Supplementary Material: Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies

Itai Gat*
Technion
Idan Schwartz
Technion
Alexander Schwing
UIUC
Tamir Hazan
Technion

In this supplementary material we study additional quantitative (see Sec. 1p) and qualitative (see Sec. 2) results. We detail our experimental settings (see Sec. 3). Finally, we provide the code we use to perform the experiments (see Sec. 4).

1 Quantitative Evaluation

To study robustness, in Tab. S1, we provide analysis for an ensemble of different models on VQACPv 2 . For each model, we used different values of λ, and different regularization, i.e., Eq. (17) and Eq. (18). Using our Top-3 ensemble, we improved the accuracy by $\sim 2 \%$ compared to our single model (56.74% vs. 54.55%), and $\sim 4 \%$ compared to the previous single model baseline (56.74% vs. 52.05\%).

In Tab. S2, we show a per question type comparison on VQA-CPv2. Our method improved significantly the "how many people are" question type that requires counting ($19.98 \% \mathrm{vs} .42 .81 \%$). However, for the "is there" question type which requires image detection, our method's performance dropped in a 19.6% accuracy (22.4% vs. 42%).

Table S1: A comparison of different ensemble models on VQA-CPv2. We underline the best single-model and bold the best ensemble model.

Model	Overall	Answer type		
		Yes/No	Number	Other
Eq.(17)	54.01	73.02	43.15	$\underline{47.02}$
Eq.(18)	$\underline{54.55}$	$\underline{74.03}$	$\underline{49.16}$	45.82
Top-3	$\mathbf{5 6 . 7 4}$	77.70	48.56	$\mathbf{4 8 . 0 1}$
Top-4	56.41	77.34	48.05	47.74
Top-5	56.54	$\mathbf{7 7 . 4 8}$	$\mathbf{4 8 . 7 2}$	47.71

Table S2: Comparison between VQA-CPv2 models in the paper and an ensemble of three models. We show the differences between the state-of-the-art [1] and our method in parenthesis.

Question-type	LMH [1]	Eq.(18)	Eq.(17)	Ensemble
are there	35.4	$28.89(-6.51)$	$32.22(-3.18)$	$32.86(-2.54)$
what brand	26.75	$27.35(0.6)$	$21.84(-4.91)$	$22.76(-3.99)$
what room is	92.57	$93.22(0.65)$	$92.66(0.09)$	$93.95(1.38)$
what color is	77.18	$75.53(-1.65)$	$78.03(0.85)$	$78.35(1.17)$
is	77.21	$69.78(-7.43)$	$78.74(1.53)$	$75.13(-2.08)$
are they	66.78	$62.0(-4.78)$	$61.67(-5.11)$	$67.33(0.55)$

[^0]| what number is | 3.28 | 4.22 (0.94) | 3.07 (-0.21) | 2.88 (-0.4) |
| :---: | :---: | :---: | :---: | :---: |
| what does the | 17.67 | 17.54 (-0.13) | 17.49 (-0.18) | 18.33 (0.66) |
| is this person | 73.15 | 68.21 (-4.94) | 74.89 (1.74) | 71.87 (-1.28) |
| is the | 36.83 | 40.32 (3.49) | 36.61 (-0.22) | 37.91 (1.08) |
| what is the man | 56.14 | 58.22 (2.08) | 57.21 (1.07) | 58.53 (2.39) |
| what kind of | 42.83 | 45.7 (2.87) | 44.26 (1.43) | 45.75 (2.92) |
| does this | 68.91 | 60.54 (-8.37) | 65.7 (-3.21) | 62.23 (-6.68) |
| is there a | 40.38 | 46.92 (6.54) | 49.62 (9.24) | 52.31 (11.93) |
| is he | 78.14 | 77.3 (-0.84) | 83.11 (4.97) | 78.97 (0.83) |
| what | 34.95 | 36.75 (1.8) | 35.03 (0.08) | 36.19 (1.24) |
| does the | 72.75 | 83.36 (10.61) | 75.84 (3.09) | 81.49 (8.74) |
| is the person | 72.8 | 78.0 (5.2) | 68.96 (-3.84) | 79.24 (6.44) |
| where is the | 26.15 | 28.07 (1.92) | 24.47 (-1.68) | 28.55 (2.4) |
| what animal is | 32.81 | 39.45 (6.64) | 36.83 (4.02) | 34.37 (1.56) |
| how | 17.38 | 19.79 (2.41) | 17.69 (0.31) | 18.82 (1.44) |
| what is the woman | 45.83 | 46.62 (0.79) | 47.0 (1.17) | 47.55 (1.72) |
| what is this | 59.05 | 60.47 (1.42) | 58.51 (-0.54) | 61.55 (2.5) |
| which | 31.68 | 32.79 (1.11) | 30.82 (-0.86) | 32.34 (0.66) |
| where are the | 35.22 | 33.85 (-1.37) | 32.83 (-2.39) | 36.11 (0.89) |
| are the | 44.31 | 42.94 (-1.37) | 44.31 (0.0) | 46.15 (1.84) |
| how many people are | 19.98 | 42.81 (22.83) | 35.98 (16.0) | 37.08 (17.1) |
| what is on the | 35.28 | 36.62 (1.34) | 36.82 (1.54) | 38.37 (3.09) |
| has | 68.72 | 73.53 (4.81) | 77.65 (8.93) | 81.7 (12.98) |
| was | 61.11 | 61.67 (0.56) | 60.28 (-0.83) | 63.89 (2.78) |
| what type of | 47.71 | 49.6 (1.89) | 48.14 (0.43) | 50.38 (2.67) |
| is this an | 58.79 | 48.83 (-9.96) | 53.9 (-4.89) | 46.67 (-12.12) |
| do | 37.75 | 39.25 (1.5) | 42.0 (4.25) | 39.5 (1.75) |
| can you | 64.0 | 81.84 (17.84) | 70.13 (6.13) | 80.9 (16.9) |
| who is | 25.08 | 25.19 (0.11) | 25.49 (0.41) | 25.17 (0.09) |
| are these | 48.59 | 51.77 (3.18) | 50.91 (2.32) | 51.95 (3.36) |
| do you | 68.97 | 82.41 (13.44) | 71.36 (2.39) | 81.88 (12.91) |
| what time | 20.36 | 24.13 (3.77) | 20.04 (-0.32) | 23.25 (2.89) |
| is the woman | 73.26 | 76.16 (2.9) | 84.11 (10.85) | 80.82 (7.56) |
| is this a | 85.34 | 90.17 (4.83) | 87.38 (2.04) | 92.25 (6.91) |
| what are the | 44.86 | 45.01 (0.15) | 45.27 (0.41) | 46.26 (1.4) |
| what color are the | 67.6 | 64.67 (-2.93) | 67.35 (-0.25) | 68.83 (1.23) |
| why | 18.0 | 17.98 (-0.02) | 18.37 (0.37) | 18.83 (0.83) |
| none of the above | 49.5 | 51.22 (1.72) | 50.64 (1.14) | 57.1 (7.6) |
| what is the person | 61.41 | 62.08 (0.67) | 61.52 (0.11) | 63.96 (2.55) |
| how many people are in | 48.16 | 52.78 (4.62) | 54.3 (6.14) | 58.36 (10.2) |
| is this | 81.59 | 84.46 (2.87) | 82.0 (0.41) | 88.46 (6.87) |
| why is the | 16.78 | 16.92 (0.14) | 17.7 (0.92) | 17.63 (0.85) |
| what is the color of the | 78.81 | 75.87 (-2.94) | 75.86 (-2.95) | 80.08 (1.27) |
| what is | 35.54 | 37.64 (2.1) | 36.58 (1.04) | 39.03 (3.49) |
| what are | 54.15 | 56.32 (2.17) | 54.03 (-0.12) | 55.57 (1.42) |
| is that a | 58.76 | 54.87 (-3.89) | 55.75 (-3.01) | 58.85 (0.09) |
| what is in the | 36.98 | 38.77 (1.79) | 39.35 (2.37) | 40.76 (3.78) |
| what sport is | 89.17 | 91.95 (2.78) | 91.02 (1.85) | 91.64 (2.47) |
| how many | 51.27 | 49.08 (-2.19) | 57.49 (6.22) | 56.32 (5.05) |
| what is the | 41.55 | 42.8 (1.25) | 41.18 (-0.37) | 44.11 (2.56) |
| is it | 68.75 | 71.49 (2.74) | 66.26 (-2.49) | 69.75 (1.0) |
| is the man | 53.54 | 50.3 (-3.24) | 52.13 (-1.41) | 52.56 (-0.98) |
| what is the name | 14.76 | 15.82 (1.06) | 14.37 (-0.39) | 15.95 (1.19) |
| is there | 42.0 | 22.4 (-19.6) | 37.2 (-4.8) | 36.0 (-6.0) |
| what color is the | 63.27 | 64.85 (1.58) | 64.29 (1.02) | 67.89 (4.62) |
| what color | 70.19 | 70.5 (0.31) | 70.44 (0.25) | 73.08 (2.89) |
| are | 45.37 | 45.83 (0.46) | 59.44 (14.07) | 58.58 (13.21) |
| Overall | 52.05 | 54.01 (1.96) | 54.55 (2.5) | 56.74 (4.96) |

2 Qualitative Evaluation

In this section, we qualitatively study success and failure cases using the VQA-CPv2 dataset. In Fig. 2 of the main paper, we show the proportions of information in each modality. We note that our regularization permits higher utilization of the visual modality. At the end of the document, we present success (see Fig. S1,S16) and failure cases (see Fig. S17.S32.

3 Experimental Settings

In the following, for each experiment, we describe its settings.

3.1 Colored MNIST

Recent works introduce different variants to Colored MNIST [2, 3, 4]. The main difference is the way bias is incorporated into the MNIST dataset. For instance, in [2] the authors use $\sigma=0.1$ and evaluate their method on the gray-scale test set while in [4] the authors use $\sigma=0.02$ and evaluate on a uniformly-colored test set. We follow the experimental settings introduced in REPAIR [2].

Model: We use LeNet [5] to encode the shape, then we concatenate the color representation to the last linear layer of LeNet and pass it through another linear layer with a bias term for classification. We use cross-entropy loss.
Hyper-parameters considered: We consider λ in the range of $1 \mathrm{e}-9$ to $1 \mathrm{e}-11$. We report our results with $\lambda=1 \mathrm{e}-10$. Note, the values of the regularization term (i.e., the functional Fisher information) are approximately 1 e 9 . Therefore, the λ hyperparameter acts as a normalizer that scales down the bias term to the $\left[0,10^{2}\right]$ range.

Computing infrastructure used: We use a single RTX2080Ti GPU. The average runtime for each epoch is one minute. The model converges in 35 epochs.

3.2 VQA-CPv2

Visual question answering (VQA) requires to answer a given question-image pair. VQA-CPv2 [6] is a re-shuffle of VQAv2 [7] that alleviates dataset priors.

Model: We add our regularization to the current state-of-the-art [1]. The current state-of-the-art model is based on "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering" [8].
Hyper-parameters considered: We consider λ in the range of $1 \mathrm{e}-10$ to $1 \mathrm{e}-20$. We report our results with $\lambda=4 \mathrm{e}-17$. Note, the values of the regularization term (i.e., the functional Fisher information) are approximately 1 e 15 . Therefore, the λ hyperparameter acts as a normalizer that scales down the bias term to the $\left[0,10^{2}\right]$ range.

Computing infrastructure used: We use two RTX2080Ti GPUs. The average runtime for each epoch is 5 minutes. The model converges in 15 epochs.

3.3 SocialIQ

SocialIQ [9] input data is constructed from a tuple of a video, a question about the social situation in the video, and an answer to that question. Tiven the tuple, the task is to predict whether the answer is correct or not.
Model: The textual inputs are encoded with BERT [10]. The visual input is encoded using a VGG16 [11]. From BERT we extract the last hidden layer's representation. From VGG16, we extract the layer before the final fully-connected representation of four frames from the video (picked uniformly over the video). Then, we forward all representations through a linear layer. Subsequently, the concatenation of the representations is passed through an MLP consisting of two linear layers for classification. We use binary cross-entropy loss. We use a ReLU [12] activation between all layers and dropout [13] with a dropout rate of 0.2.

Hyper-parameters considered: We consider λ in the range of $1 \mathrm{e}-9$ to $1 \mathrm{e}-11$. We report our results with $\lambda=3 \mathrm{e}-10$. Note, the values of the regularization term (i.e., the functional Fisher information) are approximately 1 e 9 . Therefore, the λ hyperparameter acts as a normalizer that scales down the bias term to the $\left[0,10^{2}\right]$ range.

Computing infrastructure used: For the baseline, we use a single RTX2080Ti GPU, the average runtime for each epoch is one minute. The model converges after 20 epochs.

3.4 Dogs and Cats

In this task, we classify whether a given image shows a dog or a cat. This task was first presented as a Kaggle competition ${ }^{2}$. The authors of "learning not to learn" [4] introduce a modified version. They collected one split to hold bright dogs and dark cats (TB1) and another split that contains the opposite, i.e., dark dogs and bright cats.
Model: We follow the setting of Kim et al. [4]: The authors use a ResNet-18 [14] that was pre-trained on ImageNet [15]. We fine-tuning the last fully-connected layer.

Hyper-parameters considered: In this dataset, we consider λ in the range of $1 \mathrm{e}-10$ to $1 \mathrm{e}-14$. We report our results with $\lambda=2 \mathrm{e}-10$. Note, the values of the regularization term (i.e., the functional Fisher information) are approximately 1 e 9 . Therefore, the λ hyperparameter acts as a normalizer that scales down the bias term to the $\left[0,10^{2}\right]$ range.
Computing infrastructure used: For the baseline, we use five RTX2080Ti GPUs. The average runtime for each epoch is 3 minutes. The model converges after 5 epochs.

4 Code

We use the PyTorch [16] framework to conduct all of our experiments. We also provide a Python package which we wrote to calculate the regularization term. Further explanations of how to integrate our regularization to any multi-modal problem are in the README file.

[^1]

Question type: what is the man

Question: Is anyone watching the baseball game?

GT: no, Ours: yes
 playing with?
GT: frisbee, Ours: frisbee

Question type: is

GT: no, Ours: no

Question: What is the man flying in the air?
GT: nothing, Ours: nothing

GT: no, Ours: no

Figuze S1

Question type: what number is

GT: 12, Ours: 12

GT: no number, Ours: 0

Question type: what sport is

GT: frisbee, Ours: frisbee

GT: baseball, Ours: baseball

Question type: is this person

appropriate protective gear for skateboarding
GT: no, Ours: no

GT: no, Ours: no

GT: no, Ours: no

Question type: what is the name

GT: horse, Ours: horse

Question: What is the name
of the clothing type she is
wearing?
GT: dress, Ours: dress

Question type: how many

on the grass?
GT: 5, Ours: 5

GT: no, Ours: no

here?
GT: 1, Ours: 1

Question type: does this
 be in the United States?

GT: no, Ours: no

Question: What is the name of the piece of furniture the stuffed animal is sitting on? GT: chair, Ours: chair

GT: 1, Ours: 1

GT: no, Ours: no

Question type: is there a

Question: Is there a man
or woman on the train?
GT: man, Ours: man

GT: dog, Ours: dog

on this beach?
GT: yes, Ours: yes

Question: What room of a
house would you find all of these items?
GT: kitchen, Ours: kitchen

Question: Is there a male
or female on the right side?
GT: male, Ours: male

Question type: is that a

GT: electric, Ours: electric

Question type: can you

GT: yes, Ours: yes

Question type: what

GT: winter, Ours: winter

GT: fork, Ours: fork
 at this intersection?
GT: yes, Ours: yes

Question: What structure is in the background?

GT: fence, Ours: fence

Question type: does the

GT: yes, Ours: yes

Question: Does the fruit appear to be ripe?
GT: yes, Ours: yes

Question type: is the person

GT: yes, Ours: yes

ra is beautiful?
GT: yes, Ours: yes

GT: yes, Ours: yes

Question type: do you

GT: yes, Ours: yes

Question type: where is the

GT: beach, Ours: beach

GT: wall, Ours: on wall

GT: kitchen, Ours: kitchen

GT: human, Ours: human

Question: How will the man get back to shore?

GT: boat, Ours: boat

Question: Is this a double decker bus?

GT: yes, Ours: yes

GT: human, Ours: human

Question type: how

GT: bright, Ours: bright

Question type: is this a

Question: Is this a bar?

GT: yes, Ours: yes

Question type: none of the above

Question: Did the wave get larger after this image was taken?

GT: yes, Ours: yes

Question: Would you consider the cyclist in yellow an individual?

GT: yes, Ours: yes

GT: yes, Ours: yes

Question type: where are the

GT: street, Ours: street

GT: field, Ours: field

Question type: are the

Question type: how many people are

Question: How many people are standing up?

GT: 2, Ours: 2

Question: How many people are wearing glasses?

GT: 2, Ours: 2

Question: How many people are on the bike?

GT: 2, Ours: 2

GT: snow, Ours: snow

Question type: has

GT: yes, Ours: yes

Question: Has the food been

GT: yes, Ours: yes

Question type: was

GT: summer, Ours: summer

GT: home, Ours: home

Question type: what type of

GT: wooden, Ours: wooden

Question: What type of building is the couple standing in front

GT: church, Ours: church

GT: living room, Ours: living room

Question type: do

Question type: what is the person

Question: What is the person squatting called?

GT: catcher, Ours: catcher

Question: What is the person skiing on?

GT: snow, Ours: snow

Question type: who is

GT: cat, Ours: cat

Question type: are these

GT: alive, Ours: alive

of this car?
GT: ford, Ours: ford

GT: chopsticks, Ours: chopsticks
T:

GT: umbrella, Ours: umbrella

GT: women, Ours: women

Question type: what is the woman

GT: skateboard, Ours: skateboard

GT: horse racing, Ours: horse racing

Question type: what are

GT: elephant, Ours: elephant

GT: motorcycle, Ours: motorcycles

Question type: what time

GT: night, Ours: night

GT: fall, Ours: fall

Question type: is the woman

GT: no, Ours: no

GT: no, Ours: no

GT: uphill, Ours: uphill
 position behind the batter?

GT: catcher, Ours: catcher

Question type: what are the

Question: What are the colors
of the chairs?
GT: brown, Ours: brown

Question: What are the military men cutting?

GT: cake, Ours: cake

Question: What is the gir
wearing on her head?
GT: hat, Ours: hat

GT: standing, Ours: standing

Question type: what color are the

GT: white, Ours: white

Question: Is he wearing a helmet?

GT: no, Ours: no
 man's pants?

GT: white, Ours: white

Question type: is he

GT: no, Ours: no

GT: no, Ours: no
 slightly squatting?

T: skateboarding, Ours: skateboarding

GT: resting, Ours: resting

GT: drinking, Ours: drinking

Question type: what is this

Question type: how many people are in

GT: 1, Ours: 1

in the photo?
GT: 3, Ours: 3

Question type: what color

GT: white, Ours: white

GT: black, Ours: black

photo?
GT: 1, Ours: 1

GT: white, Ours: white

Question: Is this picture in full color?

GT: yes, Ours: yes

Question type: why is the

GT: cutting cake, Ours: cutting cake

GT: shade, Ours: shade

GT: safety, Ours: safety

Question type: what is the color of the

GT: yellow, Ours: yellow

Question: What is zoomed in
on in the picture?
GT: keyboard, Ours: keyboard

Question: What is the color of the woman's shirt?

GT: white, Ours: white

Question type: what is

Question: What is keeping the vehicle from falling?

GT: kickstand, Ours: kickstand

GT: snow, Ours: snow

GT: no, Ours: no
 structure?
GT: no, Ours: yes

Question type: what is in the

GT: dog, Ours: dog

Question: What is in the

GT: fruit, Ours: fruit

Question type: what does the

GT: ski poles, Ours: ski poles

have on her head?

GT: hair, Ours: hair

Question type: what kind of

GT: wood, Ours: wood

GT: chicken, Ours: chicken

GT: bananas, Ours: bananas

Question type: is it

fall?
GT: winter, Ours: winter

night?
GT: day, Ours: day

Question type: is the man

GT: snowboarding, Ours: snowboarding
 or catching the frisbee?

GT: catching, Ours: catching

Question type: is there

GT: water, Ours: water

or grass?
GT: grass, Ours: grass

GT: shorts, Ours: shorts
 cola on the door of the refrigerator?
GT: beer, Ours: beer

Question type: what color is the

GT: blue, Ours: blue

Question: WHAT COLOR is the
sky?
GT: blue, Ours: blue

Question: What color is the

GT: blue, Ours: blue

GT: yellow, Ours: green

automobiles?
GT: no, Ours: no
 glasses or wine glasses?

GT: wine, Ours: wine

GT: white, Ours: white

Question type: are

GT: yes, Ours: no

Question type: are there

GT: broccoli, Ours: broccoli

GT: white, Ours: white

GT: yes, Ours: no

Figure S16

References

[1] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don't take the easy way out: Ensemble based methods for avoiding known dataset biases. In EMNLP, 2019.
[2] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling. In CVPR, 2019.
[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. https://arxiv.org/abs/1907.02893, 2019.
[4] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not to learn: Training deep neural networks with biased data. In CVPR, 2018.
[5] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. In IEEE, 1998.
[6] Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume; look and answer: Overcoming priors for visual question answering. In CVPR, 2018.
[7] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In CVPR, 2017.
[8] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In CVPR, 2018.
[9] Amir Zadeh, Michael Chan, Paul Pu Liang, Edmund Tong, and Louis-Philippe Morency. Social-iq: A question answering benchmark for artificial social intelligence. In CVPR, 2019.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In EMNLP, 2019.
[11] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In $I C L R, 2015$.
[12] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NeurIPS, 2017.
 motorcycle?

GT: ducati, Ours: yamaha

Question type: what room is

GT: office, Ours: dining room

GT: store, Ours: living

Question: What brand of computer
is the partially closed one?
GT: apple, Ours: dell

GT: office, Ours: living room

Question type: what is the man

GT: skis, Ours: ski poles

Question: What is the man doing to the man in white?
GT: walking, Ours: catching

Question type: is

GT: no, Ours: yes

GT: no, Ours: yes

Question: Is today the dogs birthday?

GT: no, Ours: birthday

Question type: what number is

$$
\text { GT: 9, Ours: } 38
$$

Question: What number is on
the back of the red shirt?
GT: 28, Ours: 0

Question type: what sport is

GT: football, Ours: frisbee

Question type: is this person

GT: no, Ours: yes

Question: Is this person and athlete?

GT: no, Ours: yes

Question: Is this person waterskiing?

GT: no, Ours: yes

Question type: what is the name

Question type: how many

GT: 1, Ours: 2

Question type: does this
 sport?
GT: no, Ours: yes

GT: no, Ours: yes

 a bathroom?

GT: no, Ours: yes

Question type: is there a
 street or a dirt trail in this photo?
GT: paved, Ours: road

Question: Is there a painting
or a mirror in the frame?
GT: mirror, Ours: picture

GT: international, Ours: no

Question type: is that a

Question: Is that a limb or stick?

GT: limb, Ours: rope

GT: yes, Ours: no

Question: What shape is the
red sign?
GT: star, Ours: octagon

GT: india, Ours: usa

GT: golden retriever, Ours: terrier

Question type: does the
 the color of his pants?

GT: yes, Ours: no

Question type: is the person

Question: Is the person in the image a kid or a midget?
GT: kid, Ours: child

Question: Is the person using
this kitchen organized?

GT: yes, Ours: no

Question type: do you

Question: Do you see a serving knife?

GT: yes, Ours: no

ice cream?
GT: yes, Ours: no

Question type: where is the

GT: parked, Ours: on road

Question: Where is the train?

GT: station, Ours: on tracks

Question: Where is the man Question: Where is the man
and woman riding an elephant?

GT: forest, Ours: outside

Question type: how

GT: hour, Ours: 1 hour
GT: 25, Ours: fast

Question type: is this a

GT: yes, Ours: no

Wii controller?
GT: yes, Ours: wii
Ques

Question: How old is the elephant?

GT: old, Ours: young

Question type: none of the above

GT: yes, Ours: snow

GT: stomach, Ours: head

GT: yes, Ours: no

Question type: where are the

GT: zoo, Ours: outside

GT: field, Ours: park

GT: street, Ours: parking lot

Question type: are the

GT: dirty, Ours: clean

Question type: how many people are

GT: 2, Ours: 4

GT: 2, Ours: 3

GT: 7, Ours: 4

Question type: what is on the
 suitcase?
GT: jacket, Ours: clothes

GT: yes, Ours: no

GT: toasted, Ours: fried

GT: sticker, Ours: clock

Question type: has

Question: Has the wine been opened?

GT: yes, Ours: no

Question type: was

Question type: what type of

GT: rain, Ours: rainy

GT: selfie, Ours: color

GT: dog, Ours: brown

Question type: what is the person

GT: atv, Ours: motorcycle

GT: skateboarder, Ours: girl

GT: shorts, Ours: wetsuit

Question type: who is

GT: people, Ours: surfer

Question type: are these

GT: street, Ours: ground

GT: no one, Ours: elephant

GT: vegetables, Ours: fruit

Question type: what is the woman

GT: brushing hair, Ours: eating

GT: masks, Ours: sunglasses

Question type: what are

GT: nothing, Ours: sunglasses

GT: brushing teeth, Ours: cutting

doing?
GT: listening to music, Ours: talking

GT: looking down, Ours: eating

Question type: what time

GT: 1:55, Ours: 3:00

Question type: is the woman

GT: no, Ours: yes

GT: no, Ours: yes

GT: no, Ours: yes

GT: bunny, Ours: baby

Question type: what are the

GT: signs, Ours: nothing

Question type: what color are the

GT: white, Ours: gray

Question: Is he a beginner surfer?

GT: no, Ours: yes

letters on the board?
GT: white, Ours: silver

Question type: is he

Question: Is he bunting or
swinging?
GT: bunting, Ours: baseball
 players' shoes?

GT: white, Ours: blue

Question: Is he right handed?

GT: no, Ours: yes

Question type: what is this

GT: farmer, Ours: police

GT: stove, Ours: kitchen

GT: food, Ours: bus

Question type: how many people are in

in the picture?
GT: 10, Ours: 15

Question type: what color

GT: white, Ours: pink

Question: What color are this person's sunglasses?

GT: white, Ours: black

Question: What color stands out
in this picture?
GT: red, Ours: pink

Question type: is this

GT: yes, Ours: no

Question: Is this area desert-like or lush and green?

GT: lush and green, Ours: trees

GT: yes, Ours: no

Question type: why is the

Question: Why is the picture
funny?
GT: no, Ours: yes
 face blurred?

GT: its moving, Ours: tired

Question type: what is the color of the

of the vehicles?
GT: green and yellow, Ours: yellow

Question: What is clear in the background?

GT: window, Ours: train

Question type: what is
 of the catcher's hat?
GT: red, Ours: blue

Question: What is below the mirror?

GT: fireplace, Ours: tv

GT: white, Ours: pink

GT: trash can, Ours: desk

GT: no, Ours: yes

Question type: what is in the

GT: bottle, Ours: vase

GT: nothing, Ours: flowers

Question type: what does the

GT: melrose, Ours: clock
of the vehicle hold?

Question type: what kind of

GT: jet ski, Ours: boat

GT: horse and cow, Ours: cows

GT: no, Ours: yes

Question: What is in the

GT: oil, Ours: beer

GT: slow, Ours: nothing

GT: khaki, Ours: jeans

Question type: is it

cold where this photo was taken?
GT: warm, Ours: cold

Question: Is it cold or
warm?
GT: warm, Ours: cold

Question type: is the man

GT: woman, Ours: man

Question: Is the man standing straight or leaning on the surfboard?

GT: leaning, Ours: neither

Question type: is there

Question: Is there an even number of donuts or an odd
number?

GT: odd, Ours: 0

Question type: what color is the

GT: red, Ours: white

GT: gray, Ours: green

Question: What color is the
GT: gray, Ours: brown

GT: red, Ours: blonde

GT: yes, Ours: no

GT: red, Ours: brown

Question type: are

GT: no, Ours: coffee

Question type: are there

Figure S32

GT: red and black, Ours: red

GT: yes, Ours: unknown

[^0]: *itaigat@technion.ac.il

[^1]: 2^{2} https://www.kaggle.com/c/dogs-vs-cats

