
A Separate Quantization and Privatization Is Strictly Sub-optimal

Distribution estimation First let us recap the subset selection (SS) scheme proposed by [51].
Assume X1, ..., Xn

i.i.d.⇠ p = (p1, ..., pd). Client i maps the local data Xi into y 2 Yd,w ,n
y 2 {0, 1}d :

P
j yj = w

o
with the transitional probability

QSS(y|X = j) =
e"yj + (1� yj)

e"
�d�1
w�1

�
+
�d�1

w

� .

The estimator for pj is defined by

p̂j ,
 
(d� 1)e" + (d�1)(d�w)

w

(d� w)(e" � 1)

!
Tj

n
� (w � 1)e" + d� w

(d� w)e" � 1
, (3)

where Tj , Pn
i=1 Yi(j). Note that by picking w = d d

e"+1e, SS is order-optimal for all privacy
regimes.

To demonstrate that separating privatization and quantization is strictly sub-optimal, we analyze the
estimation error of directly concatenating the 2b-SS mechanism with the grouping-based quantization
in [27]. Note that both schemes are known to be optimal under the corresponding constraints, privacy
and communication respectively. However, their direct combination yields an `2 error of order
O
�
d2
�
, which is far from the optimal accuracy established in Theorem 3.1.

We first group [d] into s = d/2b equal-sized groups G1, ...,Gs, and each client is only responsible to
send information about one particular group. That is, let Yi be the outcome of the 2b-SS mechanism,
i.e. Yi ⇠ QSS (·|Xi), and client i only transmits {Yi(j)|j 2 Gs0}, for some s0 2 [s]. Since the server
estimates each component of p separately as in (3), this grouping strategy reduces the effective
sample size from n to n0 = n2b/d. Plugging n0 into the `2 error (see Proposition III.1 in [51]), we
conclude that the error grows as

O

✓
d2

n2b min (e✏, (e✏ � 1)2)

◆
.

Note that since each Yi contains exactly w ones, the required communication budget to describe
{Yi(j), j 2 Gl} may be larger than b bits. But this is fine since it implies that even given more than b
bits, the estimation error still grows with d2. In Theorem 3.2, on the other hand, we show that the
optimal `2 error is linear in d, so this demonstrates that separate quantization and privatization is
sub-optimal.

Mean estimation For the mean estimation problem, a straightforward combination is using the
PrivUnit mechanism (see Algorithm 1 in [13]) to perturb the local data Xi 2 Bd(0, 1), and then
using RandomSampling quantization in (Theorem 6 in [24]) to compress the perturbed data. Both
schemes are known to be optimal under the corresponding constraints, privacy and communication
respectively. (Note that in the implementation, we replaced the RandomSampling quantization with
a Kashin’s quantizer, since implementing the theoretically optimal RandomSampling quantizaton is
computationally infeasible.)

By Proposition 4 in [13], the output of PrivUnit, denoted as Zi = PrivUnit (Xi, "), has `2 norm
of order ⇥

⇣q
d

min(","2)

⌘
. However, if we further apply RandomSampling to b bits, by Theorem 6

in [24], the `2 estimation error grows as

⇥

✓
kZik

d

n · b

◆
= ⇥

✓
d2

nbmin (", "2)

◆
,

showing a quadratic dependence in d. By Theorem 2.1, nevertheless, we can construct a better
scheme with O(d/nmin

�
", "2, b

�
) dependence under both constraints.
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B Role of Shared Randomness and How It Benefits Communication

The Amount of Shared Randomness In the achievability part of Theorem 2.1, our proposed
scheme SQKR randomly and independently samples b⇤ME , min (d"e, b) bits from the quantized
d-dimensional binary vector at each client. These bits are then privatized and communicated to the
server. In addition to the values of these bits, the server needs to know the indices of the sampled
bits, which corresponds to an additional b⇤ME log d bits of information that needs to be shared between
each client and the server. This information can be shared in two different ways: 1) sampling can be
done by using a public coin shared a priori between the client and the server, or 2) sampling can be
done by using a private coin at the client side, which is then communicated to the server. We can also
combine both 1) and 2) when b > b⇤ME: given b bits communication budget, SQKR compresses the
data to b⇤ME bits, so the client can use the remaining b� b⇤ME bits to communicate the locally generated
randomness required at the sampling step. Thus the amount of shared randomness is reduced to
b⇤ME log d� (b� b⇤Me) bits. Moreover, by extending [3, Theorem 4], we also obtain a lower bound on
the amount of shared randomness required, which we summarize in the following corollary:

Corollary B.1 Under "-LDP and b-bit communication constraints, SQKR uses min (b⇤ME log d, d)�
(b� b⇤ME) bits of shared randomness to achieve rME (`2, b, "), where b⇤ME , min (d"e, b). Moreover, if
b < log d� 2, any b-bit consistent mean estimation scheme1 requires at least log d� b� 2 bits.

We contrast this with the amount of shared randomness needed in the generic scheme of [12] which
provides "-LDP by using 1 bit per client in the high privacy regime " = O(1). The shared randomness
required by this scheme is d bits per client. In contrast, when " = O(1) and b = 1, SQKR requires
log d bits of shared randomness.

Similarly, for frequency estimation, it can be seen that RHR requires log d � b⇤FE bits of shared
randomness in the random sampling step, where b⇤FE , min (d" log2 ee, b). Again, this is achieved
by communicating b� b⇤FE bits of privately generated randomness from the client to the the server,
which reduces the required public randomness to log d� b bits. Furthermore, as in mean estimation,
we can show that at least log d� b� 2 bits are needed to get a consistent scheme, so RHR is also
optimal in the amount of public randomness it uses. We summarize it in the following corollary:

Corollary B.2 Under "-LDP and b-bit communication constraints, RHR uses log d� b bits of shared
randomness to achieve rFE (`2, b, "), where b⇤FE , min (d" log2 ee, b). Moreover, if b < log d� 2, any
b-bit consistent frequency estimation scheme requires at least log d� b� 2 bits of shared randomness.
Thus RHR is optimal in the amount of shared randomness it uses for frequency estimation, up to an
additive constant.

The achievability parts of Corollary B.1 and Corollary B.2 follow directly from the analysis of SQKR
and RHR, and we defer the proof of the converse part to Section G.2. Given a "-LDP constraint, we
summarize the minimum amounts of communication and shared randomness required to achieve the
optimal error rME (`2, ",1) and rFE (`2, ",1) in Table 4.

Communication Shared randomness

SQKR (Thm. 2.1) d"e bits min (d"e log d, d) bits

RHR (Thm. 3.1) dlog2 e · "e bits log d� blog2 e · "c bits

Table 4: The amounts of required shared randomness.

In Figure 3, we plot the achievable region for the minimax frequency estimation error under "-LDP
constraint (i.e. rFE (`2, ",1)). Note that the red line in Figure 3 can be achieved by RHR.

Remark B.1 Note that shared randomness is only needed for distribution-free settings; for distribu-
tion estimation and statistical mean estimation, one can achieve the same estimation error with only
private randomness as noted in Theorems D.1 and 3.2 .

1A scheme is consistent if it has vanishing estimation error as n ! 1.
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Figure 3: Achievable region for frequency estimation with public randomness.

Converting public-coin schemes to private-coin schemes As discussed above, we can always
replace shared randomness with additional communication by first generating the random bits at the
client side and then sending them to the server. Therefore, by Corollary B.1 and Corollary B.2, we
automatically obtain private-coin SQKR and private-coin RHR by using additional communication.
We next state these observations for completeness.

Corollary B.3 (Private-coin SQKR) Under "-LDP and b-bit communication constraints with
b > log d and 0 < "  d, the `2 minimax error for private-coin mean estimation, denoted as
r̃ME(`2, ", b)2 (to distinguish it from the minimax error rME(`2, ", b) achieved by public-coin schemes),
is characterized as follows:

(i) if log d < b < d, then

r̃ME(`2, ", b) �
d

nmin ("2, ", b/ log d, d)
;

(ii) if b � d, then

r̃ME(`2, ", b) �
d

nmin ("2, ", d)
,

and the above errors can be achieved by private-coin SQKR. Therefore private-coin SQKR requires
O (min (d"e log d, d)) bits of communication to achieve r̃ME (`2, ",1).

Similarly, the estimation error of private-coin RHR is characterized below:

Corollary B.4 (Private-coin RHR) Under "-LDP and b-bit communication constraints with b >
log d and 0 < "  log d, the `2 minimax error for private-coin frequency estimation, denoted as
r̃FE(`2, ", b), is

r̃FE(`2, ", b) �
d

nmin
⇣
(e" � 1)2 , e", d

⌘ ,

which can be achieved by private-coin RHR. In words, for any ", private-coin RHR always uses log d
bits of communication to achieve r̃FE(`2, ",1).

Moreover, the following lemma, an extension of [3, Theorem 4], establishes a lower bound on the
communication required for consistent private-coin schemes:

Lemma B.1 Any consistent private-coin scheme for both mean estimation and frequency estimation
uses at least b > log d� 2 bits of communication.

This shows that the log d lower bounds on b in both corollaries are fundamental (within 2 bits). The
proof of the lemma is given in Section G.

2The definition of r̃ME(·) is the same as that of rME(·) in (1), except that now the minimum is taken over all
private-coin schemes.
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C Experiments

In this section, we implement our mean estimation and frequency estimation schemes and present our
experimental results3. More detailed results can be found in Section C.

C.1 Mean estimation

We implement our mean estimation scheme Subsampled and Quantized Kashin’s Response (SQKR)
as in Section 2 and compare it with 1) an optimal "-LDP mechanism privUnit [13], and 2) a
baseline under both LDP and communication constraints – a concatenation of privUnit [13] (which
is order-optimal under "-LDP) and the quantizer based on Kashin’s representation [36] (which is
optimal up to a logarithmic factor, under b-bit communication constraint).

Generating the data In order to capture the distribution-free setting, we generate data indepen-
dently but non-identically; in particular, we set Z1, ..., Zn/2

i.i.d.⇠ N(1, 1)⌦d and Zn/2+1, ..., Zn
i.i.d.⇠

N(10, 1)⌦d (this also makes the data non-central, i.e. E [
P

Zi] 6= 0). Since each sample has bounded
`2 norm, we normalize each Zi by setting Xi = Zi/ kZik2.

Generating the tight frame We construct the tight frame by using the random partial Fourier
matrices in [36]. Specifically, we set N = 2dlog2 de+1 = ⇥(d), and choose the basis U =n
1/
p
N,�1/

p
N
oN⇥d

by selecting the first d rows of HN ·D, where HN is a N ⇥N Hadamard
matrix and D is a random diagonal matrix with each diagonal entry generated from uniform {+1,�1}.
It can be shown that the tight frame based on U has Kashin’s level K = Õ(1).

Compare to optimal "-LDP scheme [13]

Figure 4: `2 error of privUnit and SQKR with different dimensions d = 50, 200.

We first compare our scheme SQKR with privUnit [13], which is order-optimal under "-LDP. Since
the outcome of privUnit is a d-dimensional vector lying in a radius O(

p
d) sphere, in general we

need 32d bits to represent it (where we assume each float requires 32 bits). Figure 4 shows that
SQKR achieves similar performance with significantly communication budgets. For instance, when
" = 5 and d = 50, the communication cost of privUnit is 2K bits, while SQKR uses only 5 bits
but attains similar performance.

Compare with the baseline scheme

Next, we compare SQKR with a combination of privUnit and an optimal quantizer.

3The code can be found in https://github.com/WeiNingChen/Kashin-mean-estimation (for the
SQKR scheme) and https://github.com/WeiNingChen/RHR (for the RHR scheme).
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Baseline: a direct concatenation of privUnit, Kashin’s quantizer and sampling For each Xi

in unit `2 ball, privUnit maps it to a vector X̃i with length
���X̃i

���
2
= ⇥

⇣p
d/min (", "2)

⌘
. If we

quantize X̃i according to its Kashin’s representation and then subsample b bits from it as in Section 2,
then the `2 error (i.e. variance) will be

Õ

✓
d

b

���X̃i

���
2
◆

= Õ

✓
d2

bmin (", "2)

◆
.

Therefore, averaging over n clients, the `2 error of estimating the empirical mean is

Õ

✓
d2

n · bmin (", "2)

◆
.

However, in Theorem 2.1, we see that with a more sophisticated design, we can achieve smaller `2
error

O

✓
d

n ·min (", "2, b)

◆
.

Setup In the experiment, we mainly focus on the high-privacy low-communication setting where
" = b = 1, and the low-privacy high-communication setting where " = b = 5. We consider different
dimensions d and plot the (log-scale) `2 estimation error (i.e. mean square error) with sample size n.
For each point, i.e. each combination of parameters ", b, d, n, we repeat the simulation for 8 iterations
and compute the average. In Figure 5, we see that SQKR drastically outperforms the baseline (labeled
as "Separation" since it is based on the idea of separately coding for privacy and communication
efficiency). The gain increases in higher dimensions or with more stringent privacy/communication
constraints.

Figure 5: Log-scale `2 error with different dimensions d = 20, 50, 80 and different privacy and
communication budgets.

In order to study the dependence on d, we fix the sample size to n = 105 and ", b, and increase
the dimension d. In Figure 6, We see that SQKR has linear dependence on d, and Separation has
super-linear dependence. Therefore the performance differs drastically when d increases.
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Figure 6: `2 error with n = 105 and different dimensions d. In order to better emphasize the
dependence to d, on the right-hand side we only plot the `2 error of SQKR.

C.2 Frequency estimation

For frequency estimation, we compare our scheme, Recursive Hadamard Response (RHR), with
SS [51], HR [4] and 1-bit HR [3]4. We set d = {1000, 5000, 10000}, " 2 {0.5, 2, 5} and n =
{50000, 100000, ..., 500000}, and evaluate the `1 estimation errors on uniform distribution and
truncated and normalized geometric distribution with � = 0.8. For each point (i.e. for each parameter
n, ", d), we repeat the simulation 30 times and average the `2 errors. Figure 7 and Figure 8 show that
RHR can achieve the same performance as HR but is significantly more communication efficient. For
instance, in Figure 8 with d = 10000, " = 5, RHR uses only half of the communication budget for
HR and achieves better performance. In all settings, k-SS has the best statistical performance, but
this comes with drastically higher communication and computation cost.

4For HR, we use the codes from [4] (https://github.com/zitengsun/hadamard_response)
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Figure 7: `1 error with d = 1000. Left are Geo(0.8) and right are Uniform.
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Figure 8: `1 error with d = 5000 and d = 10000, under (truncated) Geo(0.8) and different ".

In Figure 9, we record the decoding time for each scheme. The decoding complexity of RHR is
similar to HR and 1-bit HR, which are all much more computationally efficient than SS.

Figure 9: Left: time complexity with d = 1000, " = 7 right: time complexity with d = 5000, " = 2.
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D Proof of Theorem 2.1

D.1 Achievability

In this section, we prove that Subsampled and Quantized Kashin’s Response (SQKR) achieves
optimal `2 estimation error. For each observation Xi, we will construct an unbiased estimator X̂i

(i.e. E
h
X̂i|Xi

i
= Xi), where X̂i is "-LDP, can be described by k bits, and has small variance. The

encoding scheme consists of three main steps: (1) obtaining a Kashin’s representation for a tight
frame [36], (2) subsampling and (3) privatization.

Kashin’s representation We begin with introducing tight frames and Kashin’s representation [36].

Definition D.1 (Tight frame) A tight frame is a set of vectors {uj}Nj=1 2 Rd that obeys Parseval’s
identity

kxk22 =
NX

j=1

huj , xi2, for all x 2 Rd.

A frame can be viewed as a generalization of an orthogonal basis in Rd, which can improve the
encoding stability by adding redundancy to the representation system when N > d. To increase
robustness, we wish the information to spread evenly in each coefficient, which motivates the
following definition of a Kashin’s representation:

Definition D.2 ( Kashin’s representation) For a set of vectors {uj}Nj=1, we say the expansion

x =
NX

j=1

ajuj , with max
j

|aj | 
Kp
N
kxk2

is a Kashin’s representation of vector x at level K .

Therefore, if we can obtain unbiased estimators {âj}Nj=1 of the Kashin’s representation of X with
respect to a tight frame {uj}Nj=1, then the MSE can be controlled by

E
⇣

X̂ �X
⌘2
�
= E

2

64

������

NX

j=1

(âj � aj)uj

������

2

2

3

75
(a)
 E

2

4
NX

j=1

(âj � aj)
2

3

5 =
NX

j=1

Var (âj) , (4)

where (a) is due to the Cauchy–Schwarz inequality and the definition of a tight frame. Recall that X
is deterministic, so here the expectation is taken with respect to the randomness on âj . Notice that
the cardinality N of the frame determines the compression (i.e. quantization) rate, and Kashin’s level
K affects the variance. Hence we are interested in constructing tight frames with small N and K.

By Theorem 3.5 and Theorem 4.1 in [36], we have the following lemma:

Lemma D.1 (Uncertainty principle and Kashin’s Representation) For any µ > 0 and N > (1 +

µ)d, there exists a tight frame {uj}Nj=1 with Kashin’s level K = O
⇣

1
µ3 log

1
µ

⌘
. Moreover, for each

X , finding Kashin’s coefficient requires O (dN logN) computation.

For our purpose, we choose µ to be a constant, i.e. µ = ⇥(1), so N = ⇥(d),K = ⇥(1), and we can
obtaina representation of X =

PN
j=1 ajuj , with |aj |  Kp

N
= cp

d
for some constant c. Therefore,

we quantize each aj as follows:

qj ,

8
<

:
� cp

d
, with probability c/

p
d�aj

2c/
p
d

cp
d
, with probability aj+c/

p
d

2c/
p
d

.
(5)

q , (q1, ..., qN ) yields an unbiased estimator of a , (a1, ..., aN ) and can be described by N = ⇥(d)
bits.
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Sampling To further reduce the communication cost, we sample k bits uniformly at random from
q using public randomness. Let s1, ..., sk

i.i.d.⇠ uniform[N ] be the indices of the sampled elements,
and define the sampled message as

Q (q, (s1, ..., sk)) = (qs1 , ..., qsk) 2
n
�c/
p
d, c/
p
d
ok

. (6)

Then Q can be described in k bits, and each of qsm yields an independent and unbiased estimator of
a:

E
⇥
N · qsm · {j=sm}

⇤
= E

⇥
E
⇥
N · qsm · {j=sm}

��q1, ..., qN
⇤⇤

= E [qj ] = aj , 8j 2 [N ]. (7)

Privatization Each client then perturbs Q via 2k-RR mechanism (as a k-bit string):

Q̃ =

8
<

:
Q, with probability e"

e"+2k�1

Q0 2
n
�c/
p
d, c/
p
d
ok

/ {Q} , with probability 1
e"+2k�1 .

(8)

Since X

Q02{�c/
p
d,c/

p
d}k

/{Q}

Q0 = �Q,

it is not hard to see
⇣

e"+2k�1
e"�1

⌘
Q̃ yields an unbiased estimator of Q. Indeed, if we write Q̃ =

(q̃1, ..., q̃k), then

E
✓

e" + 2k � 1

e" � 1

◆
· q̃m

����q1, ..., qN , s1, ..., sk

�
= qsm , (9)

or equivalently

E
✓

e" + 2k � 1

e" � 1

◆
Q̃

����Q
�
= Q.

Estimation and the `2 error Given Q̃ = (q̃1, ..., q̃k), define

âj =
N

k
·
✓
e" + 2k � 1

e" � 1

◆ kX

m=1

q̃m · {j=sm}.

According to (7) and (9), E [âj ] = aj , and hence X̂
⇣
Q̃, (s1, ..., sk)

⌘
, PN

j=1 âjuj gives us an
unbiased estimator of X .

Claim D.1 The MSE of X̂ can be bounded by

E
���X̂ �X

���
2

2

�
 C

✓
e" + 2k � 1

e" � 1

◆2
d

k
.

Finally, each client encodes its data Xi independently, and the server computes 1
n

P
i X̂i. Since X̂i

is unbiased and by Claim D.1, we get

E

2

64

������
1

n

nX

j=1

X̂i � X̄

������

2

2

3

75 =
1

n2

nX

j=1

E
���X̂i �Xi

���
2

2

�
 C

✓
e" + 2k � 1

e" � 1

◆2
d

nk
.

Finally, picking k = min (dlog2 ee", b) gives us the desired upper bound.

D.2 Lower Bound of Theorem 2.1

As in the converse part of Theorem 3.1, the lower bound can be obtained by constructing a prior
distribution on Xi and analyzing the statistical mean estimation problem. Therefore, we will impose a
prior distribution P on X1, ..., Xn and lower bound the `2 error of estimating the mean ✓(P ), where
P is a distribution supported on the d-dimension unit ball.
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For any X̂ , observe that

E
X̂,Xn i.i.d.⇠P

���X̂ � X̄
���
2

2

�
(a)
� E

⇣���X̂ � ✓ (P )
���
2
�
��X̄ � ✓ (P )

��
2

⌘2
�

� E
���X̂ � ✓ (P )

���
2

2

�
� 2E

h���X̂ � ✓ (P )
���
2

��X̄ � ✓ (P )
��
2

i

(b)
� E

���X̂ � ✓ (P )
���
2

2

�
� 2

s

E
���X̂ � ✓ (P )

���
2

2

�
E
h��X̄ � ✓ (P )

��2
2

i
,

(10)

where (a) and (b) follow from the triangular inequality and the Cauchy-Schwartz inequality respec-
tively. Since Xi and ✓(P ) are supported on the unit ball, E

h��X̄ � ✓ (P )
��2
2

i
⇣ 1/n, so it remains to

find a distribution P ⇤ such that

min
X̂

E
���X̂ � ✓ (P ⇤)

���
2

2

�
⌫ d

nmin ("2, ", b)
.

Consider the product Bernoulli model Y ⇠
Qd

j=1 Ber(✓j). If we set ⇥ = [1/2 � ", 1/2 + "]d for
some 1

2 > " > 0, then it can be shown that both variance and sub-Gaussian norm of the score function
of this model is ⇥(1) [9, Corollary 4]. Therefore, applying [9, Corollary 8] and [8, Proposition 2,
Proposition 4] yields

min
✓̂

E
���✓̂ � ✓

���
2

2

�
⌫ d2

nmin ("2, ", b)
.

Finally, if we set Xi = Yi/
p
d, then each Xi is supported on the unit ball and E [Xi] = ✓/

p
d.

Therefore

min
X̂

E
"����X̂ �

✓p
d

����
2

2

#
⌫ d

nmin ("2, ", b)
.

Plugging into (10), as long as min("2, ", k) = o(d), the first term dominates and we get the desired
lower bound. ⇤

D.3 Application to statistical mean estimation

For mean estimation, SQKR requires shared randomness so that the server can construct an unbiased
estimator. However, for distribution estimation where X1, ..., Xn

i.i.d.⇠ P , we can replace the random
sampling with a deterministic partitioning of coordinates among the different clients and circumvent
the need for shared randomness. This gives us the following theorem:

Theorem D.1 For statistical mean estimation under "-LDP and b bits communication constraint, we
can achieve

rSME (`2, ", b) �
d

nmin ("2, ", b, d)
, (11)

without shared randomness. Moreover, if min("2, ", b) = o(d), the above error is optimal (even in
the presence of shared randomness).

Proof.
The lower bounds follow directly from [13] (under "-LDP constraint) and [42] (under b-bit commu-
nication constraint). For the achievability part, we apply SQKR except that replacing the random
sampling step by deterministic grouping.

Let Xi
i.i.d.⇠ P with P supported on B(0, 1). First, as in the proof of Theorem 3.1, by Lemma D.1 we

can write Xi =
PN

j=1 Aijuj with N = c0d and |Aij |  K/
p
d,K = ⇥ (1). Since Xi

i.i.d.⇠ P , if we

denote Ai = [Ai1, ..., AiN ], then Ai
i.i.d.⇠ Q for some Q supported on

h
� Kp

d
, Kp

d

iN
.

Now we group n clients into m , N/b⇤ groups G1, ...,Gm, each with nb⇤/N clients, where b⇤ ,
min (d" log2 ee, b). Also, we divide all of N coordinates (of Ai) into m groups I1, ..., Im, and
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each group of clients are responsible for estimating the corresponding group of coordinates of

✓ (Q) 2
h
� Kp

d
, Kp

d

iN
, where ✓ (Q) = EQ[A] is the mean of Q and ✓ (Q).

Quantization If client i belongs to Gl, then it quantizes Aij to Qij according to

Qij ,

8
>><

>>:

� Kp
d
, with probability K/

p
d�Aij

2K/
p
d

, if j 2 Il,
Kp
d
, with probability Aij+K/

p
d

2K/
p
d

, if j 2 Il,
0, else.

(12)

Conditioned on Ai, {Qij | j 2 Il} yields an unbiased estimator of {Aij | j 2 Il} and can be de-
scribed by |Il| = b⇤ bits.

Privatization Client i then perturbs the b⇤-bit message {Qij | j 2 Il} into
n
Q̂ij | j 2 Il

o
via

2b
⇤
-RR, as described in (8). Similarly,

⇢✓
e" + 2b

⇤ � 1

e" � 1

◆
Q̂ij | j 2 Il

�

yields an unbiased estimator on {Aij | j 2 Il}.

Estimation and the `2 error For all j 2 Il, Âij ,
⇣

e"+2b
⇤
�1

e"�1

⌘
Q̂ij yields an unbiased estimator

on EQ [Aij ], and note that Q̂ij 2
h
� Kp

d
, Kp

d

i
, so the variance of Âij is controlled by

EQ

h⇣
Âij � ✓ (Q) (j)

⌘i

✓
e" + 2b

⇤ � 1

e" � 1

◆2✓
2Kp
d

◆2

= O

✓
1

dmin (1, "2)

◆
.

Since for each coordinate j 2 Il, there are |Gl| clients (samples) that output independent and unbiased
estimators Âij , the estimator

Âj ,
1

|Gl|
X

i2Gl

Âij

has variance

O

✓
1

d |Gl|

◆
= O

✓
1

nmin (b⇤, "2)

◆
.

Therefore, we arrive at

E

2

4
NX

j=1

⇣
Âj � EQ [Aj ]

⌘2

3

5 = O

✓
d

nmin (b⇤, "2)

◆
.

Write ✓̂ =
PN

j=1 Âjuj and note that ✓ (P ) =
PN

j=1 EQ

h
Âj

i
uj , so by (4) we conclude that

EP

h
k✓̂ � ✓(P )k22

i
= O

✓
d

nmin (b⇤, "2)

◆
= O

✓
d

nmin (", "2, b)

◆
.

E Proof of Theorem 3.1

E.1 Achieving optimal `1 and `2 error (part (i) of Theorem 3.1)

In this section, we show that Recursive Hadamard Response (RHR) achieves optimal `1 and `2
estimation error.
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Decomposition of Hadamard matrix Let us set B = d/2k�1. Since Hd = H2k�1 ⌦ HB , for
any j 2 [B] and m 2 [2k�1], if j0 = (m � 1)B + j (and thus j ⌘ j0 (mod B)), we must have
(Hd)j0 = (H2k�1)m ⌦ (Hb)j , where ⌦ is the Kronecker product. This allows us to decompose the
j0-th component of Hd ·Xi into

(Hd)j0 ·Xi = ((H2k�1)m ⌦ (HB)j) ·Xi =
2k�1X

l=1

(H2k�1)m,l (HB)j ·X(l)
i , (13)

where X l
i is the l-th block of Xi, i.e. X(l)

i , Xi[(l � 1)B + 1 : lB]. Therefore, as long as we know
(HB)j ·X(l)

i for l = 1, ..., 2k�1, we can reconstruct (Hd)j0 ·Xi, for all j0 ⌘ j (mod B).

Encoding mechanism Let ri ⇠ Uniform(B) be generated from the shared randomness, and
consider the following quantizer

Q(Xi, ri) =
⇣
(HB)ri ·X

(l)
i

⌘

l=1,...,2k�1
2 {�1, 0, 1}2

k�1

.

Since Xi is one-hot encoded, there is exactly one non-zero X(l)
i , so Q(Xi, ri) can be described by a

k-bit string (with k � 1 bits indicating the location of the non-zero entry and 1 bit indicating its sign).

Given Q(Xi, ri), by (13) we can recover 2k�1 coordinates of Yi = Hd ·Xi:

Yi(r
0) = (Hd)r0 ·Xi =

2k�1X

l=1

(H2k�1)m,l (HB)ri ·X
(l)
i = (H2k�1)m ·Q(Xi, ri), (14)

for any r0 = (m� 1)B + ri. Therefore, if we define

Ŷi(Q(Xi, ri), ri) ,
⇢

1
2k�1Yi(r0), if r0 ⌘ ri
0, else,

(15)

then E
h
Ŷi

i
= 1

dHd ·Xi, where the expectation is taken with respect to ri.

To protect privacy, client i then perturbs Q(Xi, ri) via 2k-RR scheme, since Q takes values on an
alphabet of size 2k, denoted by Q = {±e1, . . . ,±e2k�1},

Q̃i =

(
Q(Xi, ri), w.p. e"

e"+2k�1

Q0 2 Q \ {Q(Xi, ri)} , w.p. 1
e"+2k�1 ,

where el denotes the l-th coordinate vector in R2k�1

.

Client i then sends the k-bit report Q̃i to the server, and with Q̃i, the server can compute an estimate
of Qi since E

h
Q̃i

���Q(Xi, ri)
i
= e"�1

e"+2k�1Q(Xi, ri).

Constructing estimator for D̂ For a given Q̃i, we estimate Yi by Ŷi

⇣
e"+2k�1

e"�1 Q̃i, ri
⌘

, where Ŷi

is given by (14) and (15), with Q(Xi, ri) in (14) replaced by Q̃i.

Claim E.1 Ŷi is an unbiased estimator of Yi.

The final estimator of DXn = 1
n

P
Xi is given by

D̂

✓⇣
Q̃i, ri

⌘

i=1,...,n

◆
, 1

n

nX

i=1

Hd · Ŷi

✓
e" + 2k � 1

e" � 1
Q̃i, ri

◆
. (16)

Note that by Claim E.1, D̂ is an unbiased estimator for DXn . Finally picking k =
min (b, d" log2 ee, blog dc) yields the following bounds.
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Claim E.2 The estimator D̂ in (16) achieves the optimal `1 and `2 errors:

E
���D̂ �DXn

���
2

2

�
� d

n
⇣
min

n
e", (e" � 1)2 , 2b, d

o⌘ and

E
h���D̂ �DXn

���
1

i
� dr

n
⇣
min

n
e", (e" � 1)2 , 2b, d

o⌘ .

This establishes the achievability part of Theorem 3.1. ⇤

E.2 Algorithms

We summarize our proposed scheme RHR scheme below:

Algorithm 1: Encoding mechanism Q̃i (at each client)
Input: client index i, observation Xi, privacy level ", alphabet size d
Result: Encoded message

�
˜sign, ˜loc

�

Set D = 2dlog de, k = min (b, d" log2 ee), B = D/2k�1;
Draw ri from uniform(B) using public-coin ;
begin

loc dXi
B e;

sign (Hd)ri,Xi
;�

˜sign, ˜loc
�
 2k � RR" ((sign, loc)) /* (sign, loc) as a k-bit string */;

end

Notice that computing any entry of Hd takes O (log d) Boolean operations, and uniformly sampling
a k-bit string takes O(k) time. Therefore the computation cost at each client is O (log d) time. Also
note that the encoded message is a k-bit binary string, and therefore the communication cost at each
client is k = min (b, d" log2(e)e)  b.

Once receiving the k-bit messages from all clients, the server does the following operation:

Algorithm 2: Estimator of DXn (at the server)
Input: ( ˜sign[1 : n], ˜loc[1 : n]), privacy level ", alphabet size d
Result: D̂
Set D = 2dlog de, k = min (b, d" log2 ee), B = D/2k�1;
Partition messages into groups G1, ...,GB , with message i in Gri ;
forall j = 1, ..., B do

G+
j  

�
˜loc(i) | i 2 Gj , ˜sign(i) = +1

 
;

G�
j  

�
˜loc(i) | i 2 Gj , ˜sign(i) = �1

 
;

Empj  
�
empirical distribution(G+

j )� empirical distribution(G�
j )
�
· e"+2k�1

e"�1 ;
forall l = 0, ..., 2k�1 � 1 do

Ê[l ·B + j] FWHT(Empj)[l] /* fast Walsh-Hadamard transform */

end
end
D̂  1

d · FWHT

⇣
Ê
⌘

;

The encoding mechanism above involves two operations: 1) sampling a random index ri from [B]
at each client with the help of a public coin, and 2) computing (Hd)ri · Xi. Since Xi is one-hot,
the encoding complexity is O(log d). On the other hand, in order to efficiently decode, the server
first computes the joint histogram of client i’s report and ri in O(n) time, which in turn allows
us to calculate 1

n

P
i Ŷi, and then apply the Fast Walsh-Hadamard transform (FWHT) to obtain

the estimator of empirical frequency in O(d log d) time. Hence the overall decoding complexity is
O (n+ d log d).
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E.3 Lower Bound on `1 and `2 errors in Theorem 3.1

We can bound the error by considering the worst case Bayesian setting, i.e. by imposing a prior
distribution p on X1, ..., Xn and applying the converse part of Theorem 3.2 in Section 3.2.

Let X1, ..., Xn
i.i.d.⇠ p. Then for any D̂(Xn), we must have

max
Xn⇠p

E
���D̂ �DXn

���
2

2

�
(a)
� max

p
E
⇣���D̂ � p

���
2
� kDXn � pk2

⌘2
�

� max
p

✓
E
���D̂ � p

���
2

2

�
� 2E

h���D̂ � p
���
2
kDXn � pk2

i◆

(b)
� max

p

 
E
���D̂ � p

���
2

2

�
� 2

s

E
���D̂ � p

���
2

2

�
E
h
kDXn � pk22

i!

(17)

where (a) and (b) follow from the triangular inequality and the Cauchy-Schwarz inequality respec-
tively. By Theorem 3.2, there exists a worst case p⇤ such that

c
d

n

0

@ 1

min
n
e", (e" � 1)2 , 2b

o

1

A  E
���D̂ � p⇤

���
2

2

�
 C

d

n

0

@ 1

min
n
e", (e" � 1)2 , 2b

o

1

A , (18)

for some constants c and C. On the other hand, the `2 convergence of D(Xn) to p is O (1/n) for
any p, which gives us

E
h
kDXn � p⇤k22

i
 c0

1

n
. (19)

Plugging (18) and (19) back into (17) yields

max
Xn⇠p

E
���D̂ �DXn

���
2

2

�

� C1
d

n

0

@ 1

min
n
e", (e" � 1)2 , 2b

o

1

A� C2
1

n

vuut
d

min
n
e", (e" � 1)2 , 2b

o .

Thus as long as min
⇣
e", (e" � 1)2 , 2b

⌘
= o(d), the first term dominates and the desired `2 lower

bound follows.

For the case of `1, we similarly have

max
Xn⇠p

E
h���D̂ �DXn

���
1

i
� max

p

⇣
E
h���D̂ � p

���
1

i
� E [kDXn � pk1]

⌘
(20)

It is well-known that E [kD(Xn)� pk1] 
p
d/n (for instance, see [26]), and by the converse part

of Theorem 3.2

max
p

E
h���D̂ � p

���
1

i
�
vuut

d2

nmin
n
e", (e" � 1)2 , 2b

o .

Plugging this into (20) yields the `1 lower bound. ⇤

E.4 Achieving optimal `1 error (part (ii) of Theorem 3.1 )

To obtain an upper bound on `1 error, we extend the TreeHist protocol in [11], a 1-bit LDP heavy
hitter estimation mechanism, to communicate b bits and satisfy a desired privacy level ". A simpler
version of TreeHist protocol, which is not optimized for computational complexity, is as follows: we
first perform Hadamard transform on Xi, and sample one random coordinate with public randomness
ri. The 1-bit message is then passed through a binary "-LDP mechanism. We can show that from the
perturbed outcomes, the server can construct an unbiased estimator of Xi with bounded sub-Gaussian
norm, and the `1 error will be O(

p
log d/n"2).
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To extend this scheme to an arbitrary privacy regime and an arbitrary communication budget of b bits,
we independently and uniformly sample the Hadamard transform of Xi for k = min (b, d"e) times.
Each 1-bit sample is then perturbed via a "0-LDP mechanism with "0 , "/k.

Note that under the distribution-free setting, the randomness comes only from the sampling and the
privatization steps, so we could view each re-sampled and perturbed message as generated from a
fresh new copy of Xi since Xi is not random. Equivalently, this boils down to a frequency estimation
problem with n0 = nk clients and under "0 = "/k and gives us the `1 error

O

 s
log d

n0 ("0)2

!
= O

 s
log d

nmin ("2, ", b)

!
.

Below we describe the details.

Encoding mechanism Set k = min (b, d"e). For each Xi, we randomly sample (Hd)Xi
(i.e.

the Xi-th column of Hd) k times, identically and independently by using the shared randomness.
Let r(1)i , ..., r(k)i be the sampled coordinates, which are known to both the server and node i, and
(Hd)Xi,r

(`)
i

be the sampling outcomes. Then due to the orthogonality of Hd, for all j 2 [d], ` 2 [k],

E
h
(Hd)j,r(`)i

· (Hd)Xi,r
(`)
i

i
=

⇢
1, if j = Xi

0, if j 6= Xi,
(21)

where the expectation is taken over r(`)i .

We then pass
n
(Hd)Xi,r

(`)
i

���` = 1, ..., k
o

through k binary "0-LDP channels sequentially, with "0 ,
"/k. By the composition theorem of differential privacy, the privatized outcomes, denoted asn

˜(Hd)Xi,r
(`)
i

o
, satisfy "-LDP.

Estimation of DXn Observe that

E
" 

e"
0
+ 1

e"0 � 1

!
˜(Hd)Xi,r

(`)
i

�����(Hd)Xi,r
(`)
i

#
= (Hd)Xi,r

(`)
i
,

where the expectation is with respect to the privatization. Therefore

X̂(`)
i (j) ,

 
e"

0
+ 1

e"0 � 1

!
(Hd)j,Xi

˜(Hd)Xi,r
(`)
i

defines an unbiased estimator of Xi(j). Moreover,

���X̂(`)
i (j)�Xi(j)

��� 
 
e"

0
+ 1

e"0 � 1
+ 1

!
a.s.,

so X̂(`)
i (j) has sub-Gaussian norm bounded by

�  2
e"

0
+ 1

e"0 � 1
. (22)

Finally, we estimate DXn(j) by

D̂(j) =
1

nk

nX

i=1

kX

`=1

X̂(`)
i (j).

Observe that

D̂(j)�DXn(j) =
1

nk

nX

i=1

kX

`=1

⇣
X̂(`)

i (j)�Xi(j)
⌘

(23)
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has sub-Gaussian norm bounded by �/
p
nk, where � is given by (22).

To bound the `1 norm, we apply the maximum bound (see, for instance, [43, Chapter 2]) for
sub-Gaussian random variables (note that for j, j0, D̂(j) and D̂(j0) are not independent):

E

max
j2[d]

���D̂(j)�DXn(j)
���
�
 2

p
�2 log d = 4

s✓
e"0 + 1

e"0 � 1

◆2 log d

nk

(a)
⇣

s
log d

nmin (", "2, k)
, (24)

where (a) holds since if " = o(1), then k = 1 and hence
 
e"

0
+ 1

e"0 � 1

!2

⇣ 1

"2
;

otherwise " = ⌦(1) and "0 = ⌦(1), so
 
e"

0
+ 1

e"0 � 1

!2

⇣ 1.

Both cases are upper bounded by (24), so the result follows. ⇤

Remark E.1 Notice that in the high privacy regime " = o(1), the upper bound matches the lower
bound in [12]. For general privacy regimes with limited communication, however, we do not know
whether the upper bound is tight or not. This remains as an open question.

F Proof of Theorem 3.2

The construction of the distribution estimation scheme mainly follows Section E.1, except we replace
the random sampling step by a deterministic grouping idea. We will use the same notation as in
Section E.1.

Encoding mechanism We group n samples into B equal-sized groups, each with n0 = n/B
samples. For sample Xi 2 Gj , we quantize it to a 2k�1-dimensional {1, 0,�1} vector:

Qj(Xi) =

2

66664

(HB)j ·X(1)
i

(HB)j ·X(2)
i

...
(HB)j ·X(2k�1)

i

3

77775
2 {�1, 0, 1}2

k�1

.

Since Xi is one-hot encoded, there is only one l 2 {1, ..., 2k�1} such that (HB)j · X(l)
i 6= 0, so

Qj(Xi) can be described by k bits (1 bit for the sign and (k � 1) bits for the location of the non-zero
element). Also notice that

E [Qj(Xi)] =

2

6664

(HB)j · p(1)

(HB)j · p(2)

...
(HB)j · p(2k�1)

3

7775
,

where p(l) , p[(l � 1)B + 1 : lB]. By (13), the estimator q̂j0 = h(H2k�1)m , Qj(Xi)i is unbiased
for qj0 (where j0 = (m� 1)B + j).

We further perturb Qj via 2k-RR scheme, since Q takes values on an alphabet of size 2k, denoted by
Q = {±e1, . . . ,±e2k�1},

Q̃j =

(
Qj , w.p. e"

e"+2k�1

Q0 2 Q \ {Qj} , w.p. 1
e"+2k�1 ,

where el denotes the l-th coordinate vector in R2k�1

. This gives us

E
h
Q̃j

i
=

e" � 1

e" + 2k � 1
E [Qj ] .
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Therefore e"+2k�1
e"�1 Q̃j yields an unbiased estimator of

2

6664

(HB)j · p(1)

(HB)j · p(2)

...
(HB)j · p(2k�1)

3

7775
.

Constructing the estimator for p For each j0 ⌘ j (mod B), we estimate (H2k�1)m ·Qj(Xi), i 2
Gj (recall that j0 = j + (m� 1)B). Define the estimator

q̂j0 ({Xi, i 2 Gj}) =
1

|Gj |
X

i2Gj

(H2k�1)m ·
✓
e" + 2k � 1

e" � 1

◆
Q̃j(Xi)

=
B

n

✓
e" + 2k � 1

e" � 1

◆X

i2Gj

(H2k�1)m Q̃j(Xi).

The MSE of q̂i0 can be obtained by

E
h
(q̂j0 � qj0)

2
i

(a)
= Var (q̂i0)

(b)
=

d

n2k�1

✓
e" + 2k � 1

e" � 1

◆2

Var

⇣
(H2k�1)m · Q̃j(Xi)

⌘

(c)
 d

n2k�1

✓
e" + 2k � 1

e" � 1

◆2

, (25)

where (a) is due to the unbiasedness of q̂j0 , (b) is due to the independence across Xi, and (c) is
because h(H2k�1)m , Q̃ji only takes value in {�1, 1}.

Finally, let p̂ be the inverse Hadamard transform of q̂, the MSE is

E kp̂� pk22 = E [hp̂� p, p̂� pi]

= E
h
(q̂ � q)|

�
H�1

d

�|
H�1

d (q̂ � q)
i

=
1

d
E kq̂ � qk22

 d

n2k

✓
e" + 2k � 1

e" � 1

◆2

= O

 
d

n2k

✓
e" + 2k

e" � 1

◆2
!
,

where the last inequality holds due to (25).

Picking k = min (b, d" log2 ee, blog dc) yields

E kp̂� pk22 = O

 
d

nmin (2b, e", d)

✓
e"

e" � 1

◆2
!
.

Observe that if e" = O(2b), then e" � 2b, so E kp̂� pk22 = O
⇣

de"

n(e"�1)2

⌘
. On the other hand, if

e" = ⌦(2b), then e"

e"�1 = ✓(1), and E kp̂� pk22 = O
⇣

d
nmin(2b,d)

⌘
.

Therefore we conclude that

E kp̂� pk22 � max

 
d

nmin (2b, d)
,

de"

n (e" � 1)2

!
⇣ d

n

0

@ 1

min
n
e", (e" � 1)2 , 2b, d

o

1

A .
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Finally, by Jensen’s inequality and Cauchy-Schwarz inequality, we also have

E [kp̂� pk1] 
⇣
E
h
kp̂� pk21

i⌘ 1
2 

⇣
d · E kp̂� pk22

⌘ 1
2 � dr

n
⇣
min

n
e", (e" � 1)2 , 2b, d

o⌘ ,

establishing the achievability part of Theorem 3.2. ⇤

F.1 Algorithms and analysis

Each client runs the following algorithm:

Algorithm 3: Encoding mechanism (at each client)
Input: client index i, observation Xi, privacy level ", alphabet size d
Result: Encoded message

�
˜sign, ˜loc

�

Set D = 2dlog de. Set k = min (b, d" log2 ee), B = D/2k�1;
begin

j  i mod B /* assign user i to group j */;
loc dXi

B e;
sign (Hd)j,Xi

;�
˜sign, ˜loc

�
 kRR" ((sign, loc)) ;

end

As in Algorithm 1, the computation cost at each client is O (log d). Also note that the en-
coded message is a k-bit binary string, and therefore the communication cost at each client is
k = min (b, " log2(e))  b.

Upon receiving the privatized k-bit messages from the clients, the server runs the following algorithm:

Algorithm 4: Estimation of p (at the server)
Input: ( ˜sign[1 : n], ˜loc[1 : n]), privacy level ", alphabet size d
Result: p̂
Set D = 2dlog de, k = min (b, d" log2 ee), B = D/2k�1;
Partition messages into groups G1, ...,GB , with message i in Gj if i ⌘ j (mod B);
forall j = 1, ..., B do

G+
j  

�
˜loc(i) | i 2 Gj , ˜sign(i) = +1

 
;

G�
j  

�
˜loc(i) | i 2 Gj , ˜sign(i) = �1

 
;

Dj  
�
empirical distribution(G+

j )� empirical distribution(G�
j )
�
· e"+2k�1

e"�1 ;
forall l = 0, ..., 2k�1 � 1 do

q̂[l ·B + j] FWHT(Dj)[l] ;
end

end
p̂ 1

d · FWHT (q̂);

Partitioning n samples into B groups and computing the empirical distribution of each group takes
O(n) time, and the fast Walsh-Hadamard transform can be performed in O (d log d) time. Hence the
decoding complexity is O (n+ d log d).
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G Proofs for Section B

We start with proving Lemma B.1. Without access to the public randomness, [3] shows that at least
⇥(d) bits of communication is required for heavy hitter estimation in order to obtain a consistent
estimator5. We state their result here:

Lemma G.1 ( [3] Theorem 4) Let b  log d� 2. For all private-coin schemes
⇣
Qn, D̂

⌘
with only

private randomness and b bits communication budgets, there exists a data sets X1, ..., Xn with
n > 12(2b + 1)2, such that

E
h���D̂ (Qn)�DXn

���
1

i
� 1

2b+2 + 4
.

Based on this, we claim that without public coin, each client needs to transmit at least ⇥(log d) bits
in order to construct consistent schemes for frequency estimation or mean estimation.

G.1 Proof of Lemma B.1

Frequency estimation We lower bound `1 and `2 error by `1 and apply Lemma G.1.

E
h���D̂ (Qn)�DXn

���
1

i
� E

h���D̂ (Qn)�DXn

���
1

i
� 1

2b+2 + 4
,

and

E
���D̂ (Qn)�DXn

���
2

2

�
� E

���D̂ (Qn)�DXn

���
2

1

�

�
⇣
E
h���D̂ (Qn)�DXn

���
1

i⌘2

�
✓

1

2b+2 + 4

◆2

. (26)

This implies that it is impossible to construct consistent schemes with less than log d�2 bits per client
in the absence of a public randomness. On the other hand, given log d bits, one can readily achieve
the optimal estimation accuracy without any public randomness, for instance, by using Hadamard
response [4] (see also the discussion in [3]). Therefore, the problem of frequency estimation is
somewhat trivialized in the absence of public randomness.

Mean estimation Let Xi 2 [d] be one-hot encoded, so Xi 2 Bd (0, 1). Then (26) implies
the `2 error of mean estimation is at least 1/

�
2b+2 + 4

�2. Thus with less than log d � 2 bits of
communication budget, it is also impossible to construct a consistent scheme for mean estimation. ⇤

G.2 Proof of Corollary B.1 and Corollary B.1

Notice that since one can always “simulate” the public coin by uplink communication (i.e. each
client generates its private random bits and send them to the server), any b bits public-coin scheme
can be cast into a private coin scheme with additional b bits communication. This implies the
above impossibility results (Lemma B.1) also serves a valid lower bound for the amount of public
randomness: for any public-coin scheme with b < log d� 2 bits communication budgets, we need at
least log d� b� 2 bits of shared randomness in order to obtain a consistent estimate of the empirical
mean or empirical frequency. ⇤

5Recall that an estimator is consistent if it has vanishing estimation error as n tends to infinity.
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H Proof of Claims

H.1 Proof of Claim D.1

Proof. According to (4), it suffices to control Var (âj). To bound the variance, consider
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where (a) is due to |q̃m| = cp
d

, and (b) is due to the second moment bound on Binomial(k, 1/N) and
the fact N = ⇥(d). Therefore by (4),
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establishing the claim.

H.2 Proof of Claim E.1

Proof. Ŷi yields an unbiased estimator since
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where (a) holds since conditioning on ri, Ŷi(Q, ri) is a linear function of Q.

H.3 Proof of Claim E.2

Proof. The `2 error is
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It remains to bound E
���Ŷi � E [Yi]

���
2

2

�
. Observe that

���E[Ŷi]
��� =
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Hd ·Xi

d

���� = [1/d, ..., 1/d]|,
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and from expression (15), given ri, there are only 2k�1 non-zero coordinates, each with value
bounded by

⇣
e"+2k�1

e"�1

⌘
/2k�1. Therefore we have
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Plugging this in to (28), we arrive at
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Picking k = min (b, d" log2 ee, blog dc) yields

E
���D̂ �DXn

���
2

2

�
= O

 
d

nmin (2b, e", d)

✓
e"

e" � 1

◆2
!
.

Observe that

(i) if e" = O(2b), then e" � 2b, so E
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Therefore we conclude that
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By Jensen’s inequality and Cauchy-Schwarz inequality, we also have
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