In the entirety of the Appendix, we shall use π^{*} instead of $\pi\left(\theta^{*}\right)$ for increased readability.

A Definition of the operators

Proposition 1. Assuming all returns $R(\tau)$ are positive, Eq. 2 can be seen as doing a gradient step to minimize $K L\left(R \pi_{t} \| \pi\right)$ with respect to π, where $R \pi_{t}$ is the policy defined by

$$
\begin{equation*}
R \pi_{t}(\tau)=\frac{1}{J\left(\pi_{t}\right)} R(\tau) \pi_{t}(\tau) \tag{5}
\end{equation*}
$$

Hence, the two operators associated with Op-REINFORCE are:

$$
\begin{equation*}
\mathcal{I}_{\tau} \pi(\tau)=R \pi(\tau) \quad, \quad \mathcal{P}_{\tau} \mu=\arg \min _{\pi \in \Pi} K L(\mu \| \pi) \tag{6}
\end{equation*}
$$

where Π is the set of realizable policies.

Proof. Denoting μ the distribution over trajectories such that $\mu(\tau) \propto R(\tau) \pi(\tau)$, we have

$$
\begin{align*}
K L(\mu \| \pi) & =\int_{\tau} \mu(\tau) \log \frac{\mu(\tau)}{\pi(\tau)} d \tau \tag{22}\\
\frac{\partial K L(\mu \| \pi)}{\partial \theta} & =-\int_{\tau} \mu(\tau) \nabla_{\theta} \log \pi(\tau) d \tau \tag{23}\\
& \propto-\int_{\tau} R(\tau) \pi(\tau) \nabla_{\theta} \log \pi(\tau) d \tau \tag{24}
\end{align*}
$$

by definition of $\mu(\tau)$.
Proposition 3. If all $Q^{\pi}(s, a)$ are positive, Eq. 4 can be seen as doing a gradient step to minimize

$$
\begin{equation*}
D_{V^{\pi_{t}} \pi_{t}}\left(Q^{\pi_{t}} \pi_{t} \| \pi\right)=\sum_{s} d^{\pi_{t}}(s) V^{\pi_{t}}(s) K L\left(Q^{\pi_{t}} \pi_{t} \| \pi\right) \tag{7}
\end{equation*}
$$

where $D_{V^{\pi_{t}} \pi_{t}}$ and the distribution $Q^{\pi} \pi$ over actions are defined as

$$
\begin{align*}
D_{z}(\mu \| \pi) & =\sum_{s} z(s) K L(\mu(\cdot \mid s) \| \pi(\cdot \mid s)) \tag{8}\\
Q^{\pi} \pi(a \mid s) & =\frac{1}{\sum_{a^{\prime}} Q^{\pi}\left(s, a^{\prime}\right) \pi\left(a^{\prime} \mid s\right)} Q^{\pi}(s, a) \pi(a \mid s)=\frac{1}{V^{\pi}(s)} Q^{\pi}(s, a) \pi(a \mid s) \tag{9}
\end{align*}
$$

Hence, the two operators associated with the state-action formulation are:

$$
\begin{align*}
\mathcal{I}_{V} \pi(s, a) & =\left(\frac{1}{\mathbb{E}_{\pi}\left[V^{\pi}\right]} d^{\pi}(s) V^{\pi}(s)\right) Q^{\pi} \pi(a \mid s) \tag{10}\\
\mathcal{P}_{V} \mu & =\arg \min _{z \in \Pi} \sum_{s} \mu(s) K L(\mu(\cdot \mid s) \| z(\cdot \mid s)) \tag{11}
\end{align*}
$$

Proof.

$$
\begin{align*}
\sum_{s} d^{\pi_{t}}(s) V^{\pi}(s) \frac{\partial K L\left(Q^{\pi} \pi_{t} \| \pi\right)}{\partial \theta} & =-\sum_{s} d^{\pi_{t}}(s) V^{\pi}(s) \sum_{a} Q^{\pi} \pi_{t}(a \mid s) \nabla_{\theta} \log \pi(a \mid s) \\
& =-\sum_{s} d^{\pi_{t}}(s) \sum_{a} Q^{\pi}(s, a) \pi_{t}(a \mid s) \nabla_{\theta} \log \pi(a \mid s) \tag{25}
\end{align*}
$$

and we recover the update of Eq. 4 .

B π^{*} is a stationary point when using the KL

Proposition 2. $\pi\left(\theta^{*}\right)$ is a fixed point of $\mathcal{P}_{\tau} \circ \mathcal{I}_{\tau}$.
Proof. We have

$$
\begin{align*}
\left.\nabla_{\theta} K L\left(R \pi^{*}| | \pi\right)\right|_{\pi=\pi^{*}} & =\int_{\tau} R(\tau) \pi^{*}(\tau) \nabla_{\theta} \log \pi^{*}(\tau) d \tau \tag{26}\\
& =0 \text { by definition of } \pi^{*} \tag{27}
\end{align*}
$$

Proposition 4. $\pi\left(\theta^{*}\right)$ is a fixed point of $\mathcal{P}_{V} \circ \mathcal{I}_{V}$.
Proof. We have
$\left.\nabla_{\theta} \sum_{s} d^{\pi^{*}}(s) V^{\pi^{*}}(s) K L\left(Q^{\pi^{*}} \pi^{*}| | \pi\right)\right|_{\pi=\pi^{*}}=\left.\sum_{s} d^{\pi^{*}}(s) \sum_{a} \pi^{*}(a \mid s) Q^{\pi^{*}}(s, a) \frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta}\right|_{\theta=\theta^{*}}$

$$
\begin{equation*}
=0 \text { by definition of } \pi^{*} \tag{28}
\end{equation*}
$$

C Expected return of the improved policy

We use the same proof for the following two propositions:
Proposition 5. The performance of the improved policy $\mathcal{I}_{\tau} \pi$ is given by

$$
\begin{equation*}
J\left(\mathcal{I}_{\tau} \pi\right)=J(\pi)\left(1+\frac{\operatorname{Var}_{\pi}(R)}{\left(\mathbb{E}_{\pi}[R]\right)^{2}}\right) \geq J(\pi) \tag{12}
\end{equation*}
$$

Proposition 9. Let f be an increasing function such that $f(x)>0$ for all x. Then

$$
\begin{equation*}
J(f(R) \pi)=J(\pi)+\frac{\operatorname{Cov}_{\pi}(R, f(R))}{\mathbb{E}_{\pi}[f(R)]} \geq J(\pi) \tag{17}
\end{equation*}
$$

Proof. We now show the expected return of the policy $z \pi$, defined as

$$
\begin{equation*}
z \pi(\tau)=\frac{1}{\int_{\tau^{\prime}} z\left(\tau^{\prime}\right) \pi\left(\tau^{\prime}\right) d \tau^{\prime}} z(\tau) \pi(\tau) \tag{30}
\end{equation*}
$$

for any function z over trajectories. In particular, we show that choosing $z=R$ leads to an improvement in the expected return.

$$
\begin{align*}
J(z \pi) & =\int_{\tau} R(\tau)(z \pi)(\tau) d \tau \tag{31}\\
& =\int_{\tau} \frac{R(\tau) z(\tau) \pi(\tau)}{\int_{\tau^{\prime}} z\left(\tau^{\prime}\right) \pi\left(\tau^{\prime}\right) d \tau^{\prime}} d \tau \tag{32}\\
& =\left(\int_{\tau^{\prime}} R\left(\tau^{\prime}\right) \pi\left(\tau^{\prime}\right) d \tau^{\prime}\right) \frac{\int_{\tau} R(\tau) z(\tau) \pi(\tau) d \tau}{\int_{\tau^{\prime}} z\left(\tau^{\prime}\right) \pi\left(\tau^{\prime}\right) d \tau^{\prime} \int_{\tau^{\prime}} R\left(\tau^{\prime}\right) \pi\left(\tau^{\prime}\right) d \tau^{\prime}} \tag{33}\\
& =J(\pi) \frac{\mathbb{E}_{\pi}[R z]}{\mathbb{E}_{\pi}[R] \mathbb{E}_{\pi}[z]} \tag{34}\\
& =J(\pi)\left(1+\frac{\operatorname{Cov}_{\pi}(R, z)}{\mathbb{E}_{\pi}[R] \mathbb{E}_{\pi}[z]}\right) \tag{35}
\end{align*}
$$

where $\operatorname{Cov}_{\pi}(R, z)=\mathbb{E}_{\pi}[R z]-\mathbb{E}_{\pi}[R] \mathbb{E}_{\pi}[z]$.

When $z=R$, the expected return becomes

$$
\begin{align*}
J(R \pi) & =J(\pi)\left(1+\frac{\operatorname{Var}_{\pi}(R)}{\left(\mathbb{E}_{\pi}[R]\right)^{2}}\right) \tag{36}\\
& \geq J(\pi) \tag{37}
\end{align*}
$$

D π^{*} is a stationary point when using α-divergence

Proposition 7. Let $\alpha \in(0,1)$. Then $\pi\left(\theta^{*}\right)$ is a fixed point of $\mathcal{P}_{\tau}^{\alpha} \circ \mathcal{I}_{\tau}^{\frac{1}{\alpha}}$ with $\mathcal{P}_{\tau}^{\alpha}$ defined by

$$
\begin{equation*}
\mathcal{P}_{\tau}^{\alpha} \mu=\arg \min _{\pi \in \Pi} D^{\alpha}(\mu \| \pi) \tag{15}
\end{equation*}
$$

where D^{α} is the α-divergence or Rényi divergence of order α.
Proof. We now show that π^{*} is the fixed point of $\mathcal{P}_{\tau}^{\alpha} \circ \mathcal{I}_{\tau}^{\alpha}$. The minimizer of d^{α} with respect to its second argument can be computed through iterative minimization of $D_{\alpha^{\prime}}$ for any other nonzero α^{\prime} [10]:

$$
\begin{equation*}
z_{t+1}=\arg \min _{z} D_{\alpha^{\prime}}\left(\pi^{\alpha / \alpha^{\prime}} z_{t}^{1-\alpha / \alpha^{\prime}} \| z\right) \tag{38}
\end{equation*}
$$

In the remainder of this proof, we shall use $\alpha^{\prime}=1$, leading to

$$
\begin{equation*}
z_{t+1}=\arg \min _{z} K L\left(\pi^{\alpha} z_{t}^{1-\alpha} \| z\right) \tag{39}
\end{equation*}
$$

We know that π^{*} is a stationary point of $\mathcal{P}_{\tau}^{1} \circ \mathcal{I}_{\tau}^{1}$, i.e.

$$
\begin{equation*}
\pi^{*}=\arg \min _{z} K L\left(R \pi^{*} \| z\right) \tag{40}
\end{equation*}
$$

Hence, we see that, if $\pi^{\alpha}\left(\pi^{*}\right)^{1-\alpha}=R \pi^{*}$, the iterative process described in Eq. 39 initialized with $z_{0}=\pi^{*}$ will be stationary with $z_{i}=\pi^{*}$ for all i. This gives us the form we need for $\pi=\mathcal{I}_{\tau}^{\alpha} \pi^{*}$. Indeed, we must have

$$
\begin{align*}
\pi^{\alpha}\left(\pi^{*}\right)^{1-\alpha} & =R \pi^{*} \tag{41}\\
\left(\mathcal{I}^{\alpha} \pi^{*}\right)^{\alpha}\left(\pi^{*}\right)^{1-\alpha} & =R \pi^{*} \tag{42}\\
\mathcal{I}^{\alpha} \pi^{*} & =\left[R\left(\pi^{*}\right)^{\alpha}\right]^{1 / \alpha} \tag{43}\\
& =R^{1 / \alpha} \pi^{*} \tag{44}\\
\mathcal{I}^{\alpha} & =\left(\pi \longrightarrow R^{1 / \alpha} \pi\right) \tag{45}
\end{align*}
$$

Proposition 8. Let $\alpha \in(0,1)$. Then $\pi\left(\theta^{*}\right)$ is a fixed point of $\mathcal{P}_{V}^{\alpha} \circ \mathcal{I}_{V}^{\frac{1}{\alpha}}$ with

$$
\begin{equation*}
\mathcal{I}_{V}^{\alpha} \pi=\left(Q^{\pi}\right)^{\frac{1}{\alpha}} \pi \quad, \quad \mathcal{P}_{V, \pi}^{\alpha} \mu=\arg \min _{z \in \Pi} \sum_{s} d^{\pi}(s) Z_{\mu}^{\pi}(s) D^{\alpha}(\mu \| z) \tag{16}
\end{equation*}
$$

where $Z_{\alpha}^{\pi}(s)=\sum_{a} \pi(a \mid s) Q^{\pi}(s, a)^{\frac{1}{\alpha}}$ is a normalization constant.
Proof. The proof is very similar to that of Proposition 7 . We know that π^{*} is a stationary point of $\mathcal{P}_{V}^{1} \circ \mathcal{I}_{V}^{1}$, i.e.

$$
\begin{align*}
0 & =\left.\sum_{s} d^{\pi^{*}}(s) \sum_{a} \pi^{*}(a \mid s) Q^{\pi^{*}}(s, a) \frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta}\right|_{\theta=\theta^{*}} \tag{46}\\
& =\left.\sum_{s} d^{\pi^{*}}(s) \sum_{a} \pi^{*}(a \mid s)^{1-\alpha}\left(\pi^{*}(a \mid s) Q^{\pi^{*}}(s, a)^{\frac{1}{\alpha}}\right)^{\alpha} \frac{\partial \log \pi_{\theta}(a \mid s)}{\partial \theta}\right|_{\theta=\theta^{*}} \tag{47}\\
& =\left.\sum_{s} d^{\pi^{*}}(s) Z_{\alpha}(s) \nabla_{\theta} K L\left(\left(\pi^{*}(\cdot \mid s) Q^{\pi^{*}}(s, \cdot)^{\frac{1}{\alpha}}\right)^{\alpha} \pi^{*}(a \mid s)^{1-\alpha}| | \pi\right)\right|_{\pi=\pi^{*}} \tag{48}
\end{align*}
$$

where $Z_{\alpha}(s)=\sum_{a} \pi^{*}(\cdot \mid s) Q^{\pi^{*}}(s, \cdot)^{\frac{1}{\alpha}}$ is the normalization constant. Hence, each iteration of Eq. 39 will leave π^{*} unchanged.
Hence, we see that, if $\pi^{\alpha}\left(\pi^{*}\right)^{1-\alpha}=R \pi^{*}$, the iterative process described in Eq. 39 initialized with $z_{0}=\pi^{*}$ will be stationary with $z_{i}=\pi^{*}$ for all i. This gives us the form we need for $\pi=\mathcal{I}^{\alpha} \pi^{*}$. Indeed, we must have

$$
\begin{align*}
\pi^{\alpha}\left(\pi^{*}\right)^{1-\alpha} & =Q \pi^{*} \tag{49}\\
\left(\mathcal{I}^{\alpha} \pi^{*}\right)^{\alpha}\left(\pi^{*}\right)^{1-\alpha} & =Q \pi^{*} \tag{50}\\
\mathcal{I}^{\alpha} \pi^{*} & =\left[Q\left(\pi^{*}\right)^{\alpha}\right]^{1 / \alpha} \tag{51}\\
& =Q^{1 / \alpha} \pi^{*} \tag{52}\\
\mathcal{I}^{\alpha} & =\left(\pi \longrightarrow Q^{1 / \alpha} \pi\right) \tag{53}
\end{align*}
$$

E Lower bounds

E. 1 Trajectory formulation

We state here the proposition for the trajectory formulation.
Proposition 10 (Trajectory formulation). For any two distributions π and μ, we have

$$
\begin{equation*}
J(\pi) \geq J(\mu)\left(1-K L\left(\mathcal{I}_{\tau} \mu \| \pi\right)+K L\left(\mathcal{I}_{\tau} \mu \| \mu\right)\right) \tag{54}
\end{equation*}
$$

Hence, any policy π such that $K L\left(\mathcal{I}_{\tau} \pi_{t} \| \pi\right)<K L\left(\mathcal{I}_{\tau} \pi_{t} \| \pi_{t}\right)$ implies $J(\pi)>J\left(\pi_{t}\right)$.
Proof. Let π and μ be two arbitrary distributions over trajectories such that the support of π is included in that of μ. Then

$$
\begin{align*}
J(\pi) & =\int_{\tau} R(\tau) \pi(\tau) d \tau \tag{55}\\
& =\int_{\tau} R(\tau) \frac{\pi(\tau)}{\mu(\tau)} \mu(\tau) d \tau \tag{56}\\
& \geq \int_{\tau} R(\tau)\left(1+\log \frac{\pi(\tau)}{\mu(\tau)}\right) \mu(\tau) d \tau \tag{57}\\
& =\int_{\tau} R(\tau) \mu(\tau) d \tau+\int_{\tau} R(\tau) \mu(\tau) \log \pi(\tau) d \tau-\int_{\tau} R(\tau) \mu(\tau) \log \mu(\tau) d \tau \tag{58}\\
& =J(\mu)-J(\mu) K L(R \mu \| \pi)+J(\mu) K L(R \mu \| \mu) \tag{59}\\
J(\pi) & \geq J(\mu)(1-K L(R \mu \| \pi)+K L(R \mu \| \mu)) \tag{60}
\end{align*}
$$

E. 2 State-action formulation

To prove that minimizing Eq. 7 is equivalent to maximizing a lower bound on the expected return J, we shall show that this function has the same gradient as a lower bound J_{μ} on J and thus only differs by a constant.
Proposition 11. Let us define J_{μ} as

$$
\begin{equation*}
J_{\mu}(\pi)=\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right)\left(1+\log \frac{\pi_{h}\left(\tau_{h}\right)}{\mu_{h}\left(\tau_{h}\right)}\right) \mu(\tau) d \tau \tag{61}
\end{equation*}
$$

where H is the horizon (which can be infinite), τ_{h} is the trajectory of length h that is a prefix of the full trajectory τ, and $\pi_{h}\left(\tau_{h}\right)\left(\right.$ resp. $\left.\mu_{h}\left(\tau_{h}\right)\right)$ is the total probability mass of trajectories with prefix τ_{h} under policy π (resp. μ).
Then we have $J_{\mu}(\pi) \leq J(\pi)$ for any μ and any π such that the support of μ covers that of π.

Proof. We can rewrite

$$
\begin{align*}
J(\pi) & =\int_{\tau} R(\tau) \pi(\tau) d \tau \tag{62}\\
& =\int_{\tau}\left(\sum_{h=0}^{H} \gamma^{h} r\left(s_{h}, a_{h}\right)\right) \pi(\tau) d \tau \tag{63}\\
& =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right) \pi(\tau) d \tau \tag{64}\\
& =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right) \pi_{h}\left(\tau_{h}\right) d \tau \tag{65}
\end{align*}
$$

Then, using the same technique as for the trajectory formulation, we have

$$
\begin{align*}
J(\pi) & =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right) \frac{\pi_{h}\left(\tau_{h}\right)}{\mu_{h}\left(\tau_{h}\right)} \mu_{h}\left(\tau_{h}\right) d \tau \tag{66}\\
& \geq \sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right)\left(1+\log \frac{\pi_{h}\left(\tau_{h}\right)}{\mu_{h}\left(\tau_{h}\right)}\right) \mu_{h}\left(\tau_{h}\right) d \tau \tag{67}\\
& =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right)\left(1+\log \frac{\pi_{h}\left(\tau_{h}\right)}{\mu_{h}\left(\tau_{h}\right)}\right) \mu(\tau) d \tau \tag{68}\\
& =J_{\mu}(\pi) . \tag{69}
\end{align*}
$$

Then we can prove the following proposition:
Proposition 6. For any two policies π and μ such that the support of μ covers that of π, we have

$$
\begin{align*}
J(\pi) & \geq J(\mu)+\mathbb{E}_{\mu}\left[V^{\mu}(s)\right]\left[D_{\mu}\left(\mathcal{I}_{V} \mu \| \mu\right)-D_{\mu}\left(\mathcal{I}_{V} \mu \| \pi\right)\right] \tag{13}\\
& =J(\mu)+\sum_{s} d^{\mu}(s) \sum_{a} Q^{\mu}(s, a) \mu(a \mid s) \log \frac{\pi(a \mid s)}{\mu(a \mid s)} . \tag{14}
\end{align*}
$$

Hence, any policy π such that $D_{\pi_{t}}\left(\mathcal{I}_{V} \pi_{t} \| \pi\right)<D_{\pi_{t}}\left(\mathcal{I}_{V} \pi_{t} \| \pi_{t}\right)$ implies $J(\pi)>J\left(\pi_{t}\right)$.
Proof. Since J_{μ} is a lower bound on J, by Proposition 11 , we prove that its gradient is the same as that of

$$
\begin{align*}
\nabla_{\theta} J_{\mu}(\pi) & =\nabla_{\theta}\left(\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right)\left(1+\log \frac{\pi_{h}\left(\tau_{h}\right)}{\mu_{h}\left(\tau_{h}\right)}\right) \mu(\tau) d \tau\right) \tag{70}\\
& =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right) \nabla_{\theta} \log \pi_{h}\left(\tau_{h}\right) \mu(\tau) d \tau \tag{71}\\
& =\sum_{h=0}^{H} \gamma^{h} \int_{\tau} r\left(s_{h}, a_{h}\right)\left(\sum_{h^{\prime}=0}^{h} \nabla_{\theta} \log \pi\left(a_{h^{\prime}} \mid s_{h^{\prime}}\right)\right) \mu(\tau) d \tau \tag{72}\\
& =\sum_{h^{\prime}=0}^{H} \int_{\tau} \nabla_{\theta} \log \pi\left(a_{h^{\prime}} \mid s_{h^{\prime}}\right)\left(\sum_{h=h^{\prime}}^{H} \gamma^{h} r\left(s_{h}, a_{h}\right)\right) \mu(\tau) d \tau \tag{73}\\
& =\sum_{h^{\prime}=0}^{H} \sum_{s} \sum_{a} \nabla_{\theta} \log \pi(a \mid s) d_{\mu}^{h^{\prime}}(s) \mu(a \mid s) \gamma^{h^{\prime}} Q^{\mu}(s, a) \tag{74}\\
& =\sum_{h^{\prime}=0}^{H} \gamma^{h^{\prime}} \sum_{s} d_{\mu}^{h^{\prime}}(s) \sum_{a} \nabla_{\theta} \log \pi(a \mid s) \mu(a \mid s) \gamma^{h^{\prime}} Q^{\mu}(s, a) \tag{75}
\end{align*}
$$

$$
\begin{align*}
& =\sum_{s} d^{\mu}(s) \sum_{a} Q^{\mu}(s, a) \mu(a \mid s) \nabla_{\theta} \log \pi(a \mid s) \tag{76}\\
& =\nabla_{\theta}\left(-\sum_{s} d^{\mu}(s) V^{\mu}(s) K L\left(Q^{\mu} \mu \| \pi\right)\right) \tag{77}
\end{align*}
$$

Hence these two functions only differ by a constant. Using $J_{\pi}(\pi)=\pi$, we identify the constant as being $J(\mu)+\mathbb{E}_{\mu}\left[V^{\mu}(s)\right] D_{\mathcal{I}_{\mu}}(\mu)$.

F Experimental Details

We reiterate the details of our didactic empirical study in the four-room domain [22]. An agent starts in the lower-left corner and seeks to reach the upper-right corner; upon entering the goal state, the agent receives a reward of +1 and terminates the episode. The policy is parameterized by softmax probabilities, $\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta_{a}\right)}{\sum_{a \in \mathcal{A}} \exp \left(\theta_{a}\right)}$ for $\theta \in \mathbb{R}^{|\mathcal{A}|}$, where all states share the same parameters. As with our analysis, these experiments compute gradients and operators exactly; in practice, stochasticity from sampling and approximate value estimation can affect the resultant performance. In Figure F. 2 we plot policies in the sub-segment $\{[0.1,0.8 t, 0.8(1-t), 0.1]: t \in[0,1]\}$, denoting the probability of taking the down, left, up, and right actions respectively.
The linear approximation of conservative policy iteration (CPI) [5] presented in Fig. F.2 does not include the quadratic term in α necessary to maintain the lower bound property (see Theorem 1 of [18]) as this term can be made arbitrarily large by setting γ arbitrarily close to 1 . This makes algorithms like TRPO very conservative when optimizing the lower bound, leading them to optimize relaxations instead.

Figure F.2: We visualize the true objective $J(\pi)$, the operator lower bound (Proposition 6), and the linear approximation optimized by TRPO and PPO on a 1d subspace of the policy space for the four-room domain (details in Appendix F). On the left, we plot the auxiliary objectives corresponding to different choices of sampling π_{t}. On the right, the objectives are plotted locally around π_{t}.

F. 1 Multi-step operators with line search

Proposition 6 implies that the single-step improvement operator converges to a desired solution by demonstrating that it fully minimizes a lower bound on the expected return. As partial minimization of this lower-bound also implies convergence, we propose a line-search approach that chooses the minimum α under which the lower-bound is optimized. Specifically, letting $L_{\mu}(\pi)$ be the lower bound in Proposition6, we choose the lowest alpha such that

$$
\begin{equation*}
L_{\mu}(\mu)-L_{\mu}\left(\mathcal{P I}^{\alpha} \mu\right) \geq \frac{1}{2}\left(L_{\mu}(\mu)-L_{\mu}\left(\mathcal{P}^{1} \mu\right)\right) \tag{78}
\end{equation*}
$$

