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Abstract

Two major challenges in distributed learning and estimation are 1) preserving
the privacy of the local samples; and 2) communicating them efficiently to a
central server, while achieving high accuracy for the end-to-end task. While there
has been significant interest in addressing each of these challenges separately
in the recent literature, treatments that simultaneously address both challenges
are still largely missing. In this paper, we develop novel encoding and decoding
mechanisms that simultaneously achieve optimal privacy and communication
efficiency in various canonical settings. In particular, we consider the problems of
mean estimation and frequency estimation under "-local differential privacy and
b-bit communication constraints. For mean estimation, we propose a scheme based
on Kashin’s representation and random sampling, with order-optimal estimation
error under both constraints. For frequency estimation, we present a mechanism
that leverages the recursive structure of Walsh-Hadamard matrices and achieves
order-optimal estimation error for all privacy levels and communication budgets.
As a by-product, we also construct a distribution estimation mechanism that is
rate-optimal for all privacy regimes and communication constraints, extending
recent work that is limited to b = 1 and " = O(1). Our results demonstrate that
intelligent encoding under joint privacy and communication constraints can yield a
performance that matches the optimal accuracy achievable under either constraint
alone.

1 Introduction

The rapid growth of large-scale datasets has been stimulating interest in and demands for distributed
learning and estimation, where datasets are often too large and too sensitive to be stored on a
centralized machine. When data is distributed across multiple devices, communication cost often
becomes a bottleneck of modern machine learning tasks [38]. This is even more so in federated
learning type settings, where communication occurs over bandwidth-limited wireless links [31].
Moreover, as more personal data is entrusted to data aggregators, in many applications it carries
sensitive individual information, and hence finding ways to protect individual privacy is of crucial
importance. In particular, local differential privacy (LDP) [18, 21, 34, 49] is a widely adopted privacy
paradigm, which guarantees that the outcome from a privatization mechanism will not release too
much individual information statistically. In this paper, we study the relationship between utility
(often in forms of accuracy for certain statistical tasks), privacy, and communication jointly.
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At first glance, privacy and communication may seem to be in conflict with each other: achieving
privacy requires the addition of noise, therefore increasing the entropy of the data and making it less
compressible. For instance, consider the mean estimation problem, which appears as a fundamental
subroutine in many distributed optimization tasks, e.g. distributed stochastic gradient descent (SGD).
Here, the goal is to estimate the empirical mean of a collection of d-dimensional vectors. If we
first privatize each vector via PrivUnit in [13] (which is optimal under LDP constraints) and
then quantize via the RandomSampling quantizer in [24] (which is optimal under communication
constrains), a tedious but straightforward calculation shows that the resulting `2 estimation error
grows with d2. However, this is far from matching the error rate under each constraint separately,
which has a linear dependence on d. A similar phenomenon happens in the distribution estimation
problem, where each client’s data is drawn independently from a discrete distribution p with support
size d. One can satisfy both constraints by first perturbing the data via the Subset Selection (SS)
mechanism [51] (which is optimal under LDP constraints) and then quantizing the noised data to
b bits. Again, it can be shown that under such strategy, the `2 estimation error of p has a quadratic
dependence on d. This leaves a huge gap to the lower bounds under each constraint separately, which
have a linear dependence on d. See Section A in the appendix for a detailed discussion.

While there has been significant recent progress on understanding how to achieve optimal accuracy
under separate privacy [12, 51] and communication [42, 52] constraints, as illustrated above a simple
concatenated application of these optimal schemes can yield a highly suboptimal performance. Recent
works that attempt to break this communication-privacy-accuracy trilemma have been either limited
to specific regimes or, as we show, are far from optimal. For example, [3] provides a 1-bit "-LDP
scheme for distribution estimation which is order-optimal only in the low communication regime
(b = O(1)) and high privacy regime (" = O(1)), while [24] tries to address both constraints in the
mean estimation setting, but the error rate achieved under their mechanism is quadratic in d and
therefore does not improve on the above baseline. We note that the general privacy regime (i.e.
" = ⌦(1)) is also of both theoretical and practical interest. For instance, when n = ⌦ (d), one can
combine LDP with amplification techniques [7, 19, 20] to ensure stronger central differential privacy.

This paper closes the above gaps for any given privacy level " and communication budget b. Indeed,
our results show that the fundamental trade-offs are determined by the more stringent of the two
constraints, and with careful encoding we can satisfy the less stringent constraint for free, thus
breaking the privacy-communication-accuracy trilemma. For the same privacy level ", this allows us to
achieve the accuracy of existing mechanisms in the literature with drastically smaller communication
budget, or equivalently, for the same communication budget achieve higher privacy. It also explains,
for example, why 1-bit communication budget is sufficient under the high privacy regime [3, 11].
We will demonstrate this phenomenon in various canonical tasks and answer the following question:

“given arbitrary privacy budget " and communication budget b, what are the fundamental limits
for estimation accuracy?” We next formally define the settings and the problem formulations we
consider in this paper.

1.1 Problem Formulation

The general distributed statistical tasks we consider in this paper can be formulated as follows: each
one of the n clients has local data Xi 2 X and sends a message Yi 2 Y to the server, who upon
receiving Y n aims to estimate some pre-specified quantity of Xn. Note that Xn are not necessarily
drawn from some distribution. At client i, the message Yi is generated via some mechanism (a
randomized mapping that possibly uses shared randomness across participating clients and the server)
denoted by a conditional probability Qi(y|Xi) satisfying the following constraints.

Local differential privacy Let (Y,B) be a measurable space, and Q(·|x) be probability measures
for all x 2 X , with {Q(·|x)|x 2 X} dominated by some �-finite measure µ so that the density
Q(y|x) exists. A mechanism Q is "-LDP if

8x, x0 2 X , y 2 Y,
Q(y|x)
Q(y|x0)

 e".

b-bit communication constraint Y satisfies b-bit communication constraint if each of its elements
can be described by b bits, i.e. |Y|  2b.
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The goal is to jointly design a mechanism (at clients’ sides) and an estimator (at the server side) so
that the accuracy of estimating some target function

Pn
i=1 f(Xi) is maximized. In this paper, we

are mainly interested in the distribution-free framework, that is, we do not assume any underlying
distribution on Xi, but we also demonstrate that our results can be extended to probabilistic settings.
To this end, we will focus on the following four canonical tasks.

Mean estimation For real-valued data, we consider the d-dimensional unit euclidean ball X =
Bd(0, 1) and are interested in estimating the empirical mean X̄ , 1

n

P
i Xi. The goal is to minimize

the worst-case `2 estimation error defined as

rME (`2, ", b) , min
(X̂,Qn)

max
Xn2Xn

E
���X̂ � X̄

���
2

2

�
, (1)

where Qn satisfies "-LDP and b-bit communication constraints. When the context is clear, we may
omit " and b in rME (`, ", b).

Statistical mean estimation In the probabilistic version of the mean estimation problem, we
assume that Xi’s are drawn from some common but unknown distribution P supported on Bd(0, 1),
the goal is to estimate the statistical mean ✓ (P ) = EP [X1] and to minimize the `2 estimation error:

rSME (`2, ", b) , min
(✓̂,Qn)

max
Xn2Xn

E
���✓̂ (Xn)� ✓ (P )

���
2

2

�
.

Frequency estimation When X consists of categorical data, i.e. X = [d] = {1, ..., d}, we are
interested in estimating DXn(x) , 1

n

P
i {Xi=x} for x 2 [d]. With a slight abuse of notation, DXn

is viewed as a vector (DXn(1), ..., DXn(d)) lying in the d-dimensional probability simplex. The
worst-case estimation error is defined by

rFE (`, ", b) , min
(D̂,Qn)

max
Xn2Xn

E
h
`
⇣
D̂,DXn

⌘i
,

where ` = k·k1, k·k1, or k·k22 and again Qn satisfies "-LDP and b-bit communication constraints.

Distribution estimation A closely related setting is that of discrete distribution estimation, where
we assume that the Xi’s are drawn independently from a discrete distribution p on the alphabet
X = [d], and the goal is to estimate p. In this case, the worst-case error is given by

rDE (`, ", b) , inf
(Qn,p̂)

sup
p2Pd

E [`(p̂,p)] ,

where Pd is the d-dimensional probability simplex.

We note that these canonical tasks serve as fundamental subroutines in many distributed optimization
and learning problems. For instance, the convergence rate of distributed SGD is determined by the
`2 error of estimating the mean of the local gradient vectors (see [5] for more on this connection).
Lloyd’s algorithm [35] for k-means clustering or the power-iteration method for PCA can also be
reduced to the mean estimation task.

Remark 1.1 In this work, we generally assume the availability of shared randomness across the
participating clients and the server. In this case the encoding functions at each node can be explicitly
denoted as Qi(y|Xi, U) where U is a shared random variable that is independent of data, referred
to as a public coin. U is also available at the server and the estimator implicitly depends on U . In
our notation, we suppress this dependence on U for simplicity. The entropy of U is referred as the
amount of shared randomness needed by a scheme. In Section B, we discuss the amount of shared
randomness required by our schemes in order to achieve the optimal estimation error. We point out
that in the statistical settings (i.e. statistical mean estimation and distribution estimation), the optimal
estimation error can be achieved without shared randomness.
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Privacy Comm. `2 error

SQKR (this work, Thm. 2.1) 8 " 8 b d
nmin("2,",b)

Cross-polytope [24] " ⌫ 1 b ⌫ log d d2

n

Simplex [24] " ⌫ log d b ⌫ log d d
n

Table 1: Comparison between our mean estimation scheme and vqSGD [24]. Our scheme applies to
general communication and privacy regimes, and achieves optimal estimation error for all scenarios.

1.2 Relation to Prior Work

Previous works in the mean estimation problem [6, 10, 24, 42, 44, 50] mainly focus on reducing
communication cost, for instance, by random rotation [42] and sparsification [6, 14, 48, 50]. Among
them, [24] considers LDP simultaneously. It proposes vector quantization and takes privacy into
account, developing a scheme for " = ⇥(1) and b = ⇥(log d) with estimation error O(d2/n). In
contrast, the scheme we develop in Theorem 2.1 achieves an estimation error O(d/n) when " = ⇥(1)
and b = ⇥(log d). Moreover, our scheme is applicable for any " and b and achieves the optimal
estimation error, which we show by proving a matching information theoretic lower bound. See
Table 1 for a comparison of our results with [24]. A key step in our scheme is to pre-process the local
data via Kashin’s representation [36]. While various compression schemes, based on quantization,
sparsification and dithering have been proposed in the recent literature and Kashin’s representation
for communication efficiency [16, 23, 40, 41] or for LDP [22] has been also explored in a few works
, it is particularly powerful in the case of joint communication and privacy constraints as it helps
spread the information in a vector evenly in every dimension. This helps mitigate the error due to
subsequent noise introduced by privatization and compression.

The recent works of [37, 47] also consider estimating empirical mean under "-LDP. They show
that if the data is from a d-dimensional unit `1 ball, i.e. Xi 2 [�1, 1]d, then directly quantizing,
sampling and perturbing each entry can achieve optimal `1 estimation error that matches the LDP
lower bound in [17], where their privatization steps are based on techniques developed in [13, 17].
Nevertheless, their approach does not yield good `2 error in general. Indeed, as in the case of
separation schemes discussed in Section A, the `2 error of their scheme can grow with d2. We
emphasize that in many applications the `2 estimation error (i.e. MSE) is a more appropriate measure
than `1. For instance, [5] shows a direct connection between the MSE in mean estimation and the
convergence rate of distributed SGD.

Frequency estimation under local differential privacy has been studied in [46], where they propose
schemes for estimating the frequency of an individual symbol and minimizing the variance of the
estimator. Some of their schemes, while matching the information-theoretic lower bound on `2
estimation error under privacy constraints, require large communication. For instance, the scheme
Optimal Unary Encoding (OUE), which can be viewed as an asymmetric version of RAPPOR [53],
achieves optimal `2 estimation error, but the communication required is O(d) bits, which, as we show
in this work, can be reduced to O(min(d"e, log d)) bits. We do this by developing a new scheme for

Loss Estimation error Communication

Asymmertic RAPPOR [46, 53] `2 ⇥

✓
d

nmin((e"�1)2,e")

◆
d bits

RHR (this work, Thm 3.1) `2 ⇥

✓
d

nmin((e"�1)2,e")

◆
min (d"e, log d) bits

Heavy hitter (Thm. 3.1 and [12]) `1 ⇥
⇣q

log d
nmin(","2)

⌘
d"e bits

Table 2: Comparison of different frequency estimation schemes.
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Privacy " 2 (0, 1) " 2 (1, log d)

SS [51] d bits max
�

d
e" , log d

�

HR [4] log d bits log d bits

1bit-HR [3] 1 bit -

RHR (this work, Thm. 3.2) 1 bit min (d"e, log d)

Table 3: Comparison between LDP distribution estimation schemes, where blue(or red) color indicates
that accuracy of the corresponding scheme is optimal (or not). Under same privacy guarantee, our
scheme is more communication efficient while achieves same accuracy.

frequency estimation under joint privacy and communication constraints. We establish the optimality
of our proposed schemes by deriving matching information theoretic lower bounds on rFE (`2, ", b).

Frequency estimation is also closely related to heavy hitter estimation [3, 11, 12, 15, 29, 39, 53],
where the goal is to discover symbols that appear frequently in a given data set and estimate their
frequencies. This can be done if the error of estimating the frequency of each individual symbol
can be controlled uniformly (i.e. by a common bound), and thus is equivalent to minimizing the
`1 error of estimated frequencies, i.e. rFE (`1, ", b). It is shown in [12] that in the high privacy
regime " = O(1), rFE (`1, ", b) = ⇥(

p
log d/n"2), and this rate can be achieved via a 1-bit

public-coin scheme that has a runtime almost linear in n [11]. An extension, which we describe
in Section E.4 of the appendix, generalizes the achievability in [12] to arbitrary " and b, achieving
rFE (`1, ", b) = O(

p
log d/nmin ("2, ", b)). We compare our scheme and existing results in Table 2.

If we further assume Xn are drawn from some discrete distribution p, then the problem falls
into distribution estimation under local differential privacy [1–4, 17, 30, 45, 51, 53] and limited
communication [1, 2, 9, 14, 25, 27, 28, 52]. Tight lower bounds are given separately: for instance
[4, 51] shows rDE (`1, ", log d) = ⌦(

p
d2/nmin((e" � 1)2, e")) and [27] shows rDE (`1,1, b) =

⌦(
p
d2/n2b).

We show that these lower bounds can be achieved simultaneously (Theorem 3.2). Our result recovers
the result of [3] when b = 1 and " = O(1) as a special case. See Table 3 for a comparison.

1.3 Our Contributions and Techniques

To summarize, our main technical contributions include:

• For mean estimation, we characterize the optimal `2 error rME (`2) = ⇥
�
d/nmin

�
"2, ", b

��
, by

designing a public-coin scheme, Subsampled and Quantized Kashin’s Response (SQKR), and
proving its optimality by deriving matching information theoretic bounds (in Theorem 2.1). Our
encoding scheme is based on Kashin’s representation [36] and random sampling, which allow the
server to construct unbiased estimator of each Xi privately and with little communication. This
significantly improves on [24], which focuses on the special case " = ⌦(1), b = log d and achieves
quadratic dependence on d in that case.

• For frequency estimation, we characterize the optimal `1 and `2 errors under both constraints
(in Theorem 3.1) and propose an order-optimal public-coin scheme called Recursive Hadamard
Response (RHR). Our result shows that the accuracy is dominated only by the worst-case constraint,
and this implies that one can achieve the less stringent constraint for free. The proposed scheme
RHR is based on Hadamard transform, but unlike previous works using Hadamard transform,
e.g. [11], we crucially leverage the recursive structure of the Hadamard matrix, which allows us to
make the estimation error decay exponentially as " and b grow. RHR is computationally efficient,
and the decoding complexity is O(n+ d log d). We establish its optimality by showing matching
lower bounds on the performance.

• We show that RHR easily leads to an optimal scheme for distribution estimation [3, 4, 51], in
which case it does not require shared randomness and achieves order-optimal `1 and `2 error for all
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privacy regimes and communication budgets. We also provide empirical evidence that our scheme
requires significantly less communication while achieving the same accuracy and privacy levels as
the state-of-the-art approaches. See Section C for more results.

2 Mean Estimation

In the mean estimation problem, each client has a d-dimensional vector Xi from the Euclidean
unit ball, and the goal is to estimate the empirical mean X̄ = 1

n

P
i Xi under "-LDP and b bits

communication constraints. This problem has applications in private and communication efficient
distributed SGD. The following theorem characterizes the optimal `2 estimation error for this setting.

Theorem 2.1 For mean estimation under "-LDP and b-bit communication constraints, we can
achieve

rME (`2, ", b) � d/nmin
�
"2, ", b

�
. (2)

Moreover, if min("2, ", b) = o(d) and n ·min("2, ", b) > d, the above error is optimal.

Note that by taking " ! 1 for a fixed b, or by taking b ! 1 for a fixed " in part (i), Theorem 2.1
provides the optimal error when we have the corresponding constraint alone. Furthermore, for finite
" and b we see that the optimal error is dictated by the error due to one of these constraints, the one
that leads to larger error, and hence the less stringent constraint is satisfied for free. This also implies
that to achieve the optimal accuracy under "-LDP constraints, we do not need more than d"e bits. We
note that the two conditions for optimality in the theorem are standard and are needed to restrict the
problem to the interesting parameter regime.

The lower bounds are obtained by connecting the problem to a specific parametric estimation
problem with a distribution supported on the unit ball. To match this lower bound, we propose a
public-coin scheme, Subsampled and Quantized Kashin’s Response (SQKR), based on Kashin’s
representation [36] and random sampling.

2.1 Subsampled and Quantized Kashin’s Response

For each observation Xi, we aim to construct an unbiased estimator X̂i which is "-LDP, can be
described in b bits, and has small variance. Towards this goal, our general strategy is to quantize,
subsample, and privatize the data Xi. However before this, it is crucial to pre-process each Xi by a
carefully designed mechanism to increase the robustness of the signal to noise introduced by sampling
and privatization.

Pre-processing via Kashin’s representation We first introduce the idea of a tight frame in
Kashin’s representation. A tight frame is a set of vectors {uj}Nj=1 2 Rd that satisfy Parseval’s
identity, i.e. kxk22 =

PN
j=1huj , xi2 for all x 2 Rd. A frame can be viewed as a generalization of the

notion of an orthogonal basis in Rd for N > d. To increase robustness, we wish the information
to be spread evenly across different coefficients. Thus, we say that the expansion x =

PN
j=1 ajuj

is a Kashin’s representation of x at level K if maxj |aj |  Kp
N
kxk2 [33]. [36] shows that if

N > (1 + µ) d for some µ > 0, then there exists a tight frame {uj}Nj=1 such that for any x 2 Rd,
one can find a Kashin’s representation at level K = ⇥(1). This implies that we can represent each
Xi with coefficients {aj}Nj=1 2 [�c/

p
d, c/

p
d]c

0d for some constants c and c0.

Quantization Each client i computes the Kashin’s representation {aj}Nj=1 2 [�c/
p
d, c/

p
d]c

0d

of Xi, and then quantizes each aj into a 1-bit message qj 2
n
�c/

p
d, c/

p
d
o

with E[qj ] = aj . This

yields an unbiased estimator of {aj}Nj=1, which can be described in ⇥(d) bits in total. Moreover, due
to the small range of each aj , the variance of qj is bounded by O(1/d).

Sampling and privatization To further reduce {qj} to k = min(d✏e, b) bits, client i draws k

independent samples from {qj}Nj=1 with the help of shared randomness, and privatizes its k bits
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message via 2k-RR mechanism [32, 49], yielding the final privatized report of k bits, which it sends
to the server.

Upon receiving the report from client i, the server can construct unbiased estimators âj for each
{aj}Nj=1, and hence reconstruct X̂i =

PN
j=1 âjuj , which yields an unbiased estimator of Xi. We

show that the variance of X̂i can be controlled by O
�
d/min

�
"2, ", b

��
. Therefore 1

n

P
i X̂i achieves

the order-optimal `2 estimation error, establishing the upper bound in Theorem 2.1. We provide a
detailed description of the scheme and its performance analysis in Section D.

Remark 2.1 In order to achieve optimal communication efficiency, SQKR uses public randomness at
the sampling step. That being said, we can still turn SQKR into a private scheme by using additional
communication. See Section B for more details.

At a high-level, SQKR resembles vqSGD [24] as both schemes seek a suitably designed representation
for Xi before quantizing it. vqSGD represents Xi by a basis B = {b1, ..., bK} ⇢ Rd where B
is chosen in such a way that its convex hull contains the unit `2 ball. Therefore we can write
Xi =

PN
j=1 ajbj with

P
j aj = 1. Equivalently, the pre-processing step of vqSGD corresponds to a

linear transformation that embeds the d-dim `2 unit ball into a N -dim `1 ball. In contrast, Kashin’s
representation above embeds the d-dim `2 unit ball into an N -dim `1 ball. Therefore, while both
schemes have a pre-processing step of a similar flavor, what is achieved by these steps is quite
different. The representation of vqSGD is most efficient when it concentrates the information in
a few coefficients, while Kashin’s representation spreads the information evenly across different
coefficients. The first representation serves us well when we only seek to quantize the signal. However,
the quantized signal becomes very sensitive to privatization noise. Therefore vqSGD ends up with
O(d2) error in the case of both privacy and communication constraints, while we can achieve O(d)
error.

Figure 1: Log-scale `2 error of mean estima-
tion schemes.

Finally, we point out that SQKR easily extends to an
optimal scheme for statistical mean estimation, where
each local data is drawn from an unknown distribu-
tion P supported on Bd(0, 1), and the goal is to esti-
mate the statistical mean. Under the statistical setting,
however, SQKR requires no shared randomness. See
Section D.3 for more details.

In Figure 1, we compare SQKR with a concatenation of
separately optimal schemes [17] and [24], showing that
under the same privacy and communication constraints,
SQKR achieves much smaller estimation errors. More
detailed experiments can be found in Section C.

3 Frequency Estimation

Recall that in the frequency estimation problem, given X1, ...Xn 2 [d], we want to estimate the
empirical frequency DXn(x) under "-LDP and b bits communication budgets on each Xi. The
following theorem characterizes the optimal estimation error achievable in this setting.

Theorem 3.1 For frequency estimation under "-LDP and b bits communication constraint, we can
achieve

(i) rFE (`2) � d
nmin{e",(e"�1)2,2b,d} , and rFE (`1) � dq

nmin{e",(e"�1)2,2b,d}
;

(ii) rFE (`1) �
q

log d
nmin {"2,",b} .

Moreover, if min
⇣
e", (e" � 1)2 , 2b

⌘
= o(d) and nmin

⇣
e", (e" � 1)2 , 2b

⌘
� d2, the errors in (i)

are order-optimal.

Note that, similar to Theorem 2.1, Theorem 3.1 shows that for finite " and b, the error is determined
by the error due to one of these constraints, and hence the other less stringent constraint is satisfied
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for free. It also implies that to achieve the optimal accuracy under "-LDP constraints, we do not need
more than min (dlog2 e · "e, log d) bits.In the rest of the section, we overview the scheme we develop
to achieve the optimal error in (2).

We next overview the scheme that achieves the error in (i) of Theorem 3.1. We call this scheme
Recursive Hadamard Response (RHR) as it builds on the recursive structure of the Hadamard matrix.
The formal description of the scheme and complete proof of Theorem 3.1 can be found in Section E.

3.1 Recursive Hadamard Response

For notational convenience, we will view DXn as a d-dimensional vector (DXn(1), ..., DXn(d)) and
assume Xi is one-hot encoded, i.e. Xi = ej for some j 2 [d], so DXn = 1

n

P
i Xi. We further

assume, without of loss of generality, that d = 2m for some m 2 N. Recall that a Hadamard matrix
Hd 2 {�1,+1}d⇥d can be constructed in a recursive fashion as

Hm =


Hm/2 Hm/2

Hm/2 �Hm/2

�
,

where H1 = [1]. It can be easily shown that H�1
d = Hd/d.

Instead of directly estimating DXn , our strategy is to first estimate Hd ·DXn and then perform the
inverse transform H�1

d to get an estimate for DXn . So each client will transmit information about
Yi , Hd ·Xi 2 {�1, 1}d rather than its original data Xi.

The 1-bit case In this case, each client transmits a uniformly at random chosen entry of Yi via any
1-bit LDP channel (for instance, using the 2-randomized response (RR) scheme [30, 32, 49]). Once
receiving all the bits of the clients, the server can construct an unbiased estimator of Yi (since the
randomness is public the server knows which entry is chosen for communication by each client). It
turns out that this simple 1-bit scheme achieves optimal `1 (and `2) error ⇥(

p
d2/n"2) in the high

privacy regime " < 1. This idea is not new and has been used in heavy hitter estimation [11] and
distribution estimation [3]. However, a key question remains: how do we minimize the error given an
arbitrary communication budget b and privacy level "?

Moving beyond the 1-bit case A natural way to extend the 1-bit scheme above to the case when
each client can transmit b-bits is to have each client communicate b randomly chosen entries of
its transformed data Yi instead of a single entry. This will boost the sample size by a factor of b,
equivalently decrease the `2 error by a factor of b (

p
b for `1). Instead, we argue next that we can

exploit the recursive structure of the Hadamard matrix to boost the sample size by a factor of 2b,
equivalently decrease the error by an exponential factor.

Consider b  blog dc and let B = d/2b�1. Note that Hd = H2b�1 ⌦ HB , where ⌦ denotes the
Kronecker product. To visualize, for b = 3, Hd has the following structure:

Yi = HdXi =

2

64

HB HB HB HB

HB �HB HB �HB

HB HB �HB �HB

HB �HB �HB HB

3

75

2

6664

X(1)
i

X(2)
i

X(3)
i

X(4)
i

3

7775
,

where for l = 1, . . . , 2b�1, X(l)
i denotes the l’th block of Xi of length B = d/2b�1. Therefore, in

order to communicate Yi, we can equivalently communicate HBX
(l)
i for l = 1, . . . , 2b�1. Since

H2b�1 is known, this is sufficient to reconstruct Yi. We next observe that while communicating Yi

requires d = B ⇥ 2b�1 bits, communicating {HBX
(l)
i , l = 1, . . . , 2b�1} requires B + (b� 1) bits.

This is because Xi is one-hot encoded and all but one of the 2b�1 vectors {HBX
(l)
i , l = 1, . . . , 2b�1}

are equal to zero. It suffices to communicate the index l of the non-zero vector, by using (b� 1) bits,
and its B entries by using additional B bits. This is the key observation that RHR builds on.

When each client has only b bits, they cannot communicate sufficient information for fully re-
constructing Yi, i.e. all {HBX

(l)
i , l = 1, . . . , 2b�1}. Instead, each client chooses a random

index ri 2 [B] and communicates the ri’th row of {HB X(l)
i , l = 1, . . . , 2b�1}, equivalently
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{(HB)riX
(l)
i , l = 1, . . . , 2b�1} where (HB)ri denotes the ri’th row of HB . Note that as before,

only one of the 2b�1 numbers {(HB)ri X
(l)
i , l = 1, . . . , 2b�1} is non-zero and therefore these num-

bers can be communicated by using b bits, b� 1 bits to represent the index of the non-zero number
and a single bit to communicate its value. When there is a privacy constraint, client i perturbs their b
bits by a 2b-RR mechanism with privacy level ", and this yields the privatized report of b bits.

Upon receiving the reports from clients, the server constructs an unbiased estimator for Yi. To
do this, it first constructs an unbiased estimator for {HB X(l)

i , l = 1, . . . , 2b�1} and then employs
the structure Hd = H2b�1 ⌦ HB . Note that since the randomness is shared the server knows
the index r chosen by each client, and since the clients choose their indices independently and
uniformly at random, roughly speaking, they communicate information about different rows of
{HB X(l)

i , l = 1, . . . , 2b�1}. Finally, an unbiased estimator Ŷi for Yi yields an unbiased estimator
for Xi through the transformation X̂i =

1
dHd · Ŷi, and due to the orthogonality of Hd, it can be

shown that the variance of X̂i is the same as the variance of Ŷi divided by d.

A subtle issue is that if e" ⌧ 2b, the noise due to 2b-RR mechanism may be too large, so instead of
using all b bits, we perform the above encoding and decoding procedure with b0 , min (dlog2 e · "e).
We defer the details and the formal proof to Section E.1.

Note that this careful construction based on the recursive structure of the Hadamard matrix is only
required in the case when there are joint privacy and communication constraints. When only one
constraint is present, the optimal error can be achieved in a much simpler fashion. When there is only
a b bit constraint, [27] shows that the optimal error can be achieved by simply having each client
communicate a subset of the entries of its data vector Xi (without requiring Hadamard transform).
When there is only a privacy constraint ", the optimal error can be achieved by a number of schemes,
such as subset selection (2b-SS) [51] and Hadamard response (HR) [4].

Remark 3.1 As in mean estimation, RHR requires public randomness to achieve optimal communi-
cation efficiency. Indeed, we can show that RHR uses the minimum amount of shared randomness.
See Section B for more details.

3.2 Application to distribution estimation

For frequency estimation, RHR requires shared randomness so that the server can construct an
unbiased estimator. However, for distribution estimation where Xi ⇠ p, we can replace the random
sampling with a deterministic partitioning of coordinates among the different clients and circumvent
the need for shared randomness. This gives us the following theorem:

Theorem 3.2 For distribution estimation under "-LDP and b-bit communication constraints,

rDE (`2) ⇣
d

nmin
⇣
e", (e" � 1)2 , 2b, d

⌘ , and rDE (`1) ⇣
dr

nmin
⇣
e", (e" � 1)2 , 2b, d

⌘ ,

without shared randomness. Moreover, if n ·min
⇣
e", (e" � 1)2 , 2b, d

⌘
� d2, the above errors are

optimal even in the presence of shared randomness.

Figure 2: `1 estimation errors of different
distribution estimation schemes.

The lower bounds follow directly from the results
of [51] (under LDP constraint) and [9, 27] (under com-
munication constraint). We leave the formal proof of
the achievability to Section F.

We compare RHR with other distribution estimation
mechanisms, including state-of-the-art methods HR [4],
1-bit HR [3] and SS [51]. We generate data from dif-
ferent distributions and compare the `1 errors of each
schemes. In Figure 2, we set d = 10000, and consider
truncated and normalized geometric distribution with
� = 0.8. The figure shows that our scheme achieves
better performance than [4] with half the communica-
tion cost. More experiments can be found in Section C.
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Broader Impact

Harnessing distributed data holds the promise of impacting many facets of our lives. It could enable
truly large scale smart infrastructure and IoT applications; having a profound and positive impact
on power-grid efficiency, traffic, health-monitoring, medical diagnoses, carbon emissions, and many
other areas. A foundational understanding of distributed learning and estimation can also benefit
many different fields of study such as neuroscience, medicine, economics, and social networks,
where statistical tools are often used to analyze information that is generated and processed in large
networks.

While the above vision is expected to generate many disruptive business and social opportunities, it
presents a number of unprecedented challenges. First, massive amounts of data need to be collected
by, and transferred across, resource-constrained devices. Second, the collected data needs to be
stored, processed, and analyzed at scales never previously seen. Third, serious concerns such as
access control, data privacy, and security should be rigorously addressed.

Our work tackles the above challenges by examining the fundamental trade-off between commu-
nication, privacy, and accuracy by taking a holistic approach that examines all these constraints
simultaneously and designing provably optimal privacy and compression mechanisms for efficient
distributed learning and estimation. Our work therefore serves as a fundamental stepping stone
towards harnessing large-scale distributed data in a privacy-preserving and bandwidth efficient way.

Even more broadly, our work advances the current state-of-the-art in a number of areas of statistics
and computer science. Indeed, our work builds on a long line of fundamental research in information
theory, statistics, and theoretical computer science, extending them in non-trivial ways.
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