
We thank all the reviewers for their valuable comments. We will reflect the comments in the final version of the paper.1

[R2: results on SAC] Please let us correct the reviewer’s misunderstanding of our experimental results on SAC. In2

Figure 5 of the paper, the baseline SAC agent is trained on the standard non-persistent environments while being3

evaluated on c-persistent environments where the action-persistence is enforced. As shown in the following figure1,4

the performance of SAC consistently improves in the non-persistent environment that the agent is trained on, but its5

naïve projection into a c-persistent policy completely fails since the agent never considers the action-persistence during6

training. We would like to emphasize this is natural and not a broken result.7

0 1 2 3
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Hopper-v2

0 1 2 3
time steps 1e6

0

2500

av
er

ag
e

re
tu

rn Walker2d-v2

0 1 2 3
time steps 1e6

0

10000

av
er

ag
e

re
tu

rn Halfcheetah-v2

0 1 2 3
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Ant-v2

SAC (eval in non-persistent env) SAC (eval in persistent env, presented in the paper)

[R3: alternative baseline] Your understanding is correct. The environment modification method, which includes the8

‘last action’ and ‘t mod L’ in the augmented state, will also enjoy a linear complexity with respect to L. However, this9

alternative baseline still has some drawbacks compared to our proposed method. First, it is unable to exploit every10

transition sample to update every timestep’s actor and critic, while AP-AC is capable of doing it in Eq. (9-10). Second,11

there exists a redundancy in the representation of Q-function, i.e. Q(t, ālast, s, a) is not succinct compared to ours of12

Q(t, s, a). This incurs a factor of |A|2 increase in time complexity of policy evaluation in tabular FA-MDPs. Still, we13

conducted additional experiments that compare the proposed baseline (i.e. training vanilla SAC agent in the augmented14

environment that includes ālast and t mod L in the observation) to AP-AC. As the following figure demonstrates,15

AP-AC still performs better than or on par with the alternative baseline.

0 1 2 3
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Hopper-v2

AP-AC
SAC (augmented env)

0 1 2 3
time steps 1e6

0

2500

av
er

ag
e

re
tu

rn Walker2d-v2

AP-AC
SAC (augmented env)

0 1 2 3
time steps 1e6

0

2500

av
er

ag
e

re
tu

rn Halfcheetah-v2

AP-AC
SAC (augmented env)

0 2 4 6 8 10
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Ant-v2

AP-AC
SAC (augmented env)

16

[R3: experiments on standard benchmarks] To the best of our knowledge, there is no standard benchmark to evaluate17

RL algorithms with multiple action persistence. Adopting our method to real-world tasks remains as future work.18

[R3,R4: related works] Thanks for your suggestion. If every action variable’s control frequency is same, c-persistent19

action can be understood as a particular instance of an option in semi-MDP framework, which always lasts c time steps.20

We will add more discussions on related works such as semi-MDPs, temporally abstract actions, and action-repeats in21

the final version of the paper.22

[R4: comparison to Persistent FQI (PFQI)] Our algorithm, AP-AC, is a non-trivial extension of PFQI. First, PFQI23

is only applicable to single action-persistence and finite action space, while AP-AC can deal with arbitrarily multiple24

action-persistence and both finite and continuous action spaces. Second, PFQI maintains only one Q-function and25

performs Bellman optimality backup followed by action-persistence backup k times. Each optimality (or persistence)26

backup operation requires to solve a regression problem until convergence. As a consequence, it can only work in27

the batch RL (a.k.a. offline RL) setting. Also, as long as PFQI maintains single Q-function, its extension to online28

RL is not straightforward. In contrast, AP-AC uses L actors and L critics and simultaneously updates all of them via29

exploiting their recursive relationship, which enables online learning of the agent as well.30

[R4: more comprehensive experiments] The goal of this work is to provide an efficient solution method for the given31

action-persistence c, not finding a proper c to speed up learning. Still, we conducted additional experiments to present32

the effects on the resulting policy of varying c. As the following figure shows, larger action persistence yields more33

degradation of asymptotic performance due to a limited degree of freedom of control. AP-AC consistently works well34

for various c’s. We will also include qualitative examples (e.g. videos) in the supplementary material of the final paper.

0 1 2 3
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Hopper-v2 (AP-AC)

c=(2,1,1)
c=(4,2,1)
c=(6,3,2)

0 1 2 3
time steps 1e6

0

5000

av
er

ag
e

re
tu

rn Walker2d-v2 (AP-AC)

c=(2,1,1,2,1,1)
c=(4,2,1,4,2,1)
c=(6,3,2,6,3,2)

0 1 2 3
time steps 1e6

0

5000

av
er

ag
e

re
tu

rn Halfcheetah-v2 (AP-AC)

c=(2,1,1,2,1,1)
c=(4,2,1,4,2,1)
c=(6,3,2,6,3,2)

0 1 2 3
time steps 1e6

0

2000

av
er

ag
e

re
tu

rn Ant-v2 (AP-AC)

c=(2,1,2,1,2,1,2,1)
c=(4,2,4,2,4,2,4,2)
c=(6,3,6,3,6,3,6,3)

35

We will also place the Broader Impact section into the main text, which is currently in the supplementary material.36

1A performance gap exists compared to those reported in the original SAC paper, due to usage of different hyperparameters such
as the number of hidden units per layer, i.e. 100 (ours) / 256 (original SAC paper).

