
UCLID-Net: Single View Reconstruction in Object
Space

Benoit Guillard Edoardo Remelli
CVLab

EPFL, Switzerland
{firstname.lastname}@epfl.ch

Pascal Fua

Abstract

Most state-of-the-art deep geometric learning single-view reconstruction ap-
proaches rely on encoder-decoder architectures that output either shape parametriza-
tions [7, 8, 23] or implicit representations [14, 26, 4]. However, these representa-
tions rarely preserve the Euclidean structure of the 3D space objects exist in. In
this paper, we show that building a geometry preserving 3-dimensional latent space
helps the network concurrently learn global shape regularities and local reasoning
in the object coordinate space and, as a result, boosts performance.
We demonstrate both on ShapeNet synthetic images, which are often used for
benchmarking purposes, and on real-world images that our approach outperforms
state-of-the-art ones. Furthermore, the single-view pipeline naturally extends to
multi-view reconstruction, which we also show.

1 Introduction

Most state-of-the-art deep geometric learning Single-View Reconstruction approaches (SVR) rely on
encoder-decoder architectures that output either explicit shape parametrizations [7, 8, 23] or implicit
representations [14, 26, 4]. However, the representations they learn rarely preserve the Euclidean
structure of the 3D space objects exist in, and rather rely on a global vector embedding of the input
image at a semantic level. In this paper, we show that building a geometry preserving 3-dimensional
representation helps the network concurrently learn global shape regularities and local reasoning in
the object coordinate space and, as a result, boosts performance. This corroborates the observation
that choosing the right coordinate frame for the output of a deep network matters a great deal [21].

In our work, we use camera projection matrices to explicitly link camera- and object-centric coordinate
frames. This allows us to reason about geometry and learn object priors in a common 3D coordinate
system. More specifically, we use regressed camera pose information to back-project 2D feature maps
to 3D feature grids at several scales. This is achieved within our novel architecture that comprises a
2D image encoder and a 3D shape decoder. They feature symmetrical downsampling and upsampling
parts and communicate through multi-scale skip connections, as in the U-Net architecture [16].
However, unlike in other approaches, the bottleneck is made of 3D feature grids and we use back-
projection layers [12, 11, 17] to lift 2D feature maps to 3D grids. As a result, feature localization
from the input view is preserved. In other words, our feature embedding has a Euclidean structure and
is aligned with object coordinate frame. Fig. 1 depicts this process. In reference to its characteristics,
we dub our architecture UCLID-Net.

Earlier attempts at passing 2D features to a shape decoder via local feature extraction [24, 26] enabled
spatial information to flow to the decoder in a non semantic manner, often with limited impact on
the final result. In these approaches, the same local feature is attributed to all points lying along a
camera ray. By contrast, UCLID-Net uses 3D convolutions to volumetrically process local features
before passing them to the local shape decoders. This allows them to make different contributions at

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

cam P

depth D

Concatenation Back-projection

Volumetric
feature grid

3D CNN
outputs

I F1

F2

........

GF2

GD2

H2

H0

ℒBCE ℒCD

GF1

GD1

H1

Voxelized
depth map

Figure 1: UCLID-Net. Given input image I , a CNN encoder estimates 2D feature maps Fs for scales s from 1
to S while pre-trained CNNs regress a depth map D and a camera pose P . P is used to backproject the feature
maps Fs to object aligned 3D feature grids GFs for 1 ≤ s ≤ S without using depth information. In parallel, S
corresponding voxelized depth grids GD

s are built from D and P without using feature information. A 3D CNN
then aggregates feature and depth grids from the lowest to the highest resolution into outputs HS , . . . , H0 of
increasing resolutions. From H0, fully connected layers regress a coarse voxel shape, which is then refined into
a point cloud using local patch foldings. Supervision comes in the form of binary cross-entropy on the coarse
output and Chamfer distance on the final 3D point cloud.

different places along camera rays. To further promote geometrical reasoning, it never computes a
global vector encoding of the input image. Instead, it relies on localized feature grids, either 2D in
the image plane or 3D in object space. Finally, the geometric nature of the 3D feature grids enables
us to exploit estimated depth maps and further boost reconstruction performance.

We demonstrate both on ShapeNet synthetic images, which are often used for benchmarking purposes,
and on real-world images that our approach outperforms state-of-the-art ones. Our contribution is
therefore a demonstration that creating a Euclidean preserving latent space provides a clear benefit for
single-image reconstruction and a practical approach to taking advantage of it. Finally, the single-view
pipeline naturally extends to multi-view reconstruction, which we also provide an example for.

2 Related work

Most recent SVR methods rely on a 2D-CNN to create an image description that is then passed to a
3D shape decoder that generates a 3D output. What differentiates them is the nature of their output
which is strongly related to the structure of their shape decoder, and their approach to local feature
extraction. We briefly describe these below.

Shape Decoders The first successful deep SVR models relied on 3D convolutions to regress vox-
elized shapes [5]. This restricts them to coarse resolutions because of their cubic computational and
memory cost. This drawback can be mitigated using local subdivision schemes [9, 20]. MarrNet [25]
and Pix3D [19] regress voxelized shapes as well but also incorporate depth, normal, and silhouette
predictions as intermediate representations. They help disentangle shape from appearance and are
used to compute a re-projection consistency loss. Depth, normal and silhouette are however not
exploited in a geometric manner at inference time because they are encoded as flat vectors. PSGN [6]
regresses sparse scalar values, directly interpreted as 3D coordinates of a point cloud with fixed

2

size and mild continuity. AtlasNet [8] introduces a per-patch surface parametrization and samples a
point cloud from a set of learned parametric surfaces. One limitation, however, is that the patches it
produces sometimes overlap each other or collapse during training [1].

To combine the strengths of voxel and mesh representations, Mesh R-CNN [7] uses a hybrid shape
decoder that first regresses coarse voxels, which are then refined into mesh vertices using graph
convolutions. Our approach is in the same spirit with two key differences. First, our coarse occupancy
grid is used to instantiate folding patches and to sample 3D surface points in the AtlasNet [8] manner.
However, unlike in AtlasNet, the locations of the sampled 3D points and the folding creating them
are tightly coupled. Second, we regress shapes in object space, thus leveraging stronger object priors.

A competing approach is to rely on implicit shape representations. For example, the network of [14]
computes occupancy maps that represent smooth watertight shapes at arbitrary resolutions. DISN [26]
uses instead a Signed Distance Field (SDF). Shapes are encoded as zero-crossing of the field and
explicit 3D meshes can be recovered using the Marching Cubes [13] algorithm.

Local Feature Extraction Most SVR methods discussed above rely on a vectorized embedding
passing from image encoder to shape decoder. This embedding typically ignores image feature
localization and produces a global image descriptor. As shown in [21], such approaches are therefore
prone to behaving like classifiers that simply retrieve shapes from a learned catalog. Hence, no true
geometric reasoning occurs and recognition occurs at the scale of whole objects while ignoring fine
details.

(a) (b) (c) (d) (e) (f)
Figure 2: (a) Input photograph from Pix3D [19]. (b) Ground truth shape seen from a different
viewpoint. (c,d) DISN [26] reconstruction seen from the viewpoints of (a) and (b), respectively.
(e,f) Our reconstruction seen from the viewpoints of (a) and (b), respectively. For DISN, local
feature extraction makes it easy to recover the silhouette in (c) but fails to deliver the required depth
information. Our approach avoids this pitfall.

There have been several attempts at preserving feature localization from the input image by passing
local vectors from 2D feature maps of the image encoder to the shape decoder. In [24, 7], features
from the 2D plane are propagated to the mesh convolution network that operates in the camera space.
In DISN [26], features from the 2D plane are extracted and serve as local inputs to a SDF regressor,
directly in object space. Unfortunately, features extracted in this manner do not incorporate any
notion of depth and local shape regressors get the same input all along a camera ray. As a result and as
shown in Fig. 2, DISN can reconstruct shapes with the correct outline when projected in the original
viewpoint but that are nevertheless incorrect. In practice, this occurs when the network relies on both
global and local features, but not when it relies on global features only. In other words, it seems
that local features allow the network to take an undesirable shortcut by making silhouette recovery
excessively easy, especially when the background is uniform. The depth constraint is too weakly
enforced by the latent space, and must be carried out by the fully connected network regressing
signed distance value. By contrast, our approach does avoids this pitfall, as shown in Fig. 2(f). This
is allowed by two key differences: (i) the shape decoder relies on 3D convolutions to handle global
spatial arrangement before fully connected networks locally regress shape parts, and (ii) predicted
depth maps are made available as inputs to the shape decoder.

3 Method

At the heart of UCLID-Net is a representation that preserves the Euclidean structure of the 3D world
in which the shape we want to reconstruct lives. To encode the input image into it and then decode
it into a 3D shape, we use the architecture depicted by Fig. 1. A CNN image encoder computes
feature maps at S different scales while auxiliary ones produce a depth map estimate D and a camera
projection model P : R3 → R2. P allows us to back-project image feature onto the 3D space along
camera rays and D to localize the features at the probable location of the surface on each of these ray.

3

GF

P

F

GF

P

F

(a) (b)
Figure 3: (a) Backprojecting 2D features maps to 3D grids. Rays are cast from camera P through
2D feature map F to fill 3D grid GF . It is applied to 2D feature maps from the image encoder to
provide object space aligned 3D feature grids as inputs to the shape decoder (b) Schematic view of a
1D to 2D backprojection: all grid cells along a ray are given the same corresponding feature value.

The 2D feature maps and depth maps are back-projected to 3D grids that serve as input to the shape
decoder, as shown by Fig. 3. This yields a coarse voxelized shape that is then refined into a point
cloud. If estimates of either the pose P or the depth map D happen to be available a priori, we can
use them instead of regressing them. We will show in the results section that this provides a small
performance boost when they are accurate but not a very large one because our predictions tend to be
good enough for our purposes, that is, lifting the features to the 3D grids.

The back-projection mechanism we use is depicted by Fig. 3. It is similar to the one of [12, 11, 17]
and has a major weakness when used for single view reconstruction. All voxels along a camera
ray receive the same feature information, which can result in failures such as the one depicted by
Fig. 2 if passed as is to local shape decoders. To remedy this, we concatenate feature grids with
voxelized depth maps. The result is then processed as a whole using 3D convolutions before being
passed to local decoders. In the remainder of this section, we first introduce the basic back-projection
mechanism, and then describe how our shape decoder fuses feature grids with depth information
using a 3D CNN before locally regressing shapes.

3.1 Back-Projecting Feature and Depth Maps

We align all objects in the dataset to be canonically oriented within each class, centered at the origin,
and scaled to fill bounding box [−1, 1]3. Given such a 3D object, a CNN produces a 2D feature
map F ∈ Rf×H×W for input image I . Using P , the camera projection used to render it into image
I ∈ R3×H×W , we back-project F into object space as follows.

As in [12, 11], we subdivide bounding box [−1, 1]3 into GF ∈ Rf×N×N×N , a regular 3D grid. Each
voxel (x, y, z) contains the f -dimensional feature vector

GFxyz = F{P

(
x
y
z

)
} , (1)

where {·} denotes bilinear interpolation on the 2D feature map. As illustrated by Fig. 3, back-
projecting can be understood as illuminating a grid of voxels with light rays that are cast by the
camera and pass through the 2D feature map. This preserves geometric structure of the surface and
2D features are positioned consistently in 3D space.

In practice, we back-project 2D feature maps (F1, . . . , FS) of decreasing spatial resolutions, which
yield 3D feature grids (GF1 , . . . , GFS) of decreasing sizes (N1, . . . , NS). We linearly scale the
projected coordinates to account for decreasing resolution.

We process depth maps in a different manner to exploit the available depth value at each pixel. Given
a 2D depth map D ∈ RH×W

+ of an object seen from camera with projection matrix P , we first
back-project the depth map to the corresponding 3D point cloud in object space. This point cloud is
used to populate binary occupancy grids such as the one depicted by Fig. 4(a). As for feature maps,

4

we use this mechanism to produce a set of binary depth grids (GD1 , . . . , G
D
S) of decreasing sizes

(N1, . . . , NS).

(a) (b)
Figure 4: (a) Back-projecting depth maps. Input depth map and back-projected depth grid seen
from two different view points. (b) Outputs of the occ and fold MLPs introduced in Section 3.2.
One is an occupancy grid and the other a cloud of 3D points generated by individual folding patches.
The points are colored according to which patch generated them.

3.2 Hybrid Shape Decoder

The feature grids discussed above contain learned features but lack an explicit notion of depth. The
values in its voxels are the same along a camera ray. By contrast, the depth grids structurally carry
depth information in a binary occupancy grid but without any explicit feature information. One
approach to merging these two kinds of information would be to clamp projected features using depth.
However, this is not optimal for two reasons. First, the depth maps can be imprecise and the decoder
should learn to correct for that. Second, it can be advantageous to push feature information not only
to the visible part of the surfaces but also to their occluded ones. Instead, we devised a shape decoder
that takes as input the pairs of feature and depth grids at different scales {(GF1 , GD1) ..., (GFS , GDS)}
we introduced in Section. 3.1 and outputs a point cloud.

Our decoder uses residual layers that rely on regular 3D convolutions and transposed ones to
aggregate the input pairs in a bottom-up manner. We denote by layers the layer at scale s, and concat
concatenation along the feature dimension of same size 3D grids. layers takes as input a feature
grid of size Ns and outputs a grid Hs−1 of size Ns−1. If Ns−1 > Ns, layers performs upsampling,
otherwise if Ns−1 = Ns, the resolution remains unchanged. At the lowest scale, layerS constructs
its output from feature grid GFS and depth grid GDS as

HS−1 = layerS(concat(GFS , GDS)) . (2)
At subsequent scales 1 ≤ s < S, the output of the previous layer is also used and we write

Hs−1 = layers(concat(G
Fs , GDs , Hs)) . (3)

The 3D convolutions ensure that voxels in the final feature gridH0 can receive information emanating
from different lines of sight and are therefore key to addressing the limitations of methods that only
rely on local feature extraction [26]. H0 is passed to two downstream Multi Layer Perceptrons
(MLPs), we will refer to as occ and fold. occ returns a coarse surface occupancy grid. Within each
voxel predicted to be occupied, fold creates one local patch that refines the prediction of occ and
recovers high-frequency details in the manner of AtlasNet [8]. Both MLPs process each voxel of H0

independently. Fig. 4(b) depicts their output in a specific case. We describe them in more detail in
the supplementary material.

Let Õ = occ(H0) be the occupancy grid generated by occ and

X̃ =
⋃
xyz

Õxyz>τ

{(
x
y
z

)
+ fold(u, v|(H0)xyz) | (u, v) ∈ Λ

}
(4)

be the union of the point clouds generated by fold in each individual H0 voxel in which the
occupancy is above a threshold τ . As in [8, 27], fold continuously maps a discrete set of 2D
parameters Λ ⊂ [0, 1]

2 to 3D points in space, which makes it possible to sample it at any resolution.
During the training, we minimize a weighted sum of the cross-entropy between Õ and the ground-
truth surface occupancy and of the Chamfer-L2 distance between X̃ and a point cloud sampling of
the ground-truth 3D model.

5

3.3 Implementation Details

In practice, our UCLID-Net architecture has S = 4 scales with grid sizes N1 = N2 = 28, N3 = 14,
N4 = 7. The image encoder is a ResNet18 [10], in which we replaced the batch normalization layers
by instance normalization ones [22]. Feature map Fs is the output of the s-th residual layer. The
shape decoder mirrors the encoder, but in the 3D domain. It uses residual blocks, with transposed
convolutions to increase resolution when required. Last feature grid H0 of the decoder has spatial
resolution N0 = 28, with 40 feature channels. The 8 first features serve as input to occ, and the last
32 to fold. occ is made of a single fully connected layer while fold comprises 7 and performs two
successive folds as in [28]. The network is implemented in Pytorch, and trained for 150 epochs using
the Adam optimizer, with initial learning rate 10−3, decreased to 10−4 after 100 epochs.

We take the camera to be a simple pinhole one with fixed intrinsic parameters and train a CNN to
regress rotation and translation from RGB images. Its architecture and training are similar to what is
described in [26] except we replaced its VGG-16 backbone by a ResNet18. To regress depth maps
from images, we train another off-the-shelf CNN with a feature pyramid architecture [3]. These
auxiliary networks are trained independently from the main UCLID-Net, but using the same training
samples. Code is available here: https://github.com/cvlab-epfl/UCLID-Net.

4 Experiments

4.1 Experimental Setup
Datasets. Given the difficulty of annotation, there are relatively few 3D datasets for geometric deep
learning. We use the following two:

ShapeNet Core [2] features 38000 shapes belonging 13 object categories. Within each category
objects are aligned with each other and we rescale them to fit into a [−1, 1]3 bounding box. For
training and validation purposes, we use the RGB renderings from 36 viewpoints provided in
DISN [26] with more variation and higher resolution than those of [5]. We use the same testing and
training splits but re-generated the depth maps because the provided ones are clipped along the z-axis.

PIX3D [19] is a collection of pairs of real images of furniture with ground truth 3D models and
pose annotations. With 395 3D shapes and 10,069 images, it contains far less samples than ShapeNet.
We therefore use it for validation only, on approximately 2.5k images of chairs.

Baselines and Metrics. We test our UCLID-Net against several state-of-the-art approaches: At-
lasNet [8] provides a set of 25 patches sampled as a point cloud, Pixel2Mesh [24] regresses a mesh
with fixed topology, Mesh R-CNN [7] a mesh with varying topological structure, and DISN [26] uses
an implicit shape representation in the form of a signed distance function. For Pixel2Mesh, we use
the improved reimplementation from [7] with a deeper backbone, which we refer to as Pixel2Mesh+.
All methods are retrained on the dataset described above, each according to their original training
procedures.

We report our results and those of the baselines in terms of five separate metrics, Chamfer L1 and L2
Distances (CD–L1, CD–L2), Earth Mover’s Distance (EMD), shell-IoU (sIoU), and average F-Score
for a distance threshold of 5% (F@5%), which we describe in more detail in the supplementary
material.

4.2 Comparative Results
ShapeNet. In Fig. 5, we provide qualitative UCLID-Net reconstruction results. In Tab. 6(a), we
compare it quantitatively against our baselines. UCLID-Net outperforms all other methods. We
provide the results in aggregate and refer the interested reader to the supplementary material for
per-category results. As in [26], all metrics are computed on shapes scaled to fit a unit radius sphere,
and CD–L2 and EMD values are scaled by 103 and 102, respectively. Note that these results were
obtained using the depth maps and camera poses regressed by our auxiliary regressors. In other
words, the input was only the image. We will see in the ablation study below that they can be further
improved by supplying the ground-truth depth maps, which points towards a potential for further
performance gains by using a more sophisticated depth regressor than the one we currently use.

Pix3D. In Fig. 7, we provide qualitative UCLID-Net reconstruction results. In Tab. 6(b), we
compare it quantitatively against our baselines. We conform to the evaluation protocol of [19] and

6

https://github.com/cvlab-epfl/UCLID-Net

Figure 5: ShapeNet objects reconstructed by UCLID-Net. Top row: Input view. Bottom row:
Final point cloud. The points are colored according to the patch that generated them.

Method CD-L2 (↓) EMD (↓) sIoU (↑) F@5% (↑)
AtlasNet 13.0 8.0 15 89.3
Pixel2Mesh+ 7.0 3.8 30 95.0
Mesh R-CNN 9.0 4.7 24 92.5
DISN 9.7 2.6 30 90.7
Ours 6.3 2.5 37 96.2

Method CD-L1 (↓) EMD (↓)
Pix3D 11.9 11.8
AtlasNet 12.5 12.8
Pixel2Mesh+ 10.0 12.3
Mesh R-CNN 10.8 13.7
DISN 10.4 11.7
Ours 7.5 8.7

(ShapeNet) (Pix3D)

Figure 6: Comparative results. For ShapeNet, we re-train and re-evaluate all methods. For Pix3D,
lines 1-2 are duplicated from [19], while lines 3-6 depict our own evaluation using the same protocol.
The up and down arrows next to the metric indicate whether a higher or lower value is better.

report the Chamfer-L1 distance (CD–L1) and EMD on point clouds of size 1024. The CD–L1 and
EMD values are scaled by 102. UCLID-Net again outperforms all other methods. The only difference
with the ShapeNet case is that both DISN and UCLID-Net used the available camera models whereas
none of the other methods leverages camera information.

4.3 From Single- to Multi-View Reconstruction

A further strength of UCLID-Net is that its internal feature representations make it suitable for multi-
view reconstruction. Given depth and feature grids provided by the image encoder from multiple
views of the same object, their simple point-wise addition at each scale enables us to combine them
in a spatially relevant manner. For input views a and b, the encoder produces feature/depth grids
collections {(GF1

a , GD1,a) ..., (GFS
a , GDS,a)} and {(GF1

b , GD1,b) ..., (G
FS

b , GDS,b)}. In this setting, we
feed {(GF1

a + GF1

b , GD1,a + GD1,b) ..., (G
FS
a + GFS

b , GDS,a + GDS,b)} to the shape decoder and let it
merge details from both views. For best results, the decoder is fine-tuned to account for the change
in magnitude of its inputs. As can be seen in Fig. 8, this delivers better reconstructions than those
obtained from each view independently.

Figure 7: Reconstructions on Pix3D photographs: from left to right, twice: input, DISN, ours.

7

(a) (b) (c) (d) (e)
Figure 8: Two-views reconstruction. (a,b) Two input images of the same chair from ShapeNet. (c)
Reconstruction using only the first one. (d) Reconstruction using only the second one. (e) Improved
reconstruction using both images.

Method: depth camera CD-L2(↓) EMD(↓)
CAR inf. inf. 4.08 2.23
NOD - GT 3.97 2.20
CAM inf. GT 3.83 2.16
CAD GT GT 3.80 2.14
ALL inf. inf. 4.03 2.23

(a) (b)
Figure 9: (a) Ablation study: comparative results on a single object category (cars) with inferred
(inf.), ground truth (GT) or removed (-) auxiliary information. (b) Failure mode. From left-to-right:
input view, reconstruction seen from the back-right, seen from the back-left. The visible armrest is
correctly carved. The other one (occluded in the input) is mistakenly reconstructed as solid.

4.4 Ablation Study

To quantify the impact of regressing camera poses and depth maps, we conducted an ablation
study on the ShapeNet car category. In Fig. 9(a), we report CD-L2 and EMD for different network
configurations. Here, CAR is trained and evaluated on the cars subset, with inferred depth maps
and camera poses. NOD is trained and evaluated with ground truth camera poses, but without depth
information (not ground truth nor regressed, we simply remove the depth branch). CAM is trained
and evaluated with inferred depth maps, but ground truth camera poses. CAD is trained and evaluated
with ground truth camera poses and depth maps. Finally, ALL is trained on 13 object categories with
inferred depth maps and cameras as it was in all the experiments above, but evaluated on cars only.

Using ground truth data annotation for depth and pose improves reconstruction quality. The margin
is not significant, which indicates that the regressed poses and depth maps are mostly good enough.
Nevertheless, our pipeline is versatile enough to take advantage of additional information, such as
depth map from a laser scanner or an accurate camera model obtained using classic photogrammetry
techniques, when it is available. Fully removing the depth branch degrades accuracy. Note also that
ALL marginally gets better performance than CAR. Training the network on multiple classes does not
degrade performance when evaluated on a single class. In fact, having other categories in the training
set increases the overall data volume, which seems to be beneficial.

In Fig. 9(b), we present an interesting failure case. The visible armrest is correctly carved out while
the occluded one is reconstructed as being solid. While incorrect, this result indicates that UCLID-Net
has the ability to reason locally and does not simply retrieve a shape from the training database, as
described in [21].

5 Conclusion
We have shown that building intermediate representations that preserve the Euclidean structure of
the 3D objects we try to model is beneficial. It enables us to outperform state-of-the-art approaches
to single view reconstruction. We have also investigated the use of multiple-views for which our
representations are also well suited. In future work, we will extend our approach to handle video
sequences for which camera poses can be regressed using either SLAM-type methods or learning-
based ones. We expect that the benefits we have observed in the single-view case will carry over and
allow full scene reconstruction.

8

Broader impact

Our work is relevant to a variety of applications. In robotics, autonomous camera-equipped agents,
for which a volumetric estimate of the environment can be useful, would benefit from this. In medical
applications, it would allow aggregating 2D scans to form 3D models of organs. It could also prove
useful in industrial applications, such as in creating 3D designs from 2D sketches. More generally,
constructing an easily handled differentiable representations of surfaces such as the ones we propose
opens the way to assisted design and shape optimization.

As for any method enabling information extraction from images in an automated manner, malicious
use is possible, especially raising privacy concerns. Accidents or malevolent use of autonomous
agents is also a risk. To reduce accident threats we encourage the research community to propose
explainable models, that perform more reconstruction than recognition - the latter regime arguably
being more prone to adversarial attacks.

Acknowledgment

This project was supported in part by the Swiss National Science Foundation.

References

[1] J. Bednarík, S. Parashar, E. Gundogdu, M. Salzmann, and P. Fua. Shape reconstruction by
learning differentiable surface representations. arXiv Preprint, abs/1911.11227, 2019.

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv Preprint, 2015.

[3] H. Chen. Single image depth estimation with feature pyramid network. https://github.
com/haofengac/MonoDepth-FPN-PyTorch, 2018.

[4] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In Conference
on Computer Vision and Pattern Recognition, pages 5939–5948, 2019.

[5] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-R2N2: A Unified Approach for Single
and Multi-View 3D Object Reconstruction. In ECCV, pages 628–644, 2016.

[6] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D Object Reconstruction
from a Single Image. In Conference on Computer Vision and Pattern Recognition, 2017.

[7] G. Gkioxari, J. Malik, and J. Johnson. Mesh r-cnn. In International Conference on Computer
Vision, pages 9785–9795, 2019.

[8] T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry. Atlasnet: A Papier-Mâché Approach
to Learning 3D Surface Generation. In Conference on Computer Vision and Pattern Recognition,
2018.

[9] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface prediction for 3d object reconstruction.
In International Conference on 3D Vision, pages 412–420. IEEE, 2017.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[11] K. Iskakov, E. Burkov, V. Lempitsky, and Y. Malkov. Learnable triangulation of human pose.
In International Conference on Computer Vision, pages 7718–7727, 2019.

[12] M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang. Surfacenet: An end-to-end 3d neural network for
multiview stereopsis. In International Conference on Computer Vision, pages 2307–2315, 2017.

[13] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In ACM SIGGRAPH, 1987.

[14] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019.

[15] C. R. Qi. Autoencoder for point clouds. https://github.com/charlesq34/
pointnet-autoencoder, 2018.

9

https://github.com/haofengac/MonoDepth-FPN-PyTorch
https://github.com/haofengac/MonoDepth-FPN-PyTorch
https://github.com/charlesq34/pointnet-autoencoder
https://github.com/charlesq34/pointnet-autoencoder

[16] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Conference on Medical Image Computing and Computer Assisted
Intervention, pages 234–241, 2015.

[17] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer. Deepvoxels:
Learning persistent 3d feature embeddings. In CVPR, pages 2437–2446, 2019.

[18] X. Sun. Pix3d: Dataset and methods for single-image 3d shape modeling. https://github.
com/xingyuansun/pix3d, 2018.

[19] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman.
Pix3d: Dataset and methods for single-image 3d shape modeling. In Conference on Computer
Vision and Pattern Recognition, pages 2974–2983, 2018.

[20] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree Generating Networks: Efficient Convolu-
tional Architectures for High-Resolution 3D Outputs. In International Conference on Computer
Vision, 2017.

[21] M. Tatarchenko, S. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox. What do Single-view 3D
Reconstruction Networks Learn? In Conference on Computer Vision and Pattern Recognition,
pages 3405–3414, 2019.

[22] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance Normalization: The Missing Ingredient for
Fast Stylization. In arXiv Preprint, 2016.

[23] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y. Jiang. Pixel2mesh: Generating 3D Mesh
Models from Single RGB Images. In European Conference on Computer Vision, 2018.

[24] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In European Conference on Computer Vision.

[25] J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum. Marrnet: 3d shape reconstruc-
tion via 2.5 d sketches. In Advances in Neural Information Processing Systems, pages 540–550,
2017.

[26] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann. Disn: Deep implicit surface network
for high-quality single-view 3d reconstruction. In Advances in Neural Information Processing
Systems, pages 490–500, 2019.

[27] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud auto-encoder via deep grid
deformation. In Conference on Computer Vision and Pattern Recognition, pages 206–215,
2018.

[28] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point Cloud Auto-Encoder via Deep Grid
Deformation. In Conference on Computer Vision and Pattern Recognition, June 2018.

10

https://github.com/xingyuansun/pix3d
https://github.com/xingyuansun/pix3d

	Introduction
	Related work
	Method
	Back-Projecting Feature and Depth Maps
	Hybrid Shape Decoder
	Implementation Details

	Experiments
	Experimental Setup
	Comparative Results
	From Single- to Multi-View Reconstruction
	Ablation Study

	Conclusion

