
Appendix

Theorem 1 is proved Section A, and Theorem 2 is proved Section B. Section C is dedicated to
stating and proving an upper bound on the regret of UCBF in higher dimension. Lemmas used in
those Sections are proved in Section D. First, let us state the following Lemma, which controls the
fluctuations of m within an interval.
Lemma 2. Let a 2 [0, 1] be such that m(a) = M +↵L/K for some ↵ > 0. Moreover, let k be such
that a 2 Ik. Then

max
a02Ik

m(a0)  M + (↵+ (↵ _ 1))
L

K
,

and

min
a02Ik

m(a0) � M +

✓
↵�

(↵ _ 2)

2

◆
L

K
.

Similarly, let a 2 [0, 1] be such that m(a) = M � ↵
L
K , where ↵ > 0. Moreover, let k be such that

a 2 Ik. Then

min
a02Ik

m(a0) � M � (↵+ (↵ _ 1))
L

K
,

and

max
a02Ik

m(a0)  M �

✓
↵�

(↵ _ 2)

2

◆
L

K
.

A Proof of Theorem 1

To prove Theorem 1, we show that the regret RT can be decomposed as the sum of a discretization
error term and of a term corresponding to the regret of pulling a game of finite bandit with K arms.
To do so, we introduce further notations.

Recall that for k = 1, ...,K, mk = K
R
a2Ik

m(a)da is the mean payment for pulling an arm
uniformly in interval Ik. In order to avoid cumbersome notations for reordering the intervals, we
assume henceforth (without loss of generality) that {mk}1kK is a decreasing sequence.

If we knew the sequence {mk}1kK but not the reward of the arms m(ai), a reasonable strategy
would be to pull all arms in the fraction p of the best intervals, and no arm in the remaining intervals.
If all intervals contained the same number of arms N/K, we would pull all arms in the interval I1, I2,
up to If , where f = bpKc, and we would pull the remaining arms randomly in If+1. Note however
that since the arms are randomly distributed, the number of arms in each interval varies. Thus, a good
strategy if we knew the sequence {mk}1kK would consist in pulling all arms in the intervals I1,
I2, up to I bf , where bf is such that N1 + ..+N bf < T  N1 + ..+N bf+1, and pull the remaining arms
in If̂+1. We call this strategy "oracle strategy for the discrete problem", and we denote it �d. Recall
that we denote by �

⇤(t) the arm pulled at time t by the oracle strategy, and by �(t) the arm pulled at
time t by UCBF.

We decompose RT as follows :

RT =
X

t=1..T

m(a�⇤(t))�
X

t=1..T

m(a�(t))

=
X

t=1..T

m(a�⇤(t))�
X

t=1..T

m(a�d(t)) +
X

t=1..T

m(a�d(t))�
X

t=1..T

m(a�(t)).

Let R(d)
T =

P
t=1..T

m(a�⇤(t))�
P

t=1..T
m(a�d(t)). By definition, R(d)

T is the regret of the oracle stratgey

for the discrete problem, and corresponds to a discretization error. We bound this term in Section A.1.

Let R(FMAB)
T =

P
t=1..T

m(a�d(t))�
P

t=1..T
m(a�(t)) be the regret of our strategy against the oracle

strategy for the discrete problem. R(FMAB)
T corresponds to the regret of the corresponding finite

K-armed bandit problem. A bound on this term is obtained in Section A.2.
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A.1 Bound on the discretization error R
(d)
T and proof of Lemma 1

To bound the discretization error R(d)
T , we begin by controlling the deviation of bf and mf̂ from their

theoretical counterparts f and M .

Lemma 3. With probability at least 1� 4e�
2N
K2 , we have | bf � f |  1. On this event,

���mf̂ �M

��� 
4L/K and m bf+1 2 [M � 8L/K,M + L/K].

Then, we define cM = m(a�⇤(T )) and control its deviation from M .

Lemma 4. Assume that p 2 (1/K, 1� 1/K). Then, with probability at least 1� 2e�
2N
K2 , we have

|cM �M |  L/K.

We show later that with high probability, �⇤ and �
d may only differ on arms i such that m(ai) 2

[M � 16L/K,M + L/K]. The following lemma controls the number of those arms.

Lemma 5. Assume that K  N
2/3. Then, with probability at least 1� 2e�

N1/3

3 ,
����

⇢
i : m(ai) 2


M �

16L

K
,M +

L

K

������ 
32LQN

K
.

Using Lemmas 3-5, we control the discretization cost R(d)
T on the following event. Let

Ea =
n
| bf � f |  1

o
\

n
|cM �M |  L/K

o

\

⇢����

⇢
i : m(ai) 2


M �

16L

K
,M +

L

K

������ 
32LQN

K

�
.

Note that under the assumptions of Lemmas 4-5, P (Ea) � 1� 6e�
2N
K2 � 2e�

N1/3

3 by Lemma 3-5.
Moreover on Ea, |mf̂ �M |  4L/K and m bf+1 2 [M � 8L/K,M + L/K].

Lemma 6. On the event Ea, R(d)
T 

384QL2N
K2 .

Lemma 1 follows from Lemma 3, Lemma 4, Lemma 5 and Lemma 6.

A.2 Bound on the regret of the discrete problem R
(FMAB)
T

We bound R
(FMAB)
T on a favourable event, on which both the number of arms in each interval and

the payment obtained by pulling those arms do not deviate too much from their expected value.
Under Assumption 1, E [Nk] = N/K for all k = 1, ...,K. The following Lemmas provides a high
probability bound on max

k=1,...,K
|Nk �N/K|.

Lemma 7. Assume that K  N
2/3

/4. Then,

P
✓

max
k2{1,..,K}

����Nk �
N

K

���� �
N

2K

◆
 2Ke

�N1/3

3 .

Now, we show that on an event of large probability, for k = 1, ...,K and s  (Nk ^ T ), bmk(s) does
not deviate of mk by more that

p
log(T/�)/2s.

Let k 2 {1, ...,K} be such that Nk > 0. For s  nk(T ), we denote by ⇡k(s) the s-th armed pulled
in interval Ik by UCBF. With these notations, for all s = 1, ..., nk(T ), bmk(s) is defined by UCBF as
bmk(s) =

1
s

P
t=i=1,...,s

y⇡k(i). We define similarly ⇡k(s) for s 2 [nk(T )+1, Nk] by selecting uniformly

at random without replacement the remaining arms in Ik, and let bmk(s) = 1
s

P
t=i=1,...,s

y⇡k(i) for

s = nk(T ) + 1, ..., Nk, and bmk(0) = 0.
Lemma 8.

P
 
9k 2 {1, ...,K}, s  (Nk ^ T ) : |bmk(s)�mk| �

r
log(T/�)

2s

!
 2K�.
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Then, we define

Eb =

⇢
\

k=1..K

⇢
Nk 2


N

2K
,
3N

2K

���

\

(
\

k=1..K
\

s=1..(Nk^T )

(
|mk � bmk(s)| 

r
log(T/�)

2s

))
.

Combining Lemma 7 and Lemma 8, we find that when K  N
2/3

/4,

P (Eb) � 1� 2Ke
�N1/3

2 � 2K�.

Now, we decompose R
(FMAB)
T in the following way. Recall that

R
(FMAB)
T =

X

t=1...T

m(a�d(t))�
X

t=1...T

m(a�(t)).

Recall that �d pulls all arms in the interval I1, ..., If , and pull the remaining arms in the interval If+1.
In the following, we denote �d(T ) the set of arm pulled by �

d at time T . Thus,
X

t=1...T

m(a�d(t)) =
X

k=1.. bf

X

ai2Ik

m(ai) +
X

ai2�d(T )\If̂+1

m(ai).

The number of arms pulled by �
d is equal to T , and we can write

X

t=1...T

m(a�d(t)) =
X

k=1.. bf

X

ai2Ik

(m(ai)�M) +
X

ai2�d(T )\If̂+1

(m(ai)�M) + TM. (5)

On the other hand, we decompose the total payment obtained by � as the sum of the payment obtained
by pulling arms also selected by �

d (i.e. arms in I1, ..., If and If+1\�d(T )), and the sum of payment
for pulling arms that were not selected by �

d (i.e. arms in If+1 \ �d(T ) and in If+2, ..., Ik). Recall
that �(T ) is the set of arms pulled by UCBF at time T .
X

t=1...T

m(a�(t)) =
X

k=1.. bf

X

ai2Ik\�(T )

m(ai) +
X

ai2If̂+1\�(T )\�d(T )

m(ai)

�

0

B@
X

ai2If̂+1\�(T )\�d(T )

�m(a�(t))

1

CA�

0

@
X

k= bf+2..K

X

ai2Ik\�(T )

�m(a�d(t))

1

A .

Again, T arms are pulled by �, and we can write
X

t=1...T

m(a�(t)) =
X

k=1.. bf

X

ai2Ik\�(T )

(m(ai)�M) +
X

ai2If̂+1\�(T )\�d(T )

(m(ai)�M)

�

X

ai2If̂+1\�(T )\�d(T )

(M �m(ai))�
X

k= bf+2..K

X

ai2Ik\�(T )

(M �m(ai)) + TM.

(6)

Subtracting equation (6) from equation (5), we find that

R
(FMAB)
T =

X

k=1.. bf

X

ai2Ik\�(T )

(m(ai)�M) +
X

ai2If̂+1\�d(T )\�(T )

(m(ai)�M)

+
X

ai2If̂+1\�(T )\�d(T )

(M �m(ai)) +
X

k= bf+2..K

X

ai2Ik\�(T )

(M �m(ai)) .
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We write

Rf̂+1 =
X

ai2If̂+1\�d(T )\�(T )

(m(ai)�M) +
X

ai2If̂+1\�(T )\�d(T )

(M �m(ai)) ,

Ropt =
X

k=1.. bf

X

ai2Ik\�(T )

(m(ai)�M) ,

and
Rsubopt =

X

k= bf+2..K

X

ai2Ik\�(T )

(M �m(ai)) .

The decomposition R
(FMAB)
T = Ropt +Rf̂+1 +Rsubopt show that three phenomenons contribute

to the regret of � on the discrete problem. The side effect term Rf̂+1 can easily be bounded : there
are most 1.5N/K arms in If̂+1, and so there are at most 1.5N/K terms in Rf̂+1. On the event
Ea, mf̂+1 2 [M � 8L/K,M + L/K]. Using Lemma 2, we see that for each arm ai 2 If̂+1,
|m(ai)�M |  16L/K. Thus, on Ea \ Eb, Rf̂+1  24N/K

2.

Now, we say that an interval Ik is sub-optimal if mk < mf̂+1 and is optimal if mk � mf̂ .

R
(FMAB)
T � Rf̂+1 is the sum of a term Ropt, induced by the remaining arms in the optimal in-

tervals, and a term Rsubopt, induced by pulls of arms in sub-optimal intervals. The following Lemma
will be used to control those terms.

For two intervals Ik, Il such that mk > ml, we provide a bound on the number of arms drawn in Il

given that there are still arms available in the better interval Ik. For two intervals k, l 2 {1, ...,K}
2,

we denote henceforth �k,l = mk �ml.
Lemma 9. Let k 2 {1, ...,K}. On the event Eb \ {nk(T ) < Nk}, a.s. for all intervals Il such that
�k,l > 0, nl(T ) 

3 log(T/�)
�2

k,l
.

To bound the regret Rsubopt, we take advantage of the fact that every slightly sub-optimal interval k
cannot be selected more than Nk times. This is done in the following lemma.
Lemma 10. On the event Ea \ Eb,

Rsubopt 
600L2

QN

K2
+ 384 log(T/�)KQ (log2(K/L) _ 1) .

While Rsubopt corresponds to the regret of pulling sub-optimal arms, and is bounded using classical
bandit arguments, Ropt corresponds to the regret of not having pulled optimal arms. We first control
the number of optimal arms that have not been pulled. The arguments used to prove Lemma 10 can
be used to control the number of arms pulled in sub-optimal intervals, which is equal to the number
of non-zero terms in Ropt.
Lemma 11. On Ea \ Eb, the number of arms pulled in sub-optimal intervals by UCBF is bounded by
30Q(LN/K + log(T/�)K2

/L).

This number is equal to the number of optimal arms that have not been pulled, and thus to the number
of non-zero terms in Ropt. Note that this number is at least of order N/K_K

2, while R(d)
T +Rsubopt

is of the order N/K
2
_K . Thus, bounding each term in Ropt by 1 will likely lead to sub-optimal

bounds on the regret RT . In the next Lemma, we characterise intervals whose arms have all been
pulled by UCBF. Note that those intervals do not contributes to Ropt.

Lemma 12. Let A = 35
q

K3Q log(T/�)
NL _ 1. At time T , on the event Ea \ Eb, all arms in intervals

Ik such that mk � M +AL/K have been pulled.

Using Lemmas 11 and 12, we can finally control Ropt.
Lemma 13. On event Ea \ Eb,

Ropt  60AQ

✓
L
2
N

K2
+ log(T/�)K

◆

15



To conclude, note that for the choice � = N
�4/3 and K = bN

1/3 log(N)�2/3
c � (1� p ^ p)�1,

A  35

r
N log(N)�2 log(pN7/3)

NL
_ 1  35

r
7 log(N)�1

3L
_ 1.

Moreover K�2 = bN
1/3 log(N)�2/3

c
�2

 4
�
N

1/3 log(N)�2/3
��2

since N
1/3 log(N)�2/3

� 2.
Thus, on the event Ea \ Eb,

Ropt  2100Q
⇣
4L2

N
1/3 log(N)4/3 + 7/3 log(N)1/3N1/3

⌘r7 log(N)�1

3L
_ 1

Rsubopt  2400L2
QN

1/3 log(N)4/3 + 896QN
1/3 log(N)1/3 (log2(N/L) _ 1)

Rf̂+1  96N1/3 log(N)4/3

R
(d)
T  1536QLN

1/3 log(N)4/3.

Thus, on Ea \ Eb, we find that
RT  CN

1/3 log(N)4/3,

or equivalently that

RT  C(T/p)1/3 log(T/p)4/3

for some constant C depending only on L and Q. Note that K  N
2/3

/4 as soon as N � 30.
Using the Lemmas 3, 4, 5, 7 and 8, we find that the event Ea \ Eb occurs with probability at least
1 � 6�2bN1/3 log(N)4/3c

� 2e�N1/3/3
� 2e�N1/3/3

N
1/3 log(N)�2/3

� 2N�1
� 1 � 12(N�1

_

e
�N1/3/3).

B Proof of Theorem 2

Before proving Theorem 2, we recall that under Assumption 5, the set of covariates (a1, ..., aN ) =
(1/N, ..., 1) is deterministic. We prove Theorem 2 by studying reward that are independent Bernoulli
variables : under Assumption 4, yi ⇠ Bernoulli(m(ai)) for i = 1, .., N . At each time t, a strategy �

selects which arm �(t) to pull based on the past observations (�(1), y�(1), ...,�(t� 1), y�(t�1)). For
t = 1, ..., T , let Ht = (a1, y1, ..., at, yt).

Let m0 and m1 be two payoff functions. We denote by P0 the distribution of HT when the payoff
function is m0, and P1 the distribution of HT when the payoff function is m1. Moreover, let Z be
any event �(HT )-measurable. According to Bretagnolle-Huber inequality (see, e.g., Theorem 14.2
in [Lattimore and Szepesvári, 2020])

P0(Z) + P1(Z̄) �
1

2
exp (�KL(P0,P1)) .

Let us sketch the proof of Theorem 2. In a first time, we design two payoff functions m0 and m1 that
satisfy Assumptions 2 and 3 and differ on a small number of arms. Then, we bound their Kullblack-
Leibler divergence. Finally, we define an event Z which is favorable for m1 and unfavorable for m0,
and we provide lower bounds for RT on Z under P0 and on Z under P1.

We will henceforth assume that

N �
1

(p ^ 1� p)3(L ^ 0.5)2
_ 811.

In order to define m0 and m1, we introduce the following notations. Let ↵ 2 (20N�2/3
, 0.5] to

be defined later, and let L̃ = L ^ 0.5 and � = ↵(NL̃
2)�1/3. Now, define x0 = 1 � p � 2� and

x1 = 1� p+2�. The inequality 2� < p^ (1� p) ensures that 0 < x0 < 1� p < x1 < 1. Moreover,
L̃(x0 _ 1� x1)  1/2 and L̃� < 1/4. We define m0 and m1 as follows.
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m0(x) =

8
>>>>>><

>>>>>>:

1/2� L̃(x0 � x) if x 2 [0, x0)
1/2� L̃(x� x0) if x 2 [x0, x0 + �)
1/2� L̃(1� p� x) if x 2 [x0 + �, 1� p)
1/2 + L̃(x� (1� p)) if x 2 [1� p, 1� p+ �)
1/2 + L̃(x1 � x) if x 2 [1� p+ �, x1)
1/2 + L̃(x� x1) if x 2 [x1, 1]

Define similarly

m1(x) =

8
>>>>>><

>>>>>>:

1/2� L̃(x0 � x) if x 2 [0, x0)
1/2 + L̃(x� x0) if x 2 [x0, x0 + �)
1/2 + L̃(1� p� x) if x 2 [x0 + �, 1� p)
1/2� L̃(x� (1� p)) if x 2 [1� p, 1� p+ �)
1/2� L̃(x1 � x) if x 2 [1� p+ �, x1)
1/2 + L̃(x� x1) if x 2 [x1, 1]

The functions m0 and m1 are bounded in [0, 1], piecewise linear. They differ only on [x0, x1], and
are such that

min {A : � ({x : m0(x) � A}) < p} = min {A : � ({x : m1(x) � A}) < p} = 1/2.

Under hypotesis 5, the T = pN best arms for the payoff function m0 are in [1� p, 1] \ {x0}, while
the T = pN best arms for the payoff function m1 are in [x1, 1] \ [x0, 1� p].
Lemma 14. The payoff functions m0 and m1 satisfy Assumptions 2 and 3.

Next, we bound the Kullback-Leibler divergence between P0 and P1.
Lemma 15. For the functions m0 and m1 defined above,

KL(P0,P1)  70.4↵3
.

We define Z as the following event :

Z =

8
<

:
X

ai2[x0,1�p]

1{i2�(T )} � N� � 2

9
=

; .

Because of Assumption 5, there are between b2N�c and d2N�e arms in (x0, 1� p). Under P0, the
arms in (x0, 1� p) are sub-optimal, so Z is disadvantageous. On the contrary, under P1 all arms in
(x0, 1� p) are optimal under m1, and so Z is disadvantageous. We provide a more detailed statement
in the following lemma.

Lemma 16. Under P0, on Z , RT � 0.22↵2
N

1/3. Under P1, on Z , RT � 0.22↵2
N

1/3.

Since N � 811, we can choose for example ↵ = 0.23. Using (a _ b) � (a+ b)/2, we see that

max
n
P0

⇣
RT � 0.01N1/3

⌘
,P1

⇣
RT � 0.01N1/3

⌘o
� 0.1.

C Upper bound on the regret in multi-dimensional settings

In this section, we provide an upper bound on the regret of a natural extension of Algorithm UCBF
to d-dimensional covariates. More precisely, we assume that the arms are described by covariates
in the set X = [0, 1]d for some d 2 N⇤. Similarly to the one-dimensional case, we assume that the
covariates are uniformly distributed in X :

Assumption 6. For i = 1, ..., N , ai
i.i.d.
⇠ U([0, 1]d).

As in the one dimensional setting, we assume that the mean payoff function is weakly L-Lipschitz
with regard to the Euclidean distance:
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Assumption 7. For all (x, y) 2 [0, 1]d ⇥ [0, 1]d,

|m(x)�m(y)|  max {|M �m(x)|, L kx� yk2} .

Moreover we assume that the mean reward function m : [0, 1]d ! [0, 1] verifies Assumption 3 (here,
� denotes the Lebesgue measure on [0, 1]d). Then, the UCBF Algorithm can readily be generalized
to this d-dimensional setting, as described in Algorithm 2. The following Theorem bounds the regret
of Algorithm d-UCBF.

Algorithm 2 d-dimensional Upper Confidence Bound for Finite continuum-armed bandits (d-UCBF)
Parameters: K, �

Initialisation: Divide [0, 1]d into K
d bins Bk such that for k 2 {0, ...,Kd

� 1}, Bk =
[k1
K ,

k1+1
K ) ⇥ ... ⇥ [kd

K ,
kd+1
K ), where (k1, ..., kd) denotes the d-ary representation of k. Let

Nk =
P

1iN 1{ai 2 Bk} be the number of arms in the bin Bk. Define the set of bins alive as
the set of bins Bk such that Nk � 2. Pull an arm uniformly at random in each bin alive.
for t = K

d + 1, ..., T do
� Select an bin Bk that maximizes bmk(nk(t� 1)) +

q
log(T/�)
2nk(t�1) among the set of alive bins,

where nk(t � 1) is the number of arms pulled from Bk by the algorithm before time t, and
bmk(nk(t� 1)) is the average reward obtained from those nk(t� 1) samples.
� Pull an arm selected uniformly at random among the arms in Bk. Remove this arm from Bk.
If Bk is empty, remove Bk from the set of alive bins.

end for

Theorem 3. Under Assumption 6, 7 and 3, there exists a constant CL,Q,p,d depending only on L, Q
p and d such that for the choice K = dN

1
d+2 log(N)�

2
d+2 e and � = N

� 2d+2
d+2 ,

RT  CL,Q,p,d T
d

d+2 log(T )
4

d+2

with probability 1�O(N�1).

The rest of this Section is devoted to proving Theorem 3. To do so, we follow the main lines of the
proof of Theorem 1. Some Lemmas follow readily from results developed in Section A, and their
proofs are therefore omitted. The remaining Lemmas are proved in Section D.

Let us now prove Theorem 3. As for Theorem 1, we begin by controlling the fluctuations of the mean
payoff function m within a bin.
Lemma 17. Let a 2 [0, 1]d be such that m(a) = M + ↵L/K for some ↵ > 0. Moreover, let k be
such that a 2 Bk. Then

max
a02Bk

m(a0)  M +
⇣
↵+ (↵ _

p

d)
⌘

L

K
,

and

min
a02Bk

m(a0) � M +

 
↵�

(↵ _ 2
p
d)

2

!
L

K
.

Similarly, let a 2 [0, 1]d be such that m(a) = M � ↵
L
K , where ↵ > 0. Moreover, let k be such that

a 2 Bk. Then

min
a02Bk

m(a0) � M �

⇣
↵+ (↵ _

p

d)
⌘

L

K
,

and

max
a02Bk

m(a0)  M �

 
↵�

(↵ _ 2
p
d)

2

!
L

K
.

Proof. In the general d-dimensional case, two points in the same bin may be separated by a Euclidean
distance of

p
d/K. Using this remark, one can readily adapt the proof of Lemma 2 to prove Lemma

17.
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Conversely, we obtain a lower bound on the Lebesgue measure of arms with mean reward close to M .
Lemma 18. There exist a constant cp,d > 0 depending only on p and d such that for all t 2 (0,

p
dL],

P (m(a1) 2 [M,M + t)) � cp,d
t

L
.

Then, we decompose the regret RT into the sum of a discretization error, and of the cost of learning
in the corresponding finite K

d-armed bandit problem. For k = 0, ...,Kd
� 1, we define mk =

K
d
R
a2BK

m(a)da as the mean payment for pulling an arm uniformly in bin Bk. In order to avoid
cumbersome notations for reordering the bins, we assume henceforth (without loss of generality) that
{mk}0kKd�1 is a decreasing sequence. Similarly to the one-dimensional case, we denote by �

d

the strategy pulling all arms in the bin B1, B2, up to B bf and pulling the remaining arms in Bf̂+1,
where bf is such that N1 + ..+N bf < T  N1 + ..+N bf+1. Note that �d corresponds to the oracle
strategy for the discretized problem. We also denote f = bpK

d
c. Recall that we denote by �

⇤(t) the
arm pulled at time t by the oracle strategy, and by �(t) the arm pulled at time t by UCBF.

Now, decompose RT as follows :

RT =
X

t=1..T

m(a�⇤(t))�
X

t=1..T

m(a�(t))

=
X

t=1..T

m(a�⇤(t))�
X

t=1..T

m(a�d(t)) +
X

t=1..T

m(a�d(t))�
X

t=1..T

m(a�(t)).

Again, we denote by R
(d)
T =

P
t=1..T

m(a�⇤(t))�
P

t=1..T
m(a�d(t)) the discretization error. Moreover,

we define R(FMAB)
T =

P
t=1..T

m(a�d(t))�
P

t=1..T
m(a�(t)) the regret of our strategy against the oracle

strategy for the discrete problem.

As in the one-dimensional case, we use the following Lemmas to bound the discretization error R(d)
T .

Lemma 19. Define ✏ = dcp,dK
d�1

e and ↵ = 4QL/cp,d + 2/
p
d ⇥ (1 + 3/Kd�1), where cp,d

is the constant appearing in Lemma 18. With probability at least 1 � 4 exp
⇣
�

2c2p,dN

K2

⌘
, we have

| bf � f |  1 + ✏. On this event,
���mf̂ �M

���  ↵
p
dL/K and

���mf̂+1 �M

���  ↵
p
dL/K.

Lemma 20. For the constant cp,d > 0 defined in Lemma 18,

P
⇣
|cM �M | 

p

dL/K

⌘
� 1� 2e�

2c2p,dN

K2 . (7)

The proof of Lemma 20 is obtained by following the lines of the proof of Lemma 4, and applying
Lemma 18. It is therefore omitted.
Lemma 21. With probability at least 1� 2 exp

⇣
�

8↵2dL2Q2N
K2

⌘
,

�����

(
i : m(ai) 2

"
M �

2↵
p
dL

K
,M +

L
p
d

K

#)����� 
4↵

p
dLQN

K
.

The proof of Lemma 21 follows from the arguments developed in the proof of Lemma 5, and is
therefore omitted. Note that since LQ � 1, d � 1 and ↵ � 1 � cp,d, 1� 2 exp

⇣
�

8↵2dL2Q2N
K2

⌘
�

1� 2 exp
⇣
�

2c2p,dN

K2

⌘
.

Lemma 22. Let

Ea =
n
| bf � f |  1 + ✏

o
\

n
|cM �M | 

p

dL/K

o

\

(�����

(
i : m(ai) 2

"
M �

2↵
p
dL

K
,M +

p
dL

K

#)����� 
4↵

p
dLQN

K

)
.

On the event Ea, R(d)
T 

8↵2dQL2N
K2 .
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Combing Lemmas 19, 20 and 21, we note that P(Ea) � 1� 8 exp(
2c2p,dN

K2 ). Next, we bound the cost
of learning on the corresponding finite K

d-armed bandit problem. Similarly to the one-dimensional
case, we use the following Lemmas to control this term.
Lemma 23.

P
✓

max
k2{0,..,Kd�1}

����Nk �
N

Kd

���� �
N

2Kd

◆
 2Kd

e
� N

10Kd .

Lemma 24.

P
 
9k 2 {0, ...,Kd

� 1}, s  (Nk ^ T ) : |bmk(s)�mk| �

r
log(T/�)

2s

!
 2Kd

�.

The proof of Lemma 24 follows closely the proof of Lemma 8, and is therefore omitted.

Now, we define

Eb =

⇢
\

k=0,..,Kd�1

⇢
Nk 2


N

2Kd
,
3N

2Kd

���

\

(
\

k=0,..,Kd�1
\

s=1..(Nk^T )

(
|mk � bmk(s)| 

r
log(T/�)

2s

))
.

Combining Lemma 23 and Lemma 8, we find that

P (Eb) � 1� 2Kd
e
� N

10Kd � 2Kd
�.

For two bins k, l 2 {1, ...,K}
2, we denote henceforth �k,l = mk �ml.

Lemma 25. Let k 2 {1, ...,K}. On the event Eb \ {nk(T ) < Nk}, a.s. for all bins Bl such that
�k,l > 0, nl(T ) 

3 log(T/�)
�2

k,l
.

The proof of Lemma 25 can be obtained by following the lines of the proof of Lemma 7, and is
therefore omitted.

As in the one-dimensional case, we write R
(FMAB)
T = Ropt +Rf̂+1 +Rsubopt, where

Rf̂+1 =
X

ai2Bf̂+1\�d(T )\�(T )

(m(ai)�M) +
X

ai2Bf̂+1\�(T )\�d(T )

(M �m(ai)) ,

Ropt =
X

k=1.. bf

X

ai2Bk\�(T )

(m(ai)�M) ,

and
Rsubopt =

X

k= bf+2..Kd�1

X

ai2Bk\�(T )

(M �m(ai)) .

The term Rf̂+1 can easily be bounded : there are most 1.5N/K
d arms in Bf̂+1, and so there are at

most 1.5N/K
d terms in Rf̂+1. On the event Ea, mf̂+1 2 [M � ↵

p
dL/K,M + ↵

p
dL/K]. Using

Lemma 2, we see that for each arm ai 2 Bf̂+1, |m(ai) � M |  2↵
p
dL/K. Thus, on Ea \ Eb,

Rf̂+1  3↵
p
dLN/K

d+1.

The following Lemmas help us bound the terms Rsubopt and Ropt.
Lemma 26. On the event Ea \ Eb,

Rsubopt  120↵2
dL

2
Q

 
N

K2
+

K
d log(T/�) log2(K/↵

p
dL)

↵2dL2

!
.

Lemma 27. On Ea \ Eb, the number of arms pulled in sub-optimal bins by UCBF is bounded by
6↵

p
dLQN/K + 24 log(T/�)Kd+1

Q/(↵
p
dL).
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Lemma 28. Let

A =

s
472QKd+2 log(T/�)

Ncp,dLd
_ 16↵QL/cp,d.

At time T , on the event Ea \ Eb, all bins Bk such that mk � M +A
p
dL/K have died.

Combining Lemmas 26, 27 and 28, we prove the following result.
Lemma 29. On event Ea \ Eb,

Ropt  30↵AdL
2
Q

✓
N

K2
+

log(T/�)Kd

↵2dL2

◆
.

The proof of Lemma 29 is similar to that of Lemma 13, and is therefore omitted.

Thus, on the event Ea \ Eb,

RT 
�
33↵AdL

2
Q+ 128↵2

dL
2
Q
�
 

N

K2
+

log(T/�) log2(K/↵
p
dL)Kd

↵2dL2

!
.

The event Ea\Eb happens with probability larger than 1�8 exp(
2c2p,dN

K2 )�2Kd exp(� N
10Kd )�2Kd

�.
For the choice K = dN

1
d+2 log(N)�

2
d+2 e and � = N

� 2d+2
d+2 ,

P (Ea \ Eb) � 1� 8 exp
⇣
�2c2p,dN

d
d+2 log(N)

4
d+2

⌘
� 2(N

1
d+2 + 1)d log(N)

�2d
d+2 exp

⇣
�N

2
d+2 log(N)

2d
d+2 /10

⌘

+2(N
1

d+2 log(N)
�2
d+2 + 1)dN

�(2d+2)
d+2

� 1�O(N�1).

Note that for this choice of K, A is bounded by a constant depending on ↵, Q, L and cp,d. Then,
Ea \ Eb, there exists a constant C depending on d, L, Q and p such that

RT  C

0

@N
d

d+2 log(N)
4

d+2 +
3+2d
(d+2)2 log(N) log(N)(N

1
d+2 log(N)

�2
d+2 + 1)d

↵2dL2

1

A .

This concludes the proof of Theorem 3.

D Proofs of auxiliary Lemmas

D.1 Proof of Lemma 2

Recall that a 2 Ik and ↵ > 0 is such that m(a) = M + ↵L/K. By Assumption 2, we see that for
any a

0
2 Ik,

|(M + ↵L/K)�m(a0)|  max{↵L/K,L/K},

so

m(a0)  M + (↵+ (↵ _ 1))L/K.

This yield the first part of the Lemma. To obtain the second part, note that Assumption 2 also implies

|m(a0)� (M + ↵L/K)|  max{|m(a0)�M |, L/K}.

Thus,

m(a0) � M + ↵L/K �max{|m(a0)�M |, L/K}. (8)

If |m(a0)�M | � L/K, then equation (8) implies

m(a0) � M + ↵L/K � (m(a0)�M).
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Thus,

2m(a0) � 2M + ↵L/K

and

m(a0) � M +
↵

2
L/K.

Since |m(a0)�M | = m(a0)�M = ↵L/(2K), |m(a0)�M | � L/K implies ↵ � 2. On the other
hand, if |m(a0)�M | < L/K, equation 8 implies

m(a0) � M + ↵L/K � L/K

� M +
(↵� 1)L

K
.

Since m(a0)�M  |m(a0)�M |, the assumption |m(a0)�M | < L/K implies that ↵ < 2.

To summarise, when ↵ < 2 we necessarily have |m(a0)�M | < L/K, and m(a0) � M+(↵�1)L/K.
On the contrary, when ↵ � 2 we necessarily have |m(a0)�M | � L/K, and m(a0) � M+↵L/(2K).
This writes

m(a0) � M +

✓
↵�

↵ _ 2

2

◆
L

K
.

Using the same arguments, we can prove similar bounds for the case m(a) = M � ↵L/K.

D.2 Proof of Lemma 3

Recall that f = bpKc, and bf is such that N1 + .. + N bf < T  N1 + .. + N bf+1. By definition,
N1 + .. + Nf�1 =

P
1iN

1{ai2I1[..[If�1}, where 1{ai2I1[..[If�1} are independant Bernoulli

random variables of parameter f�1
K . Using Hoeffding’s inequality, we find that

P

0

@
X

1iN

1{ai2I1[..[If�1} �
(f � 1)N

K
�

N

K

1

A  e
� 2N

K2 .

Now, by definition, f = bTK/Nc, and so fN/K  T . Thus,

P (N1 + ..+Nf�1 � T )  e
� 2N

K2 . (9)

This shows that with high probability, N1 + .. + Nf�1 < T , which implies that f � 1 < f̂ + 1.
Using again Hoeffding’s inequality, we find that

P

0

@ (f + 2)N

K
�

X

1iN

1{ai2I1[..[If+2} �
N

K

1

A  e
� 2N

K2 .

By definition of f , (f + 1)N/K � T . Thus,

P (N1 + ..+Nf+2 � T )  e
� 2N

K2 (10)

This shows that with high probability, T < N1 + .. + Nf+2, and thus f + 2 > f̂ . Combining
equations (16) and (10), we find that with probability larger than 1� 2e�

2N
K2 , |f � f̂ |  1.

In a second time, we prove that mf 2 [M � L/K,M + L/K]. To do so, we first show that there
are at least dpKe intervals k such that mk � M � L/K, or equivalently that there are at most
b(1 � p)Kc intervals k such that mk < M � L/K. Indeed, for all k such that mk < M � L/K,
there exists a 2 Ik such that m(a) < M � L/K. Using Lemma 2, we see that 8a 2 Ik, m(a)  M .
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By definition of p, there can be at most b(1� p)Kc such intervals. Therefore, there are at least dpKe

intervals k such that mk � M �L/K. Since f < bpKc, this implies that mf � M �L/K. Similar
arguments show that mf  M + L/K.

We conclude by noting that since mf � M � L/K, Lemma 2 implies mina2[kf Ik m(a) �

M � 2L/K. We define ã = argmax{m(a) : a 2 [k>fIk}. The continuity of m implies that
m(ã) � M�2L/K. Let k̃ > f be such that ã 2 Ik̃. Then, Lemma 2 implies that mk̃ � M�4L/K.
Since mf+1 = maxk>f mk, this implies in particular mf+1 � M � 4L/K. Similar arguments can
be used to show that mf+2 � M � 8L/K and that mf�1  M + 4L/K. Thus, when |f̂ � f |  1,
we find that m bf 2 [M � 4L/K,M + 4L/K], and m bf+1 2 [M � 8L/K,M + L/K].

D.3 Proof of Lemma 4

Recall that cM = m(a�⇤(T )), where T = pN and �
⇤ is a permutation such that {m(a�⇤(i))}1iN is

a decreasing sequence. Thus, cM is the T -th largest payment for the arms with covariates {a1, ..., aN}.
To bound its deviation from its expected value M , we note that for all t > 0,

n
cM � M + t

o
implies

(
P

1iN
1{m(ai)�M+t} � T

)
. Since T = Np = NP (m(a1) � M),

P
⇣
cM � M + t

⌘
 P

0

@
X

1iN

1{m(ai)�M+t} � NP (m(a1) � M)

1

A

 P

0

@
X

1iN

�
1{m(ai)�M+t} � P (m(a1) � M + t)

�
� NP (m(a1) 2 [M,M + t))

1

A .

Using Hoeffding’s equality, we find that

P
⇣
cM � M + t

⌘
 exp

⇣
�2NP (m(a1) 2 [M,M + t))2

⌘
.

For the choice t = L/K, it implies that

P
⇣
cM � M + L/K

⌘
 exp

⇣
�2NP (m(a1) 2 [M,M + L/K))2

⌘
.

Next, we obtain a lower bound on P (m(a1) 2 [M,M + L/K)). Note that either max{m(a) :
a 2 [0, 1]}  M + L/K, and P (m(a1) 2 [M,M + L/K)) = P (m(a1) � M) = p � 1/K, or
max{m(a) : a 2 [0, 1]} > M + L/K.

In this case, choose a
(1)

2 argmaxa{m(a)} (a(1) exists since m is continuous and defined on
a compact set). Note that m(a(1)) > M + L/K. Since m is continuous and �({a : m(a) <

M}) > 0 (because of Assumption 3 and the fact that p < 1), {a : m(a) = M} 6= ;. Define
a
(2) = argmina{|a� a

(1)
| : m(a) = M}, and assume without loss of generality that a(1)  a

(2).
Since m is continuous, m(a(1)) > M + L/K and m(a(2)) = M , we see that {a 2 [a(1), a(2)] :
m(a) = M + L/K} 6= ;. Define finally a

(3) = max{a : a  a
(2)

,m(a) = M + L/K}. By
construction, for all a 2 [a(3), a(2)), m(a) 2 [M,M + L/K). Using Assumption 2, we find that
|a

(3)
� a

(2)
| � 1/K. Thus, P (m(a1) 2 [M,M + L/K) � P

�
m(a1) 2 [a(3), a(2)]

�
� 1/K.

Putting things together, we find that

P
⇣
cM � M + L/K

⌘
 exp

�
�2N/K

2
�
.

Using similar arguments, we can show that P
⇣
cM  M � L/K

⌘
 exp

�
�2N/K

2
�
.

D.4 Proof of Lemma 5

In order to prove Lemma 5, we first state the following result.
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Lemma 30. Let B be a Borel set of measure �(B) � N
�2/3, and NB be the number of arms in B.

Then,

P
✓
|NB � �(B)N | �

q
�(B)N4/3

◆
 2e�

N1/3

3 .

Proof. Recall that NB =
P

1iN
1ai2B, where 1ai2B

i.i.d
⇠ Bernoulli(�(B)). Applying Bernstein’s

inequality, we find that

P (|NB � �(B)N | � t)  2e�
t2

2�(B)N+2t/3

P
✓
|NB � �(B)N | �

q
�(B)N4/3

◆
 2e�

N1/3

3

Now, we use Lemma 30 for B = {x : m(x) 2 [M � 16L/K,M + L/K]}. By Assumption 3,
� ({x : m(x) 2 [M � 16L/K,M + L/K]})  16LQ/K. When K  N

2/3, the inequality QL �

1 implies that K  16LQN
2/3, and

p
16LQN4/3/K  16LQN/K. This proves Lemma 5.

D.5 Proof of Lemma 6

Non-zero terms in R
(d)
T correspond to pairs of arms (i, j) such that i is pulled by �

d but not by �
⇤,

and j is pulled by �
⇤ but not by �

d. If an arm i is pulled by �
d, it belongs to an interval k such that

mk � mf̂+1. On the event Ea,
mf̂+1 � M � 8L/K.

Using Lemma 2, we find that
m(ai) � M � 16L/K.

On the other hand, if i is not pulled by �
⇤, it must be such that m(ai)  cM . On the event Ea, this

implies that m(ai)  M +L/K. Since there are at most 32LQN
K arms in [M � 16L/K,M +L/K]

on the event Ea, there are at most 32LQN
K arms that are selected by �

d and not by �
⇤, and thus at

most 32LQN
K non-zero terms in R

(d)
T .

Now, each of these terms corresponds to the cost of pulling an arm i selected by �
d but not by �

⇤,
instead of an arm j selected by �

⇤ but not by �
d. Assume that mf̂+1 � M . Then, using Lemma 2,

we see that if i is selected by �
d, m(ai) � M �L/K. Moreover, if j is not selected by �

d, it belongs
to an interval Ik such that mk  mf̂+1. On Ea, mf+1  M + L/K. Thus, m(aj)  M + 2L/K,
and m(aj)�m(ai)  3L/K. On the other hand, if mf̂+1 < M , then according to Lemma 2 for all

i selected by �
d, m(ai) � M � 2

⇣
(M �mf̂+1) _ L/K

⌘
, while for j not selected by �

d, m(aj) 

mf̂+1+(M�mf̂+1)/2_L/K. Thus, m(aj)�m(ai)  3/2
⇣
(M �mf̂+1) _ 2L/K

⌘
 12L/K.

To conclude, on the event Ea there are at most 32LQN
K non-zero terms in R

(d)
T , and each of them is

bounded by 12L/K. Thus,

R
(d)
T 

32QLN

K
⇥ 12L/K.

D.6 Proof of Lemma 7

Note that for k 2 {1, ...,K}, Ik is a Borel set of measure 1/K � N
�2/3. Using Lemma 30, we find

that

P
✓����Nk �

N

K

���� �
N

2/3

K1/2

◆
 2e�

N1/3

3

P
✓����Nk �

N

K

���� �
N

2K
⇥

2K1/2

N1/3

◆
 2e�

N1/3

3 .

Since K  N
2/3

/4, 2K1/2
/N

1/3
 1. A union bound for k = 1, ...,K yields the result.
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D.7 Proof of Lemma 8

Recall that ai ⇠ U([0, 1]), and thus ai

��{ai 2 Ik} ⇠ U(Ik). Since the arms a⇡k(s) are selected
uniformly at random among the arms in Ik, they are independent from one another, and uniformly
distributed on Ik.

For k 2 1, ...,K and for n 2 [0, N ], we denote by Pn the probability measure obtained by condi-
tioning on the event Nk = n (this event has a strictly positive probability because �(Ik) 2 (0, 1)).
Note that for any s 2 [1, n], En[y⇡k(s)] = mk. Using Hoeffding’s inequality, we find that for any
n 2 [1, N ] and any s 2 [1, n]

Pn

0

@

������
1

s

X

1is

y⇡k(i) �mk

������
�

r
log(T/�)

2s

1

A  2e� log(T/�) =
2�

T

The inequality |bmk(0)�mk|  1 also holds, since we defined bmk(0) = 0, and thus the inequality
above is also verified for n = 0. Using a union bound for s = 0, ..., (n ^ T ), we find that for all
n = 0, ..., N ,

Pn

 
9s  (n ^ T ) : |bmk(s)�mk| �

r
log(T/�)

2s

!


2�(n ^ T )

T
 2�.

We integrate over the different values of n and find that

P
 
9s  (Nk ^ T ) : |bmk(s)�mk| �

r
log(T/�)

2s

!
 2�.

Finally, a union bound for k = 1, ...,K yields

P
 
9k 2 {1, ...,K}, s  (Nk ^ T ) : |bmk(s)�mk| �

r
log(T/�)

2s

!
 2K�.

D.8 Proof of Lemma 9

First, note that on Eb, all intervals are non-empty. By definition of Algorithm UCBF, at least one arm
is pulled in each interval. To bound the number of arms pulled in interval Il, assume that time t > K

is such that the arm �(t) is selected in Il. Since there are arms available in Ik at time T , there are
arms available in Ik at time t  T . If UCBF pulls an arm in Il instead of an arm in Ik, we must have

bmk(nk(t� 1)) +

s
log(T/�)

2nk(t� 1)
 bml(nl(t� 1)) +

s
log(T/�)

2nl(t� 1)
.

On the event Eb, this implies that

mk  ml + 2

s
log(T/�)

2nl(t� 1)
.

Straightforward calculations show that

nl(t� 1) 
2 log(T/�)

�2
k,l

.

Thus nl(T ) 
⇣

2 log(T/�)
�2

k,l
_ 1

⌘
+ 1 

3 log(T/�)
�2

k,l
since �2

k,l  1 and log(T/�) � 1.
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D.9 Proof of Lemma 10

By Lemma 3, on the event Ea, mf̂+1 2 [M � 8L/K,M + L/K]. We group intervals with mean
rewards lower than m bf+1 into the following subsets.

Let S0 = {k : (M �mk) 2 [�L/K, 10L/K]}, S1 = {k : (M �mk) 2 (10L/K, 16L/K]}, and
for n � 2 define Sn =

�
k : (M �mk) 2 [2n+2

L/K, 2n+3
L/K

 
. Note that for n � log2(K/L)�

2, Sn is empty since m is bounded by 1.

Using Lemma 2, we note that for all l 2 S0 and all a 2 Il,
|m(a)�M |  20L/K.

Using Assumption 3, we conclude that |S0|  20LQ. On Ea, there are at most 1.5N/K arms in each
interval, so the number of arms in intervals in S0 is at most 30LQN/K. Moreover for all l 2 S0

and all ai 2 Il, (M �m(ai))  20L/K. Thus, the arms pulled from intervals in S0 contributes to
Rsubopt by at most 20L/K ⇥ 30LQN/K = 600L2

QN/K
2.

Similarly, for all l 2 S1 and all a 2 Il,
|m(a)�M |  32L/K.

Using Assumption 3, we conclude that |S1|  32LQ. Moreover, by definition of bf , there exists a
interval Ik with mk � m bf+1 such that nk(T ) < Nk. Since �k,l � mf̂+1 �ml � M � 8L/K �

(M � 10L/K) � 2L/K for all l 2 S1, we use Lemma 9 and find that

nl(T ) 
3 log(T/�)K2

4L2
.

Thus, the number of arms pulled in S1 is at most 3 log(T/�)K2
/(4L2) ⇥ 32LQ =

24 log(T/�)K2
Q/L. Since each arm in S1 has a payment larger than M � 32L/K, the arms

pulled from intervals in S1 contributes to Rsubopt by at most 24 log(T/�)K2
Q/L ⇥ 32L/K 

768 log(T/�)KQ.

Finally, note that for n � 2 and l 2 Sn, �k,l � (2n+2
� 8)L/K � 2n+1

L/K. Using Lemma 9, we
find that

nl(T ) 
3 log(T/�)K2

22n+2L2
.

Applying Lemma 2, we see that each arm ai 2 Il verifies m(ai) � M � 2n+4
L/K. Using

Assumption 3, we find that |Sn|  2n+4
QL. Thus,

Rsubopt 
600L2

QN

K2
+ 768 log(T/�)KQ

+

log2(K/L)�2X

n=2

|Sn|
3 log(T/�)K2

22n+2L2
⇥

2n+4
L

K


600L2

QN

K2
+ 768 log(T/�)KQ+ 192(log(T/�)QK(log2(K/L)� 3))


600L2

QN

K2
+ 192 log(T/�)KQ (log2(K/L) + 1) .

D.10 Proof of Lemma 11

Along the lines of the proof of Lemma 10, we have proved that on Ea \ Eb, the number of arms in S0

is bounded by 30QLN/K and that the number of arms pulled from intervals in S1 is bounded by
24 log(T/�)K2

Q/L. Thus,
log2(K/L)�1X

n=0

X

Ik2Sn

nk(T ) 
30QLN

K
+

24 log(T/�)K2
Q

L
+

log2(K/L)�1X

n=2

|Sn|
3 log(T/�)K2

22n+2L2


30QLN

K
+

24 log(T/�)K2
Q

L
+

log2(K/L)�1X

n=2

12 log(T/�)QK
2

2nL


30QLN

K
+

30 log(T/�)K2
Q

L
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Thus, the number of arms pulled from sub-optimal intervals is bounded by 30Q(LN/K +
log(T/�)K2

/L).

D.11 Proof of Lemma 12

Before proving Lemma 12, let us introduce further notations. For any two intervals Ih and Ii such

that mh � mi, define N[h,i] =
iP

j=h
Nj , and n[h,i](T ) =

iP
j=h

nj(T ).

We prove Lemma 12 by contradiction. Assume that there is an interval Ik such that mk � M+AL/K

and nk(T ) < Nk. By continuity of m, there exists a 2 [0, 1] such that m(a) = M +AL/(4K), and
by Lemma 2 there exists an interval Il that contains a such that ml 2 [M+AL/(8K),M+AL/(2K)].
Note that since A � 33, on the event Ea ml > mf̂ and l < bf .

By definition of f̂ , we have T > N[1, bf ] = N[1,l�1] +N[l, bf ]. On the other hand, T = n[1,l�1](T ) +

n[l,K](T ). Since N[1,l�1] > n[1,l�1](T ) on the event {nk(T ) < Nk}, we necessarily have N[l, bf ] <

n[l,K](T ) = n[l,f̂ ](T ) + n[f̂+1,K](T ).

We obtain a contradiction by proving that on Ea \ Eb \ {nk(T ) < Nk},

N[l, bf ] � n[l, bf ](T ) > n[f̂+1,K](T ).

In words, we prove that the number of sub-optimal arms pulled is strictly smaller than the number of
remaining optimal arms, and obtain a contradiction.

To obtain a lower bound on N[l, bf ] � n[l, bf ](T ), we note that for all h 2 [l, f̂ ], �k,h � �k,l �

AL/(2K). Using Lemma 9, we see that of the event Ea \ Eb \ {nk(T ) < Nk}

nh(T ) 
3 log(T/�)

�2
k,h


3 log(T/�)

(AL/(2K))2


12K2 log(T/�)

(AL)2
.

On the event Eb, each interval contains at least N/(2K) arms. Thus,

Nh � nh(T ) �
N

2K
�

12K2 log(T/�)

(AL)2
.

Let N[l, bf ] denote the number of intervals Ih for h 2 [l, bf ], and let a(1) 2 Il be such that m(a(1)) =

M+AL/(4K). Let a(2) = argmina:m(a)=M+4L/K |a�a
(1)

|, and assume without loss of generality
that a(1) < a

(2). Let a(3) = max{a 2
⇥
a
(1)

, a
(2)
⇤
: m(a) = M + AL/(4K)}. All interval h such

that Ih ⇢ [a(3), a(2)] have mean reward in [M + 4L/K,M + AL/(4K)]. On the event Ea, those
intervals belong to [l, bf ]. Using Assumption 2, we find that L|a(2)�a

(3)
|_4L/K � (A�16)L/(4K),

and so |a
(2)

� a
(3)

| � (A� 16)/(4K) � A/(8K) (since A > 32). The number of intervals of size
1/K in [a(3), a(2)] is therefore at least A/8� 1. Thus N[l, bf ] � A/8� 1, and

N[l, bf ] � n[l, bf ](T ) �

✓
A

8
� 1

◆ 
N

2K
�

12K2 log(T/�)

(AL)2

!
.

Since A > 32, A/8� 1 � 3A/32. Thus

N[l, bf ] � n[l, bf ](T ) �
3A

32

 
N

2K
�

12K2 log(T/�)

(AL)2

!
.

To obtain an upper bound on n[f̂+1,K](T ), we divide the intervals f̂ + 1, ...,K into subsets. Let
eS0 = {l : M � ml 2 [�4L/K,AL/K]}, and for n > 0 let eSn = {l : M � ml 2 [AL/K ⇥

2n�1
, AL/K ⇥ 2n]}. Since mf̂  M + 4L/K, we see that {f̂ + 1, ...,K} ⇢ [

n�0
eSn.
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For all h 2 eS0, �k,h � (A� 4)L/K � 7AL/(8K) since A > 32. Similarly, for all n > 0 and all
h 2 eSn, �k,h � AL/(K(1 + 2n�1)) � AL/(2n�1

K). Using Lemma 9, we find that on the event
Ea \ Eb \ {nk(T ) < Nk},

n[f̂+1,K](T )  | eS0|
192K2 log(T/�)

49A2L2
+
X

n�1

| eSn|
3 log(T/�)

(AL/K)2 22n�2

Using Lemma 2 and Assumption 3, we find that | eS0|  2ALQ and that for any n > 0, | eSn| 

2n+1
ALQ. This implies that

n[f̂+1,K](T ) 
384QK

2 log(T/�)

49AL
+
X

n�1

48 log(T/�)QK
2

AL2n


48K2 log(T/�)Q

AL

0

@ 8

49
+
X

n�1

1

2n

1

A


56K2 log(T/�)Q

AL

Note that we necessarily have QL � 1. Thus, for the choice A = 35
q

K3Q log(T/�)
NL _ 1, we find

that N[l, bf ] � n[l, bf ](T ) > n[f̂+1,K](T ), which is impossible. We conclude that all intervals Ih with a
mean reward larger than AL/K have been killed.

D.12 Proof of Lemma 13

We have shown in Lemma 11 that the number of non-zero terms in Ropt is bounded by 30Q(LN/K+
log(T/�)K2

/L). Moreover, in Lemma 12, we have shown that those non-zero terms correspond to
arms ai in intervals Ik such that mk  M + AL/K. By Assumption 2, their payments m(ai) are
such that m(ai)  M + 2AL/K, so each non zero term is bounded by 2AL/K. Thus, we find that

Ropt  30Q

✓
LN

K
+

log(T/�)K2

L

◆
⇥ 2AL/K

D.13 Proof of Lemma 14

The functions m0 and m1 are piecewise linear with slopes L̃ and �L̃. Since L̃ = L ^ 1/2  L,
Assumption 2 is satisfied.

On the other hand, for ✏ 2 (0, L̃�),

� ({x : |m0(x)� 0.5|  ✏}) = �

⇣
[x0 � ✏/L̃, x0 + ✏/L̃]

⌘
+ �

⇣
[1� p� ✏/L̃, 1� p+ ✏/L̃]

⌘

+�

⇣
[x1 � ✏/L̃, x1 + ✏/L̃]

⌘

= 6✏/L̃ = 6✏⇥ (1/L _ 2)  Q✏.

For ✏ � L̃�,

� ({x : |m0(x)� 0.5|  ✏}) = �

⇣
[x0 � ✏/L̃, x1 + ✏/L̃]

⌘
= x1 � x0 + 2✏/L̃

= 4� + 2✏/L̃  6✏⇥ (1/L _ 2)  Q✏.

Thus, m0 satisfies Assumption 3. The same holds for m1.
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D.14 Proof of Lemma 15

Recall that �(T ) = {�(1), ...,�(T )}. We bound the Kullback-Leibler divergence between P0 and
P1 (see, e.g., Lemma 15.1 in [Lattimore and Szepesvári, 2020]):

KL(P0,P1) =
X

i=1,...,N

E0

⇥
1i2�(T )

⇤
KL(Pyi

0 ,P
yi
1 )



X

i=1,...,N

KL(Pyi
0 ,P

yi
1 )

where KL(Pyi
0 ,P

yi
1 ) denotes the Kullback-Leibler divergence of the distribution of the reward yi

under m0 and m1. For p, q 2 (0, 1), we denote by kl(p, q) the Kullback-Leibler divergence between
two Bernoulli of means p and q. Since the variables yi are Bernoulli random variable of parameter
m(ai), we find that

KL(P0,P1) 

X

i=1,...,N

kl(m0(ai),m1(ai))



X

ai2[x0,x1]

kl(m0(ai),m1(ai)).

By definition of m0 and m1, for all ai 2 [x0, x1], |0.5 �m0(ai)| = |0.5 �m1(ai)|  �L̃ < 1/4.
Easy calculations show that for ✏ 2 [�1/2, 1/2],

kl

✓
1� ✏

2
,
1 + ✏

2

◆
 4✏2.

Using Assumption 5 and the definition of m0 and m1, we find that

KL(P0,P1)  4

dN�eX

i=0

4

✓
2L̃

i

N

◆2


64L̃2

N2
⇥ (N� + 1)3 .

Now, since ↵ � 20N�2/3 and L̃
�2/3

� 0.5�2/3, N� = N
2/3

↵L̃
�2/3

� 31, and thus (N� + 1)3 

(N�)3 (1 + 1/31)3  1.1 (N�)3. Thus,

KL(P0,P1) 
70.4L̃2

N2
⇥ (N�)3  70.4↵3

.

D.15 Proof of Lemma 16

Under P0, we can see that all arms in (x0, 1� p) are sub-optimal. By construction, all optimal arms
have a payment higher than 1/2. Thus,

RT �

X

ai2(x0,1�p)

✓
1

2
�m0(ai)

◆
1{i 2 �(T )}.

There are at least bN�c arms in [x0, x0 + �), and at least bN�c arms in [x0 + �, 1 � p]. We use
the change of variables k = i � dx0Ne and k = d(1 � p)Ne � i to sum over the indices of the
sub-optimal arms. We find that

RT �

bN�c�1X

k=0

kL̃

N
1 {(dx0Ne+ k) 2 �(T )}

+

bN�cX

k=0

kL̃

N
1 {((1� p)N � k) 2 �(T )} .
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On Z , at least bN�c � 2 arms are pulled in (x0, 1� p), so easy calculations lead to

RT � 2

b0.5N�c�2X

k=0

kL̃

N

�
2L̃

N

(b0.5N�c � 1)(b0.5N�c � 2)

2
.

We have shown in Lemma 15 that N� � 31, so (b0.5N�c � 1)(b0.5N�c � 2) � 2�2(N�)2(1 �

4/31)(1� 6/31). Thus,

RT � 2�2(1� 4/31)(1� 8/31)
(N�)2L̃

N
� 2�2(1� 4/31)(1� 6/31)L̃�1/3

↵
2
N

1/3
.

Since L̃  1/2, this implies

RT � 0.22↵2
N

1/3
.

On the other hand, all arms in (x0, 1�p) are optimal for the payoff function m1. Since all sub-optimal
arms have a payment at most 1/2, under P1,

RT �

X

ai2[x0,1�p]

✓
m1(ai)�

1

2

◆
1{i /2 �(T )}.

Applying the argument developed previously, we find that

RT �

bN�c�1X

k=0

kL̃

N
1 {(k + dx0Ne) 2 �(T )}

+

bN�cX

k=0

kL̃

N
1 {((1� p)N � k) 2 �(T )} .

On Z , at most bN�c � 2 arms are pulled in (x0, 1 � p). Under Assumption 5, there are at least
b2N�c � 2 arms in (x0, 1� p). All of these arms are optimal for the payoff function m1. Thus, on
Z , the number of sub-optimal arms pulled is at least b2N�c � 2� (bN�c � 2) � bN�c. Thus,

RT � 2

b0.5N�c�1X

k=0

kL̃

N
�

L̃

N
(0.5N� � 2)(0.5N� � 1) �

2�2(N�)2L̃

N
(1� 4/31)(1� 2/31).

We use L̃  1/2 to find that RT � 0.25↵2
N

1/3.

D.16 Proof of Lemma 18

By definition of M ,

P (m(a1) 2 [M,M + t)) = P (m(a1) � M)� P (m(a1) � M + t)

= p� P (m(a1) � M + t) .

To provide an upper bound on P (m(a1) � M + t), we use gaussian isoperimetric inequalities
(see, e.g., Chapter 5.1 in [Vershynin, 2018]). Those results can readily be extended to random
variable uniformly distributed on the unit cube. To do so, we introduce a random normal variable
z = (z1, ..., zd) ⇠ N (0, Id), and we denote by F the c.d.f. of a z1. Moreover, we introduce a new
payment function

m̃ : (z1, ..., zd) ! m(F (z1), ..., F (zd)).

It is easy to see that m̃(z) and m(a1) have the same distribution. Thus, by definition of p,

P (m(a1) 2 [M,M + t)) = p� P (m̃(z) � M + t) . (11)
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Next, we show that m̃ verifies a weak Lipschitz Assumption. Indeed, for any z = (z1, ..., zd) 2 Rd,
and z

0 = (z01, ..., z
0
d) 2 Rd, by definition of m̃

|m̃(z)� m̃(z0)| = |m (F (z1), ..., F (zd))�m (F (z01), ..., F (z0d))|

 |M � m̃(z)| _ L k(F (z1), ..., F (zd))� (F (z01), ..., F (z0d))k2

where the last equation follows from Assumption 2. Now, the gaussian c.d.f. F is Lipschitz
continuous, with Lipschitz constant equal to (2⇡)�1/2. Thus,

|m̃(z)� m̃(z0)|  |M � m̃(z)| _ (L⇥ (2⇡)�1/2
kz � z

0
k2)

Thus, for all z 2 Rd such that m̃(z) � M + t and all z0 2 Rd such that m̃(z0) < M , necessarily
kz � z

0
k2 �

p
2⇡t/L.

Let us denote by B the set of Borel sets of Rd, and by d(z,A) the Euclidean distance between a point
z 2 Rd and a set A 2 B. Moreover, let us denote by A = {z 2 Rd : m̃(z) < M} the sub-level set of
level M of the function m̃. By definition of M , we have P(A)  1� p. Moreover, the results above
show that {z 2 Rd : m̃(z) � M + t} ⇢ {z 2 Rd : d(z,A) �

p
2⇡t/L}. This implies that

P (m̃(z) � M + t)  P
⇣
d(z,A) �

p

2⇡t/L
⌘

 sup
B2B:P(B)1�p

P
⇣
d(z,B) �

p

2⇡t/L
⌘
. (12)

By Theorem 5.2.1 in [Vershynin, 2018], P
�
d(z,B) �

p
2⇡t/L

�
is maximized under the constraint

P(B)  1� p when B is a half space of gaussian measure 1� p. This is the case, for example, when
B = {x 2 Rd : hx|e1i � F

�1(p)} and e1 = (1, 0, ..., 0) is the first vector of the canonical basis of
R

d. Then,
n
z : d(Z,B) �

p

2⇡t/L
o
=
n
z = (z1, ..., zd) : z1  F

�1(p)�
p

2⇡t/L
o
.

Then, Equation (12) implies

P (m̃(z) � M + t)  P

⇣
z1  F

�1(p)�
p

2⇡t/L
⌘

= F

⇣
F

�1(p)�
p

2⇡t/L
⌘
. (13)

Combining Equations (11) and (13), we find that

P (m(a1) 2 [M,M + t)) � p� F

⇣
F

�1(p)�
p

2⇡t/L
⌘

= F (F�1(p))� F

⇣
F

�1(p)�
p

2⇡t/L
⌘
.

Using the c.d.f. of the normal distribution, we find that

P (m(a1) 2 [M,M + t)) �

Z F�1(p)

F�1(p)�
p
2⇡t/L

1
p
2⇡

e
�z2

2 dz (14)

�
t

L
e

�(F�1(p)�
p

2⇡t/L)2

2 . (15)

We recall that t/L 
p
d, and conclude that

P (m(a1) 2 [M,M + t)) �
t

L
e
�(F�1(p)�

p
2⇡d)2/2

.

D.17 Proof of Lemma 19

Recall that ✏ = dK
d�1

cp,de. Similarly to the one-dimensional case, we begin by proving that
bf � f � ✏. Since this inequality becomes trivial if ✏ � f , we assume that ✏ < f . Recall
that f = bpK

d
c, and bf is such that N1 + .. + N bf < T  N1 + .. + N bf+1. By definition,
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N1 + .. + Nf�✏ =
P

1iN
1{ai2B1[..[Bf�✏}, where 1{ai2B1[..[Bf�✏} are independent Bernoulli

random variables of parameter f�✏
Kd . Using Hoeffding’s inequality, we see that for all t > 0,

P

0

@
X

1iN

1{ai2B1[..[Bf�✏} �
(f � ✏)N

Kd
� t

1

A  exp

✓
�
2t2

N

◆
.

Choosing t = ✏N/K
d
� cp,dN/K, we see that

P

0

@
X

1iN

1{ai2B1[..[Bf�✏} �
(f � ✏)N

Kd
�

✏N

Kd

1

A  exp

 
�
2c2p,dN

K2

!
.

Now, by definition, f = bTK
d
/Nc, and so fN/K

d
 T . Thus,

P (N1 + ..+Nf�✏ � T )  exp

 
�
2c2p,dN

K2

!
. (16)

This shows that with high probability, N1 + .. + Nf�✏ < T , which implies that f � ✏ < f̂ + 1.

Similarly, we can show that with probability at least 1� exp
⇣
�

2c2p,dN

K2

⌘
, f + ✏+ 1 � bf . Thus, with

probability larger than 1� 2 exp
⇣
�

2c2p,dN

K2

⌘
, |f � f̂ |  1 + ✏.

In a second time, we prove that mf 2 [M � L
p
d/K,M + L

p
d/K].

We first show that there are at least dpKd
e bins k such that mk � M � L

p
d/K, or equivalently

that there are at most b(1� p)Kd
c bins k such that mk < M � L

p
d/K. Indeed, for all k such that

mk < M � L
p
d/K, there exists a 2 Bk such that m(a) < M � L

p
d/K. Using Lemma 2, we

see that 8a 2 Bk, m(a)  M . By definition of M , there can be at most b(1 � p)Kd
c such bins.

Therefore, there are at least dpKd
e bins k such that mk � M � L

p
d/K. Since f < bpK

d
c, this

implies that mf � M � L
p
d/K. Similar arguments show that mf  M + L

p
d/K.

Now, recall that ↵ = 4QL/cp,d+2/
p
d⇥ (1+3/Kd�1). We show that mf�✏�2  M +↵L

p
d/K.

Note that by Assumption 2 and by definition of M , maxa{m(a)}  M + L
p
d. Then, if ↵/K � 1,

mf�✏�2  M + ↵L
p
d/K is automatically verified. We therefore restrict our attention to the case

↵/K < 1. Now, we show that there are at least ✏+ 2 bins Bk such that mk 2 [mf ,M + ↵L
p
d/K].

Applying Lemma 18 and Assumption 3, we find that

�

⇣n
a : m(a) 2 [M + 2L

p

d/K,M + ↵L

p

d/(2K)]
o⌘

= �

⇣n
a : m(a) 2 [M,M + ↵L

p

d/(2K)]
o⌘

� �

⇣n
a : m(a) 2 [M,M + 2L

p

d/K]
o⌘

� ↵cp,d

p

d/(2K)� 2QL

p

d/K = cp,d(1 + 3/Kd�1).

Using Lemma 17, we see that all arms a such that m(a) 2 [M + 2L
p
d/K,M + ↵L

p
d/(2K)]

belongs to bins Bk such that mk 2 [M + L
p
d/K,M + ↵L

p
d/K]. Thus, the number of bins with

mean reward in [M + L
p
d/K,M + ↵L

p
d/K] is at least cp,d

�
1 + 3/Kd�1

�
⇥K

d. By definition
of ✏, this number is larger than ✏ + 2. This proves that there are at least ✏ + 2 bins Bk such that
mk 2 [mf ,M + ↵L

p
d/K], so mf�✏�2  M + ↵L

p
d/K. Therefore, m bf  M + ↵L

p
d/K and

m bf+1  M + ↵L
p
d/K with probability larger than 1� 2 exp

⇣
�

2c2p,dN

K2

⌘
.

Similarly, we can show that m bf � M � ↵L
p
d/K and m bf+1 � M � ↵L

p
d/K with probability

larger than 1� 2 exp
⇣
�

2c2p,dN

K2

⌘
.
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D.18 Proof of Lemma 22

Non-zero terms in R
(d)
T correspond to pairs of arms (i, j) such that i is pulled by �

d but not by �
⇤,

and j is pulled by �
⇤ but not by �

d. If an arm i is pulled by �
d, it belongs to a bin k such that

mk � m bf+1. On the event Ea, mf̂+1 � M � ↵
p
dL/K. Using Lemma 17, we find that

m(ai) � M � 2↵
p

dL/K.

On the other hand, if i is not pulled by �
⇤, it must be such that m(ai)  cM . On the event Ea, this

implies that m(ai)  M+
p
dL/K. Since there are at most 4↵

p
dLQN
K arms in [M�2↵

p
dL/K,M+

p
dL/K] on the event Ea, there are at most 4↵

p
dLQN
K arms that are selected by �

d and not by �
⇤,

and thus at most 4↵
p
dLQN
K non-zero terms in R

(d)
T .

Similarly to the one-dimensional case, the cost of pulling an arm i selected by �
d but not by �

⇤, instead
of an arm j selected by �

⇤ but not by �
d, is bounded by 2|cM �m bf+1| _ 2

p
dL/K  2↵

p
dL/K.

To conclude, on the event Ea there are at most 4↵
p
dLQN
K non-zero terms in R

(d)
T , and each of them is

bounded by 2↵
p
dL/K. Thus,

R
(d)
T 

8↵2
dQL

2
N

K2
.

D.19 Proof of Lemma 23

Note that for k 2 {1, ...,K}, Bk is a Borel set of measure 1/Kd. Applying Bernstein’s inequality,
we find that for all t > 0,

P
✓����Nk �

N

Kd

���� � t

◆
 2e

�t2

2K�dN+2t/3 .

Choosing t = K
�d

N/2, we find that

P
✓����Nk �

N

Kd

���� �
N

2Kd

◆
 2e�

N
10Kd .

A union bound for k = 1, ...,Kd yields the result.

D.20 Proof of Lemma 26

By Lemma 19, on the event Ea, mf̂+1 2 [M � ↵
p
dL/K,M + ↵

p
dL/K]. We group bins with

mean rewards lower than m bf+1 into the following subsets.

Let S0 =
n
k : (M �mk) 2 [�↵

p
dL/K, 2↵

p
dL/K]

o
, and for n � 1 define

Sn =
n
k : (M �mk) 2 [2n↵

p
dL/K, 2n+1

↵
p
dL/K]

o
. Note that for n � log2(K/(↵

p
dL)), Sn

is empty since m is bounded by 1.

Using Lemma 17, we note that for all l 2 S0 and all a 2 Bl, |m(a) � M |  4↵
p
dL/K. Using

Assumption 3, we conclude that |S0|  4↵
p
dLQK

d�1. On Ea, there are at most 1.5N/K
d arms

in each bin, so the number of arms in bins in S0 is at most 6↵
p
dLQN/K. Moreover for all l 2 S0

and all ai 2 Bl, (M �m(ai))  4↵
p
dL/K. Thus, the arms pulled from bins in S0 contributes to

Rsubopt by at most 24↵2
dQL

2
N/K

2.

Similarly, for all n � 1, all l 2 Sn and all a 2 Bl, |m(a)�M |  2n+1
↵
p
dL/K. Using Assumption

3, we conclude that |Sn|  2n+1
↵
p
dLQK

d�1. Moreover, by definition of bf , there exists a bin Bk

with mk � m bf+1 such that nk(T ) < Nk. Since �k,l � 2n↵
p
dL/K�↵

p
dL/K � 2n�1

↵
p
dL/K

for all l 2 Sn, we use Lemma 25 and find that

nl(T ) 
3 log(T/�)K2

22n�2↵2L2d
.
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Thus,

Rsubopt 
24↵2

dL
2
QN

K2
+

log2(K/↵
p
dL)X

n=1

2n+2
↵

p

dQLK
d�1

⇥
3 log(T/�)K2

22n�2↵2L2d
⇥

2n+1
↵
p
dL

K


24↵2

dL
2
QN

K2
+ 96QK

d log(T/�) log2(K/↵

p

dL).

D.21 Proof of Lemma 27

Using the notations and results established along the proof of Lemma 26, we find that

log2(K/↵
p
dL)X

n=0

X

Bk2Sn

nk(T )  6↵
p

dLQN/K +

log2(K/↵
p
dL)X

n=1

2n+2
↵

p

dQLK
d�1

⇥
3 log(T/�)K2

22n�2↵2L2d

 6↵
p

dLQN/K +
24 log(T/�)Kd+1

Q

↵
p
dL

.

D.22 Proof of Lemma 28

As in the one-dimensional case, we use the following notations : for any two bins Bh and Bl

such that mh � ml, define N[h,l] =
lP

k=h
Nk, and n[h,l](T ) =

lP
k=h

nk(T ). We prove Lemma 28 by

contradiction. We assume that there exists a bin Bk such that mk � M+A
p
dL/K and nk(T ) < Nk

and define h such that mh 2 argmaxl{ml : ml  M +A
p
dL/(2K)}. Then, the arguments used

to prove Lemma 12 show that we necessarily have N[h, bf ] < n[h,f̂ ](T ) + n[f̂+1,Kd](T ). We obtain a
contradiction by proving that on Ea \ Eb \ {nk(T ) < Nk},

N[h, bf ] � n[h, bf ](T ) > n[f̂+1,Kd](T ).

To obtain a lower bound on N[h, bf ] � n[h, bf ](T ), we note that for all l 2 [h, f̂ ], �k,l � �k,h �

A
p
dL/(2K). Using Lemma 9, we see that of the event Ea \ Eb \ {nk(T ) < Nk}

nl(T ) 
3 log(T/�)

�2
k,l


3 log(T/�)

⇣
A
p
dL/(2K)

⌘2 
12K2 log(T/�)
⇣
A
p
dL

⌘2 .

On the event Eb, each bin contains at least N/2Kd arms. Thus,

Nh � nh(T ) �
N

2Kd
�

12K2 log(T/�)
⇣
A
p
dL

⌘2 .

The following reasoning helps us obtain a lower bound on the number of bins Bl for l 2 [h, bf ], denoted
by N[h, bf ]. First, recall that on Ea, m bf  M + ↵

p
dL/K. Now, any arm a such that m(a) 2 [M +

2↵
p
dL/K,M+A

p
dL/4K] belongs to a bin Bl such that ml 2 [M+↵

p
dL/K,M+A

p
dL/2K].

By definition of h, this bin Bl is such that l 2 [h, bf ].

Next, we use Lemma 18 to lower bound �

⇣
{a : m(a) 2 [M + 2↵

p
dL/K,M +A

p
dL/4K]}

⌘
.

We have assumed that there exists a bin with mean reward larger than M + A
p
dL/K, so we

necessarily have A/K  1. Using Assumption 3 and Lemma 18, we find that for the constant cp,d
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appearing in Lemma 18

�

⇣
{a : m(a) 2 [M + 2↵

p

dL/K,M +A

p

dL/4K]}
⌘

= �

⇣
{a : m(a) 2 [M,M +A

p

dL/4K]}
⌘
� �

⇣
{a : m(a) 2 [M,M + 2↵

p

dL/K]}
⌘

� cp,d
A
p
d

4K
� 2↵

p

dQL/K.

By definition of A, we have A � 16↵QL/cp,d, and thus cp,dA
p
d/(4K) � 2↵

p
dQL/K �

cp,dA
p
d/(8K). Now, all arms in {a : m(a) 2 [M + 2↵

p
dL/K,M + A

p
dL/4K]} belongs

to bins in [h, bf ]. Since each of those bins have volume K
�d, we find that N[h, bf ] � cp,d

A
p
d

8 K
d�1,

and

N[h, bf ] � n[h, bf ](T ) �
Acp,d

p
dK

d�1

8

0

B@
N

2Kd
�

12K2 log(T/�)
⇣
A
p
dL

⌘2

1

CA .

To obtain an upper bound on n[f̂+1,K](T ), we divide the bins f̂ + 1, ...,K into subsets. Let eS0 =

{l : M � ml 2 [�↵
p
dL/K,A

p
dL/K}, and for n > 0 let eSn = {l : M � ml 2 [A

p
dL/K ⇥

2n�1
, A

p
dL/K ⇥ 2n}. Since mf̂  M + ↵

p
dL/K, we see that {f̂ + 1, ...,K} ⇢ [

n�0
eSn.

For all l 2 eS0, �k,l � (A � ↵)
p
dL/K � 15A

p
dL/(16K) since A > 16↵. Using Lemma 17

and Assumption 3, we find that | eS0|  2A
p
dLQK

d�1. Similarly, for all n > 0 and all l 2 eSn,
�k,l � A

p
dL(1 + 2n�1)/K � A

p
dL2n�1

/K, and | eSn|  A
p
dQL2n+1

K
d�1. Using Lemma

25, we find that on the event Ea \ Eb \ {nk(T ) < Nk},

n[f̂+1,K](T ) 
768Kd+1

Q log(T/�)

225
p
dAL

+
X

n�1

AQ

p

dL2n+1
K

d�1 3K
2 log(T/�)

A2dL22n�2


28Kd+1

Q log(T/�)

AL
p
d

Recall that we necessarily have QL � 1, and that cp,d  1. Thus, for the choice

A =

s
472QKd+2 log(T/�)

Ncp,dLd
_ 16↵QL/cp,d,

we find that N[h, bf ] � n[h, bf ](T ) > n[f̂+1,K](T ), which is impossible. We conclude that all bins Bl

with a mean reward larger than M +A
p
dL/K have been emptied.
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