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1 History representation under a noisy, constrained linear dynamical system

Here we give a short analysis of how different linear dynamical systems (LDS) result in different
tradeoffs of representing relevant versus irrelevant parts of a history, given transition noise. We will
use the same notation as in the main text.

Let us look at a single scalar readout y of an arbitrary LDS, which, at time t, is given by:

g~ N(c" p(ze), ¢ o”(z)c) (1)

Here, ¢ correspond to the readout weights. The mean, y(z;), and the covariance, o%(z;), of the state

variable, z;, are given by (under the assumption of certain initial state conditions ;(z9) = 0 and
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The dynamics and input weights are denoted by A and B,, respectively. As noted in the main text,
there is a degeneracy between the scaling of the transition noise o, and the weights of the LDS. We
chose to constrain this degeneracy by bounding state values from below and above. Here we want to
first describe our rationale behind this choice of constraint. Second, we describe how an LDS under
this constraint must trade-off between relevant and irrelevant information.

1.1 Constraining the LDS to remove scaling degeneracy

As seen in the equations above, the uncertainty in the readout is determined by two parameters, the
readout vector ¢ and the dynamics A. The input weights, B,, only feature in the mean, it is thus easy
to see that the readout noise can be eradicated by decreasing ||c|| arbitrarily and increasing || B, ||
accordingly, while leaving the readout mean unchanged. This leads to a first degeneracy, independent
of the dynamics A, that quenches the noise trivially. A second degeneracy may arise through transient
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amplifications by non-normal dynamics. An example would be a purely feedforward dynamics that
amplifies the inputE]

Common to both degeneracies is that they amplify the input such that the additive transition noise, o,
is relatively scaled down. Hence, both degeneracies may be removed by constraining the scale, or
some norm, of the state z. We chose to bound each dimension separately for the following reasons:

Each state dimension z; can be 1nterpreted as a component in the representation of a h1st0ry Specif-
ically, yu(z) = ®h, and thus an estimate & of the history can be obtained through h, = &% (),

where ®' denotes the Moore-Penrose inverse of ®. Each column <I>I thus defines the direction
in history space that component z; is representing. Since we have IV, such components we can
represent NV, potentially overlapping, directions in the history space. By bounding the activity of
each component, or state dimension, separately, as opposed to bounding the L, or the Lo norms of the
state vector, we effectively assume all components to be independent, i.e. if one component is more
active it does not imply that another component has to be less active. For example, if only one history
direction is task-relevant, then all N, components can code for the same direction, reducing the
uncertainty in the representation of that direction because the readout may average N, representations.
If there are N, independent relevant directions in the history space, every component has to code
for a separate direction, thus effectively increasing the noise. This trade-off, that follows from the
limited capacity of the constrained LDS, is discussed in more detail in the following section.

1.2 Representational tradeoffs under limited capacity

As described above, our LDS has a limited capacity defined by the number of components NV,
and the range of activity [0, zmax|. Furthermore, both degeneracies will scale up the system state
to effectively scale down the relative size of the transition noise oy, thereby pushing the system’s
dynamic range to have zy,x as an upper bound. Here, we first describe how such a system has to
focus on relevant information only in order to increase the precision in the representation of this
relevant information (Fig.[TJA). Second, we illustrate how a system may also increase precision by
ignoring timing information, if irrelevant (Fig. [IB).

Let us consider a single state dimension j(z;) = ¢, h, where ¢; is the i’th row of ® and h is a
history. Due to the upper bound zy,.x We have:

Zmax = ,U/(zl) = (b;rh 4)
= cos al|gi |||

As the length of ¢; will scale any signal in h, ||¢;| effectively determines the signal to noise

ratio. More specifically, each component can either represent the whole history faithfully (o = 0)

with low precision ||@;|| = zmax/||R||, or only parts of the history o > 0 with higher precision

|#ill > 2max/||h||- (For simplicity we assumed here that & is the history hitting zmay, i.e. Zmax = @, h).

Figure[TJA illustrates this trade-off for a single represented history.

The same trade-off applies to the representation of two histories adjacent in time that both contain

relevant information. Specifically, we consider h; = [h O] and hy = [0 h] and assume that
only the magnitude h is task-relevant, but not at what time h was observed. Representations ignoring
timing information then increase precision (Fig.[I]B). Ignoring timing information generally leads to
a smoothing of the representation over time.

As a note of caution we emphasize here that the illustrations in Figure[T]and the explanations given
here aim at describing the main effects governing the representation of histories, but they do not
represent a rigorous analysis. For example, even though we treated rows ¢; as independent, the matrix
® is not any arbitrary matrix, but a matrix following the specific structure in equation [3} Furthermore,
this structure depends on the dynamics A which also influences the noise accumulation, and, as noted
above, we ignore this interaction. Nevertheless, we found the intuitions presented here quite useful
and accurate, as for example seen in Figure 5 of the main text.

"'We note that dynamics amplifying the input will in general also amplify the noise. Without making any
structural assumptions on A, such as assuming normal dynamics, it is hard to treat this intricate relationship
analytically. We thus content ourselves with noting that dynamics that trivially quench the noise exist, and thus
must be constrained.
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Figure 1: Trade-offs in a noisy, constrained LDS. A: We consider a history A = hyej€rel + Rir€irr
consisting of a relevant direction e, and an irrelevant direction e;, scaled by Ay and hj, respectively.
All three vectors are assumed to have unit length. We consider two choices of represented directions,
¢ (blue) and ¢* (green). Their respective angles to the history are « and «*. The lengths ||¢|| and
|[¢*|| are constrained by their projection onto the history h, specifically by the upper bound zpax
(dashed titled line). As a longer ¢ in general signifies lower noise, dashed half circles are depicted
akin to noise isoclines. Direction ¢* leads to a longer projection onto the relevant direction (red-green
dashed arrow) than ¢ (red-blue dashed arrow), thus leading to a higher precision representation of the
relevant information. The increased precision is thus enabled by discarding irrelevant information.

B: Representation of two histories adjacent in time, specifically by = [h O]—r and hy = [0 h]T.
Both histories have unit length. We assume only the magnitude of & is relevant, but not when in the
history h was observed. We consider two sets of two representation directions, ¢1, ¢2 and ¢7, ¢3.
Angles and constraints are depicted as in A. The first set, ¢1, @2, codes for both directions almost
orthogonally (small o, small o). Each history is thus represented faithfully. In the second set,
@7 and ¢3 have reduced overlap with h; and ha, respectively, and thus no longer represent the two
histories faithfully. Specifically, ¢ and ¢35 give up timing information, but both still represent the
task-relevant magnitude h. In fact, they represent h at both time steps, the readout can therefore
average the two representations to reduce readout noise.

2 Description of the LDS model of the somatosensory working memory task

Here we describe in more detail the LDS model of the somatosensory working memory task [[1]]
introduced in section 3.2 and Figure 5 of the main text.

2.1 Model setup and parameter choices

In our model, a trial consists of Tp = 15 time steps. The first frequency, fi, is presented on the
second time step, the second frequency, f2, on the last time step. Thus all entries of the history hp,,
at decision time Tp will be zero, except for hr,, 1 = f2 and hqy, 14 = f1. Since b7y, € R, we set
N, = 15 in order to give the system the capacity to represent the history space faithfully. The upper
bound zpax will be reached by the history /7 of maximum length. Assuming [|R7|| = 1, we set

Zmax = 1. Lastly, we set the transition noise variance O't2 = 0.01.

2.2 Optimization

As described in the main text, we maximize the log-likelihood of the f; — f> difference y, given
the history hr,, subject to the state values being within the lower (0) and upper (zpmax) bounds. The



likelihood, for a trial i with frequencies f{ and f3, is given by:

P(yilhf,) = N(pyi, 000) (5)
Using equations |1 and 2| we have p,i = c'p(27,) = ¢ ®hf,, and 07, = cTo?(zf )c =
o2ct 22—210 A"™(A™) T c. We thus see that the readout variance is trial independent and we write o2,

The log-likelihood L(y;|h’; ) is then given by:

(yi — cT ®h, )

L(yilhz,,) = =k —log(oy) — ———— (©)
Y

Here k is a constant. To speed up optimization, we approximate the trial-dependent term (y; —
c—'—CIJh%D)2 by first writing f; = [f{ fﬂ—r, and thqn yi = [1 —1]f; and h}D = M f;, where
M € RTD%Q is the appropriate matrix mapping f{ and fj to the history h%, . We then have
(yi —cT®hi )2 = (67 fi)2, with§" =[1  —1] — ¢" ®M. The log-likelihood is thus maximal for
every trial if ||6]|> = 0, i.e. when the composition of the readout ¢ with the map ® performs the

f1 — fo operation. We thus approximate (6" ;)2 by ||6]|2, thereby making the log-likelihood trial
independent. Finally, we optimize using gradient ascent.

2.3 Generating model sequences to compare to neural data

After optimizing the LDS as described above, we want to compare the resulting state trajectories to
the corresponding neural trajectories.

To generate such state trajectories, we run our optimized LDS providing both positively and negatively
scaled f1 and f5 frequencies, as is common among other models of this task, e.g. [2l[3]], and as
motivated by the frequency coding in the secondary somatosensory cortex S2 [4]], the structure
providing the frequency information to the PFC. Specifically, after generating a state sequence for
trial 4 with frequencies f} and fi, we generate a second sequence with frequencies fi_ and fi_,
where f© = a+ (b— f*). The scalar b is set to the maximum of all frequencies presented, and a > 0.
Each trial’s modelled state sequence thus has 2V, dimensions.

Next we modify the state trajectories after fs is presented. Neural trajectories move back to baseline
after the f, presentation and the decision, thereby discarding for example frequency information.
This makes sense from our efficiency perspective, but is not within the scope of our LDS model. In
order to not let the principal dimensions of our model data be affected by this post- f> activity, we
artificially let the state decay after f> presentation.

Both steps described here, as well as all the steps described in section [2] are implemented in the
provided code.
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