each of the four models (model indicated by column; recovered weight trajectories are colored). Weights are
simulated for 10,000 trials, and the depicted range of weight values is from -6 to +6. We can see that the weight
trajectories recovered are all accurate, regardless of the simulated or recovery model. Gray background shading indicates
that the recovery model matches the generative model. (b) The same as in (a) except only the learning component of
the recovery is shown (the first column is the recovery under the no learning model, so there is no learning component
to show). We see that despite the uniformity of the recovered weights, the recovered learning components vary greatly
depending on the recovery model. (c) We calculate the AIC for each of the 16 models fit. Here each line corresponds
to a row in (a), where the value plotted is recovered AIC minus the AIC of the recovery under the generative model.
We see that for each line (each set of weights generated under a different generative model), the recovery under the
matching model is the one with the lowest AIC. This suggests that our method can properly select between models.
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Figure S6: Recovery of weights without noise. (a) Here we simulate weights from our REINFORCE with baseline
model using very little noise (grey lines) and recover weights for a model without noise (colored lines). That is, we
optimize for the α and β hyperparameters while fixing the σ to a negligible amount (σ = 2−32 specifically). The
model was simulated with a small amount of noise (σ = 2−8), such that the learning contribution accounts for the vast
majority of the weight trajectory. While S5 shows that models with noise all tend to recover roughly the same weight
trajectories (independent of the learning model), fitting without noise can cause significant errors in the weight recovery
(see red circle). (b) The same set of simulated weights as in (a), recovered with the standard REINFORCE with baseline
model (with noise). We see that adding back noise allows the model to precisely capture the simulated weights. There
is also a substantial decrease in model AIC (∆AIC > 100), indicating that noise clearly improves the model.
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G Motivation for RAR and AAR Learning Rules (extension to Section 3.5)

In Fig. 4, we compared the REINFORCE learning rule to two closely related learning rules, which we termed “Reward-
Agnostic REINFORCE” (RAR) and “Action-Averaged REINFORCE” (AAR). Here we provide additional motivation
for each of these learning rules.

G.1 Reward-Agnostic REINFORCE (RAR)

We obtain the Reward-Agnostic REINFORCE (RAR) learning rule by assuming that the animal is trying to minimize
a cross-entropy loss, labeled Et at trial t, between the animal’s choice probability, pR,t or 1− pR,t, and the “correct”
choice probability for the trial. This “correct” choice probability can be written as a Kronecker delta, δȳt,R, which is 1
if ȳt = R and 0 otherwise. Similarly for δȳt,L.

Et = −δȳt,R log(pR,t)− δȳt,L log(1− pR,t) (S2)

The gradient descent update for the cross-entropy loss is:

∆w = −α∂E
∂w

=

{
α(1− pR)x ȳ = R

−αpRx ȳ = L
(S3)

Observe: this looks extremely similar to the REINFORCE update given in Eq. 4 and in Table S1 except that the RAR
update does not depend on the action that the animal took, and instead all that matters is the side that was associated
with the reward. For the same learning rate, we would expect that REINFORCE and RAR would give the same weight
updates if the animal chose the correct action on every trial. Because of the differences in the updates for RAR and
REINFORCE for error trials (for the reward function in {0, 1}, REINFORCE does not provide a weight update on error
trials; in comparison, RAR gives an update regardless of the action that the animal took), an artificial agent using RAR
should learn the task faster than agent learning using REINFORCE with the same learning rate.

G.2 Action-Averaged REINFORCE (AAR):

By assuming that the animal maximizes the expected reward landscape directly instead of sampling its action from
action space A, we obtain the Action-Averaged REINFORCE (AAR) learning rule.

Specifically, let’s consider the animal’s expected reward on a given trial:

J(w) =
∑
s

µ(s)
∑
a

r(s, a)π(a|s,w), (S4)

where µ(s) is the animal’s estimate of the probability distribution over stimuli, s; r(s, a) is the reward associated with
taking action a when presented with stimulus s; and π(a|s,w) is the animal’s policy, which is parameterized by weights
w, and which gives the probability of taking action a when presented with stimulus s.

The gradient of the expected reward (where∇ = ∇w) is:

∇J(w) =
∑
s

µ(s)
∑
a

r(s, a)∇π(a|s,w) (S5)

If we assume that the animal uses only its most recent trial in order to estimate the state probability function, µ(s) is a
delta function peaked at st. Furthermore, let π(a|s,w) be the policy we considered in Eq. 1. Then we get the gradient
ascent update:

∆w = α∇J(w) = α
∑
a

r(st, a)∇π(a|st,w) (S6)

= α [r(st, R)− r(st, L)] π(R|st,w)π(L|st,w)xt (S7)

When r(st, R) and r(st, L) are in {0, 1}, and when we allow weight-specific learning rates, this reduces to the AAR
update we provided in text (where, as in text, we have omitted the subscript t):

[∆w]k = αk · pȳ · εȳ(1− pȳ)[x]k (S8)

Here, ȳ is the correct answer for this trial and pȳ ≡ p(ȳ|s,w) is the probability that the animal makes the correct choice
on this trial; εR = +1; εL = −1 (this is the same notation that we used in text). This rule was also proposed by Bak
et al. [3], where it was called “RewardMax”.
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H Retrieved weights for mice & rats and RFK & RFβ learning rules

In Figure Fig. S7, we show the weight trajectories (left column) and their decompositions into learning and noise
components (right column) for 13 mice learning the International Brain Laboratory’s visual detection task for the RFK
learning rule introduced in Eq. 4. We show the same for 13 rats learning the auditory discrimination task in Fig. S9
(omitting 6 of our 19 rats so as to fit the figure on a single page). In Fig. S7, the orange line corresponds to the weight
the animal places on its bias, while the purple line shows its weight on the stimulus; in Fig. S9, the orange line indicates
the weight the animal places on its bias, and the red and blue indicate the weights it places on each of the stimuli
(the task is 2-dimensional). In each case, grey vertical lines partition sessions. In the right panel, the solid line shows
the learning contribution of the RFK learning rule to the trial-to-trial weight changes; the noise contribution to the
trial-to-trial weight trajectories is indicated by the dashed line.

Crucially, we see that the phenomenon observed for the example mouse shown in Fig. 3 is observed across all animals
in both cohorts: while the RFK model can capture trial-to-trial changes in the weights that the mice and rats use to make
their decisions (left panel), it is the noise component, not the learning component in this model that is responsible for
capturing these changes (right panel; large shaded regions). This is particularly true for the bias weight for both sets of
animals.

In Figures Fig. S8 and Fig. S10, we show the analogous plots to those mentioned above but when the RFK learning
rule is replaced with the RFβ learning rule of Eq. 5. We see that for all 13 mice in the IBL cohort, and for the majority
of rats learning the auditory discrimination task, the RFβ rule is able to capture trial-to-trial weight changes with the
learning component of this rule. Note: the initial contribution to the noise component (at t = 0) is removed from the
right column in all plots for visibility, resulting in the learning components shown in the right panel to be vertically
shifted relative to the full weight trajectories shown in the left panel.

10



0 1000 2000 3000 4000 5000 6000

-3
0
3

trials

w
ei

gh
ts

decomposition into learning & noiseinferred weight trajectories

bias

stimulus
example

mouse

IBL mice modeled with REINFORCE

Figure S7: See figure description above.
11



0 1000 2000 3000 4000 5000 6000

-3
0
3

trials

w
ei

gh
ts

decomposition into learning & noiseinferred weight trajectories

bias

stimulus
example

mouse

IBL mice modeled with REINFORCE with baselines

Figure S8: See figure description above.
12



0 1000 2000 3000 4000 5000 6000
-2

0

2

trials

w
ei

gh
ts

decomposition into learning & noiseinferred weight trajectories

tone A

tone B

example rat

rats modeled with REINFORCE

bias

Figure S9: See figure description above.
13



0 1000 2000 3000 4000 5000 6000
-2

0

2

trials

w
ei

gh
ts

decomposition into learning & noiseinferred weight trajectories
tone A

tone B

example rat

rats modeled with REINFORCE with baselines

bias

Figure S10: See figure description above.
14



References
[1] A. Akrami and C. D. Brody. Human and Rat Behavioral Data in Auditory Parametric Working Memory Tasks,

May 2020. URL https://figshare.com/articles/Human_and_Rat_Behavioral_Data_in_Auditory_Parametric_
Working_Memory_Tasks/12213671.

[2] A. Akrami, C. D. Kopec, M. E. Diamond, and C. D. Brody. Posterior parietal cortex represents sensory history and mediates its
effects on behaviour. Nature, 554(7692):368, 2018. Data available at: https://doi.org/10.6084/m9.figshare.12213671.
v1.

[3] J. H. Bak, J. Y. Choi, A. Akrami, I. Witten, and J. W. Pillow. Adaptive optimal training of animal behavior. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
1947–1955, 2016.

[4] IBL, V. Aguillon-Rodriguez, D. E. Angelaki, H. M. Bayer, N. Bonacchi, M. Carandini, F. Cazettes, G. A. Chapuis, A. K.
Churchland, Y. Dan, E. E. Dewitt, M. Faulkner, H. Forrest, L. M. Haetzel, M. Hausser, S. B. Hofer, F. Hu, A. Khanal, C. S.
Krasniak, I. Laranjeira, Z. F. Mainen, G. T. Meijer, N. J. Miska, T. D. Mrsic-Flogel, M. Murakami, J.-P. Noel, A. Pan-Vazquez,
J. I. Sanders, K. Z. Socha, R. Terry, A. E. Urai, H. M. Vergara, M. J. Wells, C. J. Wilson, I. B. Witten, L. E. Wool, and A. Zador.
A standardized and reproducible method to measure decision-making in mice. bioRxiv, 2020. doi: 10.1101/2020.01.17.909838.
Data available at: https://doi.org/10.6084/m9.figshare.11636748.v7.

[5] J. Nocedal and S. J. Wright. Quasi-newton methods. Numerical optimization, pages 135–163, 2006.

[6] The International Brain Laboratory. A standardized and reproducible method to measure decision-making in mice: Data, Feb.
2020. URL https://doi.org/10.6084/m9.figshare.11636748.

[7] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8
(3-4):229–256, May 1992. doi: 10.1007/bf00992696.

15

https://figshare.com/articles/Human_and_Rat_Behavioral_Data_in_Auditory_Parametric_Working_Memory_Tasks/12213671
https://figshare.com/articles/Human_and_Rat_Behavioral_Data_in_Auditory_Parametric_Working_Memory_Tasks/12213671
https://doi.org/10.6084/m9.figshare.12213671.v1
https://doi.org/10.6084/m9.figshare.12213671.v1
https://doi.org/10.6084/m9.figshare.11636748.v7
https://doi.org/10.6084/m9.figshare.11636748

	Case-by-case evaluation of learning rules (extension of Section 2.3)
	Inference of weight trajectory (extension of Section 2.4)
	Additional information about datasets studied (extension of Section 3)
	Mouse visual detection task
	Rat auditory discrimination task

	Different learning rates for different weights (extension to Section 3.3)
	Additional recovery analyses (extension to Section 3.1)
	Noise and RF model (extension to Section 3.4)
	Motivation for RAR and AAR Learning Rules (extension to Section 3.5)
	Reward-Agnostic REINFORCE (RAR)
	Action-Averaged REINFORCE (AAR):

	Retrieved weights for mice & rats and RFK & RF learning rules

