
In the entirety of the Appendix, we shall use π∗ instead of π(θ∗) for increased readability.

A Definition of the operators

Proposition 1. Assuming all returns R(τ) are positive, Eq. 2 can be seen as doing a gradient step to
minimize KL(Rπt||π) with respect to π, where Rπt is the policy defined by

Rπt(τ) =
1

J(πt)
R(τ)πt(τ) . (5)

Hence, the two operators associated with OP-REINFORCE are:

Iτπ(τ) = Rπ(τ) , Pτµ = arg min
π∈Π

KL(µ||π) , (6)

where Π is the set of realizable policies.

Proof. Denoting µ the distribution over trajectories such that µ(τ) ∝ R(τ)π(τ), we have

KL(µ||π) =

∫
τ

µ(τ) log
µ(τ)

π(τ)
dτ (22)

∂KL(µ||π)

∂θ
= −

∫
τ

µ(τ)∇θ log π(τ) dτ (23)

∝ −
∫
τ

R(τ)π(τ)∇θ log π(τ) dτ (24)

by definition of µ(τ).

Proposition 3. If all Qπ(s, a) are positive, Eq. 4 can be seen as doing a gradient step to minimize

DV πtπt(Q
πtπt||π) =

∑
s

dπt(s)V πt(s)KL(Qπtπt||π) , (7)

where DV πtπt and the distribution Qππ over actions are defined as

Dz(µ||π) =
∑
s

z(s)KL
(
µ(·|s)||π(·|s)

)
, (8)

Qππ(a|s) =
1∑

a′ Q
π(s, a′)π(a′|s)

Qπ(s, a)π(a|s) =
1

V π(s)
Qπ(s, a)π(a|s) . (9)

Hence, the two operators associated with the state-action formulation are:

IV π(s, a) =

(
1

Eπ[V π]
dπ(s)V π(s)

)
Qππ(a|s) (10)

PV µ = arg min
z∈Π

∑
s

µ(s)KL
(
µ(·|s)||z(·|s)

)
. (11)

Proof.∑
s

dπt(s)V π(s)
∂KL(Qππt||π)

∂θ
= −

∑
s

dπt(s)V π(s)
∑
a

Qππt(a|s)∇θ log π(a|s)

= −
∑
s

dπt(s)
∑
a

Qπ(s, a)πt(a|s)∇θ log π(a|s) , (25)

and we recover the update of Eq. 4.
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B π∗ is a stationary point when using the KL

Proposition 2. π(θ∗) is a fixed point of Pτ ◦ Iτ .

Proof. We have

∇θKL(Rπ∗||π)

∣∣∣∣
π=π∗

=

∫
τ

R(τ)π∗(τ)∇θ log π∗(τ) dτ (26)

= 0 by definition of π∗ . (27)

Proposition 4. π(θ∗) is a fixed point of PV ◦ IV .

Proof. We have

∇θ
∑
s

dπ
∗
(s)V π

∗
(s)KL(Qπ

∗
π∗||π)

∣∣∣∣
π=π∗

=
∑
s

dπ
∗
(s)
∑
a

π∗(a|s)Qπ
∗
(s, a)

∂ log πθ(a|s)
∂θ

∣∣∣∣
θ=θ∗

(28)
= 0 by definition of π∗ . (29)

C Expected return of the improved policy

We use the same proof for the following two propositions:
Proposition 5. The performance of the improved policy Iτπ is given by

J(Iτπ) = J(π)

(
1 +

Varπ(R)

(Eπ[R])2

)
≥ J(π). (12)

Proposition 9. Let f be an increasing function such that f(x) > 0 for all x. Then

J
(
f(R)π

)
= J(π) +

Covπ
(
R, f(R)

)
Eπ[f(R)]

≥ J(π). (17)

Proof. We now show the expected return of the policy zπ, defined as

zπ(τ) =
1∫

τ ′
z(τ ′)π(τ ′) dτ ′

z(τ)π(τ) , (30)

for any function z over trajectories. In particular, we show that choosing z = R leads to an
improvement in the expected return.

J(zπ) =

∫
τ

R(τ)(zπ)(τ) dτ (31)

=

∫
τ

R(τ)z(τ)π(τ)∫
τ ′
z(τ ′)π(τ ′) dτ ′

dτ (32)

=

(∫
τ ′
R(τ ′)π(τ ′) dτ ′

) ∫
τ
R(τ)z(τ)π(τ) dτ∫

τ ′
z(τ ′)π(τ ′) dτ ′

∫
τ ′
R(τ ′)π(τ ′) dτ ′

(33)

= J(π)
Eπ[Rz]

Eπ[R]Eπ[z]
(34)

= J(π)

(
1 +

Covπ(R, z)

Eπ[R]Eπ[z]

)
, (35)

where Covπ(R, z) = Eπ[Rz]− Eπ[R]Eπ[z].
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When z = R, the expected return becomes

J(Rπ) = J(π)

(
1 +

Varπ(R)

(Eπ[R])2

)
(36)

≥ J(π) . (37)

D π∗ is a stationary point when using α-divergence

Proposition 7. Let α ∈ (0, 1). Then π(θ∗) is a fixed point of Pατ ◦ I
1
α
τ with Pατ defined by

Pατ µ = arg min
π∈Π

Dα(µ||π) , (15)

where Dα is the α-divergence or Rényi divergence of order α.

Proof. We now show that π∗ is the fixed point of Pατ ◦ Iατ . The minimizer of dα with respect to
its second argument can be computed through iterative minimization of Dα′ for any other nonzero
α′ [10]:

zt+1 = arg min
z
Dα′

(
πα/α

′
z

1−α/α′
t

∣∣∣∣∣∣z) . (38)

In the remainder of this proof, we shall use α′ = 1, leading to

zt+1 = arg min
z
KL(παz1−α

t ||z). (39)

We know that π∗ is a stationary point of P1
τ ◦ I1

τ , i.e.

π∗ = arg min
z
KL(Rπ∗||z). (40)

Hence, we see that, if πα(π∗)1−α = Rπ∗, the iterative process described in Eq. 39 initialized with
z0 = π∗ will be stationary with zi = π∗ for all i. This gives us the form we need for π = Iατ π∗.
Indeed, we must have

πα(π∗)1−α = Rπ∗ (41)

(Iαπ∗)α(π∗)1−α = Rπ∗ (42)

Iαπ∗ = [R(π∗)α]1/α (43)

= R1/απ∗ (44)

Iα = (π −→ R1/απ). (45)

Proposition 8. Let α ∈ (0, 1). Then π(θ∗) is a fixed point of PαV ◦ I
1
α

V with

IαV π = (Qπ)
1
απ , PαV,πµ = arg min

z∈Π

∑
s

dπ(s)Zπµ (s)Dα(µ||z) , (16)

where Zπα(s) =
∑
a π(a|s)Qπ(s, a)

1
α is a normalization constant.

Proof. The proof is very similar to that of Proposition 7. We know that π∗ is a stationary point of
P1
V ◦ I1

V , i.e.

0 =
∑
s

dπ
∗
(s)
∑
a

π∗(a|s)Qπ
∗
(s, a)

∂ log πθ(a|s)
∂θ

∣∣∣∣
θ=θ∗

(46)

=
∑
s

dπ
∗
(s)
∑
a

π∗(a|s)1−α
(
π∗(a|s)Qπ

∗
(s, a)

1
α

)α ∂ log πθ(a|s)
∂θ

∣∣∣∣
θ=θ∗

(47)

=
∑
s

dπ
∗
(s)Zα(s)∇θKL

((
π∗(·|s)Qπ

∗
(s, ·) 1

α

)α
π∗(a|s)1−α

∣∣∣∣∣∣π) ∣∣∣∣
π=π∗

, (48)
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where Zα(s) =
∑
a π
∗(·|s)Qπ∗(s, ·) 1

α is the normalization constant. Hence, each iteration of Eq. 39
will leave π∗ unchanged.

Hence, we see that, if πα(π∗)1−α = Rπ∗, the iterative process described in Eq. 39 initialized with
z0 = π∗ will be stationary with zi = π∗ for all i. This gives us the form we need for π = Iαπ∗.
Indeed, we must have

πα(π∗)1−α = Qπ∗ (49)

(Iαπ∗)α(π∗)1−α = Qπ∗ (50)

Iαπ∗ = [Q(π∗)α]1/α (51)

= Q1/απ∗ (52)

Iα = (π −→ Q1/απ). (53)

E Lower bounds

E.1 Trajectory formulation

We state here the proposition for the trajectory formulation.
Proposition 10 (Trajectory formulation). For any two distributions π and µ, we have

J(π) ≥ J(µ)

(
1−KL(Iτµ||π) +KL(Iτµ||µ)

)
. (54)

Hence, any policy π such that KL(Iτπt||π) < KL(Iτπt||πt) implies J(π) > J(πt).

Proof. Let π and µ be two arbitrary distributions over trajectories such that the support of π is
included in that of µ. Then

J(π) =

∫
τ

R(τ)π(τ) dτ (55)

=

∫
τ

R(τ)
π(τ)

µ(τ)
µ(τ) dτ (56)

≥
∫
τ

R(τ)

(
1 + log

π(τ)

µ(τ)

)
µ(τ) dτ (57)

=

∫
τ

R(τ)µ(τ) dτ +

∫
τ

R(τ)µ(τ) log π(τ) dτ −
∫
τ

R(τ)µ(τ) logµ(τ) dτ (58)

= J(µ)− J(µ)KL(Rµ||π) + J(µ)KL(Rµ||µ) (59)

J(π) ≥ J(µ)

(
1−KL(Rµ||π) +KL(Rµ||µ)

)
. (60)

E.2 State-action formulation

To prove that minimizing Eq. 7 is equivalent to maximizing a lower bound on the expected return J ,
we shall show that this function has the same gradient as a lower bound Jµ on J and thus only differs
by a constant.
Proposition 11. Let us define Jµ as

Jµ(π) =

H∑
h=0

γh
∫
τ

r(sh, ah)

(
1 + log

πh(τh)

µh(τh)

)
µ(τ) dτ , (61)

where H is the horizon (which can be infinite), τh is the trajectory of length h that is a prefix of the
full trajectory τ , and πh(τh) (resp. µh(τh)) is the total probability mass of trajectories with prefix τh
under policy π (resp. µ).

Then we have Jµ(π) ≤ J(π) for any µ and any π such that the support of µ covers that of π.
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Proof. We can rewrite

J(π) =

∫
τ

R(τ)π(τ) dτ (62)

=

∫
τ

(
H∑
h=0

γhr(sh, ah)

)
π(τ) dτ (63)

=

H∑
h=0

γh
∫
τ

r(sh, ah)π(τ) dτ (64)

=

H∑
h=0

γh
∫
τ

r(sh, ah)πh(τh) dτ. (65)

Then, using the same technique as for the trajectory formulation, we have

J(π) =

H∑
h=0

γh
∫
τ

r(sh, ah)
πh(τh)

µh(τh)
µh(τh) dτ (66)

≥
H∑
h=0

γh
∫
τ

r(sh, ah)

(
1 + log

πh(τh)

µh(τh)

)
µh(τh) dτ (67)

=

H∑
h=0

γh
∫
τ

r(sh, ah)

(
1 + log

πh(τh)

µh(τh)

)
µ(τ) dτ (68)

= Jµ(π). (69)

Then we can prove the following proposition:
Proposition 6. For any two policies π and µ such that the support of µ covers that of π, we have

J(π) ≥ J(µ) + Eµ[V µ(s)][Dµ(IV µ||µ)−Dµ(IV µ||π)] (13)

= J(µ) +
∑
s

dµ(s)
∑
a

Qµ(s, a)µ(a|s) log
π(a|s)
µ(a|s)

. (14)

Hence, any policy π such that Dπt(IV πt||π) < Dπt(IV πt||πt) implies J(π) > J(πt).

Proof. Since Jµ is a lower bound on J , by Proposition 11, we prove that its gradient is the same as
that of

∇θJµ(π) = ∇θ

(
H∑
h=0

γh
∫
τ

r(sh, ah)

(
1 + log

πh(τh)

µh(τh)

)
µ(τ) dτ

)
(70)

=

H∑
h=0

γh
∫
τ

r(sh, ah)∇θ log πh(τh)µ(τ) dτ (71)

=

H∑
h=0

γh
∫
τ

r(sh, ah)

(
h∑

h′=0

∇θ log π(ah′ |sh′)

)
µ(τ) dτ (72)

=

H∑
h′=0

∫
τ

∇θ log π(ah′ |sh′)

(
H∑

h=h′

γhr(sh, ah)

)
µ(τ) dτ (73)

=

H∑
h′=0

∑
s

∑
a

∇θ log π(a|s)dh
′

µ (s)µ(a|s)γh
′
Qµ(s, a) (74)

=

H∑
h′=0

γh
′∑
s

dh
′

µ (s)
∑
a

∇θ log π(a|s)µ(a|s)γh
′
Qµ(s, a) (75)
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=
∑
s

dµ(s)
∑
a

Qµ(s, a)µ(a|s)∇θ log π(a|s) (76)

= ∇θ

(
−
∑
s

dµ(s)V µ(s)KL(Qµµ||π)

)
. (77)

Hence these two functions only differ by a constant. Using Jπ(π) = π, we identify the constant as
being J(µ) + Eµ[V µ(s)]DIµ(µ).

F Experimental Details

We reiterate the details of our didactic empirical study in the four-room domain [22]. An agent starts
in the lower-left corner and seeks to reach the upper-right corner; upon entering the goal state, the
agent receives a reward of +1 and terminates the episode. The policy is parameterized by softmax
probabilities, πθ(a|s) = exp(θa)∑

a∈A exp(θa) for θ ∈ R|A|, where all states share the same parameters. As
with our analysis, these experiments compute gradients and operators exactly; in practice, stochasticity
from sampling and approximate value estimation can affect the resultant performance. In Figure F.2,
we plot policies in the sub-segment {[0.1, 0.8t, 0.8(1− t), 0.1] : t ∈ [0, 1]}, denoting the probability
of taking the down, left, up, and right actions respectively.

The linear approximation of conservative policy iteration (CPI) [5] presented in Fig. F.2 does not
include the quadratic term in α necessary to maintain the lower bound property (see Theorem 1
of [18]) as this term can be made arbitrarily large by setting γ arbitrarily close to 1. This makes
algorithms like TRPO very conservative when optimizing the lower bound, leading them to optimize
relaxations instead.
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Figure F.2: We visualize the true objective J(π), the operator lower bound (Proposition 6), and the
linear approximation optimized by TRPO and PPO on a 1d subspace of the policy space for the
four-room domain (details in Appendix F). On the left, we plot the auxiliary objectives corresponding
to different choices of sampling πt. On the right, the objectives are plotted locally around πt.

F.1 Multi-step operators with line search

Proposition 6 implies that the single-step improvement operator converges to a desired solution by
demonstrating that it fully minimizes a lower bound on the expected return. As partial minimization
of this lower-bound also implies convergence, we propose a line-search approach that chooses the
minimum α under which the lower-bound is optimized. Specifically, letting Lµ(π) be the lower
bound in Proposition 6, we choose the lowest alpha such that

Lµ(µ)− Lµ(PIαµ) ≥ 1

2

(
Lµ(µ)− Lµ(PI1µ)

)
(78)
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