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Abstract

We find separation rates for testing multinomial or more general discrete distribu-
tions under the constraint of α-local differential privacy. We construct efficient
randomized algorithms and test procedures, in both the case where only non-
interactive privacy mechanisms are allowed and also in the case where all sequen-
tially interactive privacy mechanisms are allowed. The separation rates are faster
in the latter case. We prove general information theoretical bounds that allow us to
establish the optimality of our algorithms among all pairs of privacy mechanisms
and test procedures, in most usual cases. Considered examples include testing
uniform, polynomially and exponentially decreasing distributions.

1 Introduction

Hypothesis testing of discrete distributions is intensively used as a first step in data based decision
making and it is now also a component of many machine learning algorithms. Given samples from
an unknown probability distribution p and a known reference distribution p0, the goal of a goodness-
of-fit test is to decide whether p fits p0, or is signficantly different to it in some suitable sense. Here
we will measure distance between distributions using either the L1 norm or the L2 norm, with our
alternative hypotheses consisting of all distributions p whose distance from p0 is above a certain
threshold. Our goal is to make accurate decisions, i.e. with low error probabilities, for distributions
p as close to p0 as possible. The smallest separation between p0 and the alternative hypothesis
for which it remains possible to reliably distinguish between the two hypotheses is known as the
uniform separation rate, δ. Its optimality is proven by showing that, whenever p is closer to p0 than
δ, no test procedure will be able to distinguish them with small error probabilities. As shown by
Valiant and Valiant [2014, 2017], the dependence of δ on p0 in the standard problem without privacy
constraints is pronounced and intricate.

In this work, we quantify how the constraint of local differential privacy affects the optimal separa-
tion rate. Differential privacy Dwork et al. [2006] is the most popular formalism under which the
analyst statistically randomizes data to be published in order to protect the privacy of the individuals
in the study. The way in which the data is randomized, known as the privacy mechanism, must be
carefully chosen to preserve the information in the data that is most pertinent for the task at hand,
though it is well-established that the cost of protecting privacy is necessarily a deterioration in statis-
tical performance. Local differential privacy, in which there is no trusted curator who has access to
all the original data, is more stringent than the original differential privacy constraint, and it is often
observed in the literature that in this context we experience a further deterioration of the achievable
performance of estimation and test procedures, which are allowed to use private data only.

Local differential privacy can be attained through several kinds of privacy mechanisms. They can
be non-interactive (also known as private-coin) when the users independently randomize the sample
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they receive, or interactive in the sense that some information is shared. We consider a large class of
sequentially interactive mechanisms where some information (e.g. the previously privatized sample)
can be transmitted from one user to the next. In this setup, the set of public-coin mechanisms, such
as those considered in Acharya et al. [2019c], is a subset of all sequentially interactive mechanisms
where the shared information is the original seed the first user employed.

1.1 Our contributions

We find the optimal separation rate around an arbitrary discrete distribution p0 on N under local
differential privacy constraints and this optimality involves two steps. On the one hand, we provide
efficient and statistically optimal pairs of privacy mechanisms and their associated test procedures
whose error probabilities are small for all distributions p further from p0 than δ. On the other hand,
we show that whenever p is closer to p0 than the separation rate δ, no pair of privacy mechanism
and test procedure is able to distinguish p and p0. We show that faster rates are attainable using
interactive privacy mechanisms rather than non-interactive. As indicated below, previous works
have found optimal rates in the special case of p0 being a uniform distribution, and upper bounds
for general finite supported p0, in the L1 problem. Here, we provide optimal rates for general p0

supported on N that can be quicker than in the uniform case (see Table 1), we treat both the L1 and
the L2 test problems in parallel, we introduce new privacy mechanisms and test procedures, and we
provide shorter proofs and more explicit upper and lower bounds. The interactive mechanism that
we use is a two-step procedure: for the first half of the sample we employ a Laplace mechanism and
estimate the unknown probabilities, for the second half we randomize encoding this information
and build a `2-type statistic. Our optimality results show that the separation rates are optimal in
most usual cases. Let us stress the fact that the second part of Theorem 5 is particularly useful in
the case of noninteractive mechanisms where, as it was also noted by Lam-Weil et al. [2020], the
usual inequalities in Duchi et al. [2018] can only result in suboptimal lower bounds. We highlight
the examples of (nearly) uniform distributions, and distributions with polynomially or exponentially
decreasing tails. All results are valid non-asymptotically, that is with a finite number of samples.

1.2 Related work

The study of discrete data under local privacy constraints can be traced back at least as far as Warner
[1965], in which the classical randomised response mechanism was introduced to provide privacy
when estimating the proportion of a population that belongs to a certain group. This problem can
be thought of as a special case, with an alphabet of size two, of the problem of estimating the
probability vector of a multinomial random variable. For a general (finite) alphabet size, Duchi et al.
[2013] derive upper and lower bounds on the minimax estimation risk in this more general problem
for both the L1 and L2 metrics, and, in particular, show that a generalization of the randomized
response algorithm is rate-optimal in certain regimes. Besides the standard estimation problem, one
can also consider the problem of estimating succinct histograms, or heavy hitters; see, for example,
Bassily and Smith [2015].

Compared with estimation problems, hypothesis testing is relatively under-explored in the setting of
local differential privacy. Early work includes Kairouz et al. [2014, 2016], in which the aim is to test
the simple hypotheses H0 : P = P0 vs. H1 : P = P1, where P0 and P1 are two given discrete dis-
tributions. Under a mutual information-based local privacy constraint, Liao et al. [2017] considered
the more general problem of m-ary hypothesis testing. The goodness-of-fit testing problem, which
we consider in this paper, was investigated in Gaboardi and Rogers [2017], Sheffet [2018], where
the authors provide analyses of procedures based on chi-squared tests and the optimal non-private
test of Valiant and Valiant [2014, 2017], respectively, under specific privacy mechanisms. Unfor-
tunately, these privacy mechanisms and tests are typically suboptimal, attaining slower separation
rates. As we show here, a corrected chi-squared statistic, calculated using suitably generated private
data, may be optimal for testing uniformity, but for general null hypotheses a more subtle procedure
is required. In L1, or TV , distance Acharya et al. [2019a] studies the problem of testing uniformity,
and provides tests that they show are optimal among all tests using their chosen privacy mechanisms.
Techniques for proving lower bounds over general classes of privacy mechanisms are developed in
Acharya et al. [2019b] and applied to uniformity testing. Upper bounds for more general p0 in
the L1 setting (in a different form to our rates) can be found in Acharya et al. [2019c, Appendix
D]. These more general upper bounds follow from using a technique, first introduced by Goldreich
[2016], whereby the problem of testing with null p0 can be reduced to uniformity testing; however,
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the optimality of this approach is not proved and lower bounds do not follow. An indirect proof of
the interactive lower bound in the L1 case with p0 uniform, can be found in Amin et al. [2019]. The
role of interactivity in locally private testing is studied in Joseph et al. [2019], where it is shown that
an optimal procedure for testing the hypotheses Hi : P ∈ Pi, i = 1, 2, for disjoint, convex Pi, is
non-interactive. This is in contrast to our results, which show that, in goodness-of-fit testing with a
general p0, interactive procedures achieve significantly faster separation rates.

In the non-private setting, goodness-of-fit testing of discrete distributions has recently received a
great deal of attention. Valiant and Valiant [2014, 2017] found near optimal separation rates that
show that the difficulty of the problem depends intricately on the specific null hypothesis; see also
Diakonikolas and Kane [2016] and the survey article Balakrishnan and Wasserman [2018]. The gap
between the upper and lower bounds in this problem has been further explored in Blais, Canonne
and Gur [2019]. The problem has also been considered in the non-local differentially private setting
[Wang et al., 2015, Gaboardi et al., 2016, Cai et al., 2017, Aliakbarpour et al., 2018, Acharya et al.,
2018]. Upper bounds have been provided, which have been shown to be nearly optimal in certain
regimes for the case of a uniform null. Besides goodness-of-fit, there is also work in this setting
on testing independence between discrete variables [Wang et al., 2015, Gaboardi et al., 2016], and
in testing independence between a discrete and a continuous variable by constructing differentially
private versions of classical rank-based tests [Couch et al., 2019].

2 Preliminaries

Let Pd = {p = (p(1), . . . , p(d)) ∈ [0, 1]d :
∑d
j=1 p(j) = 1} denote the set of all probability

vectors in d-dimensions. For x = (x(1), . . . , x(d)) ∈ Rd write ‖x‖1 =
∑d
j=1 |x(j)| for the `1-

norm and ‖x‖2 for the Euclidean norm of x. For p ∈ Pd we say that X is distributed according the
probability p, X ∼ p, if P(X = j) = p(j) for each j = 1, . . . , d. Given p0 ∈ Pd, δ > 0 and data
X1, . . . , Xn

i.i.d∼ p we will study the L1 and L2 problems of testing the hypotheses:

H0 : p = p0 vs. H1(δ,Lr) : {p ∈ Pd such that ‖p− p0‖r ≥ δ} , (1)

for r equal to 1 and 2 respectively, under an α-local differential privacy (LDP) constraint on the
allowable tests. An α-LDP privacy mechanism Q generates private data Zi taking values in Z via
the conditional distribution Qi(·|xi, z1, ..., zi−1) such that

sup
A

sup
z1,...,zi−1

sup
x,x′

Qi(A|x, z1, ..., zi−1)

Qi(A|x′, z1, ..., zi−1)
≤ eα, for all i = 1, ..., n.

Given an α-LDP privacy mechanism Q, let ΦQ = {φ : Zn → [0, 1]} denote the set of all (random-
ized) tests of the hypotheses (1) based on Z1, . . . , Zn. We can define the minimax testing risk when
using the privacy mechanism Q by

Rn(p0, δ, Q,Lr) := inf
φ∈ΦQ

sup
p∈H1(δ,Lr)

{
Ep0(φ) + Ep(1− φ)

}
.

Then, writing Qα for the collection of all α-LDP sequentially-interactive privacy mechanisms, we
can define the α-LDP minimax testing risk of (1) by

Rn,α(p0, δ,Lr) := inf
Q∈Qα

Rn(p0, δ, Q,Lr).

Given γ ∈ (0, 1) we aim to find the α-LDP minimax testing radius defined by

En,α(p0,Lr) := inf{δ > 0 : Rn,α(p0, δ,Lr) ≤ γ}

Moreover, we will also aim to find the minimax testing risk of (1) under the additional restriction
that Q is a non-interactive α-LDP privacy mechanism. Letting QNI

α ⊂ Qα denote the subset of all
such privacy mechanisms, we similary define

RNI
n,α(p0, δ,Lr) := inf

Q∈QNI
α

Rn(p0, δ, Q,Lr), ENI
n,α(p0,Lr) := inf{δ > 0 : RNI

n,α(p0, δ,Lr) ≤ γ}.

Note that this formalism is equivalent to finding the smallest sample size n in order to attain a given
accuracy, i.e. testing risk measure.

3



3 Building private samples and optimal test procedures

We split the support of the multinomial distribution p0 into a main set B and a tail set Bc. As is now
typical in such problems since Valiant and Valiant [2014], we combine a `2 test on B (which is not
the usual bias-corrected `2 statistic) with a tail-test on Bc in order to achieve optimality.

These tests procedures use privatized data. Our non-interactive privacy mechanisms use classical
Laplace randomization – see, for example, Duchi et al. [2018]. The interactive procedure involved
in the χ2-test is novel in the context of discrete distributions; see Butucea et al. [2020] for a similar
mechanism in the continuous setting. It is a two-step procedure, that uses part of the sample in order
to estimate the frequencies p̂j and then randomizes the other part of the sample using a censored
value of p̂j − p0(j). A simple average of this second part of the private sample allows us to con-
struct the `2-test. Thus the latter procedure encodes partial information on the distribution in the
randomization of the second part of the sample and benefits from it.

3.1 Non-interactive privacy mechanisms

Assume that the sample size is even and that the data is given by X1, . . . , X2n. Given a nonempty
subset B ⊆ [d], which will typically contain the bulk of the distribution, we define a non-interactive
privacy mechanism QB ∈ QNI

α and a test φB ∈ ΦQB as follows. Given an i.i.d. sequence
(Wij)i∈[n],j∈B of Laplace(1) random variables, for each i ∈ [n] and j ∈ B write

Zij := 1{Xi=j} +
2

α
Wij . (2)

We have that (Zij)i∈[n],j∈B is an α-LDP version of X1, . . . , Xn [see, e.g., Gaboardi and Rogers,
2017]. We will estimate the quantity

∑
j∈B(p− p0)2(j) using the `2 statistic

SB :=
∑
j∈B

1

n(n− 1)

∑
i1 6=i2

{Zi1j − p0(j)}{Zi2j − p0(j)}.

Letting (Wi)
2n
i=n+1 denote a second sequence of i.i.d. Laplace(1) random variables, for i = n +

1, . . . , 2n we set

Zi = 1{Xi∈Bc} +
2

α
Wi.

Then again (Zi)
2n
i=n+1 is an α-LDP version of Xn+1, . . . , X2n version of Xn+1, . . . , X2n. Further,

define

TB :=
1

n

2n∑
i=n+1

{Zi − p0(Bc)},

for the tail test statistic, where we write p0(Bc) =
∑
j∈Bc p0(j). Note that TB is an unbiased

estimator of (P − P0)(Bc). With the critical values C1,B := {656|B|/(n(n − 1)α4γ)}1/2 and
C2,B := 6/(nα2γ)1/2, we finally set

φB(Z1, . . . , Z2n) :=

{
1 if SB ≥ C1,B or TB ≥ C2,B

0 otherwise ,

that is, we reject H0 if either the `2 test rejects on the bulk B, i.e. SB ≥ C1,B , or TB ≥ C2,B and
the tail-test rejects.
Theorem 1. When α ∈ (0, 1], for any ∅ 6= B ⊆ [d] we have that

ENI
n,α(p0,L1) ≤ 8 max

[
12
{ |B|3

n(n− 1)α4γ2

}1/4

, p0(Bc)

]
.

and

ENI
n,α(p0,L2) ≤ 8 max

[
12
{ |B|
n(n− 1)α4γ2

}1/4

, p0(Bc)

]
.

Note that we can actually include discrete distributions on all of N. We prove the tightest upper
bounds by finding the sets B that minimize the right-hand sides in Theorem 1. The search algorithm
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is trivial if we order the sequence p0(·) in decreasing order. Indeed, then it is straightforward to
see that the optimal B is of the form {1, . . . , j} in both cases, with the first term in the maximum
increasing with j, and p0(BC) decreasing with j. Therefore, there are always finite sets (possibly
large) that minimize the right-hand sides.

Theorem 1 yields the following immediate corollary.

Corollary 2. Let

j∗ = j∗(nα
2, p0,L1) := min

{
j = 1, . . . , d :

j3/4

(nα2)1/2
≥

d∑
j′=j+1

p0(j′)

}

j∗∗ = j∗∗(nα
2, p0,L2) := min

{
j = 1, . . . , d :

j1/4

(nα2)1/2
≥

d∑
j′=j+1

p0(j′)

}
.

When α ∈ (0, 1], there exist C1 = C1(γ) and C2 = C2(γ) such that

ENI
n,α(p0,L1) ≤ C1

j
3/4
∗

(nα2)1/2
and ENI

n,α(p0,L2) ≤ C2
j

1/4
∗∗

(nα2)1/2
.

In particular, for testing the uniform distribution over [d], this corollary shows in both cases a loss
of a factor d1/4 with respect to the minimax rates that we can attain without privacy.

In Corollary 2 we always have j∗, j∗∗ ≤ d, so we can always say that ENI
n,α(p0,L1) .

d3/4/(nα2)1/2 and that ENI
n,α(p0,L2) . d1/4/(nα2)1/2. However, for some values of p0 our upper

bound is better than this.

It is important to note here that the L1 test behaves very differently in this context from the case of
non private setup. It has been known since Valiant and Valiant [2014], see also Balakrishnan and
Wasserman [2018], that in the direct setup a weighted `2-test is needed in order to attain the optimal
rates. This is due to the heteroscedasticity of the multinomial model (the variances of the counts are
proportional to their probabilities) and a correction for very small variances needs to be included.
Unlike this setup, the privacy constraint induces an unavoidable homoscedastic term in the variance
of the `2 test and makes the correction useless in this case, resulting in a loss in the rate. We will see
in Section 4 that these rates for the L1 problem are essentially optimal.

The L2 test also combines the `2 and the tail tests in order to achieve nearly optimal rates and this
is also in contrast with the non-private case where the `2 test is sufficient. However, as we will
describe in Section 5, for polynomially decreasing distributions there is a gap between our non-
interactive upper and lower bounds in some cases. Nevertheless, our results in Sections 3.2 and 4 do
demonstrate a significant gap between non-interactive and interactive rates, even in these settings.

3.2 Interactive privacy mechanisms and faster rates

Assume here that the sample is split in 3 parts, or that the data is given by X1, . . . , X3n. The data
X1, ..., X2n is used to build the interactive test statistic DB as described hereafter, while the third
part of the sample,X2n+1, ..., X3n, is used to build the same test statistic TB as in the noninteractive
setup.

The main difference between our interactive and non-interactive procedures is in how we estimate
the `2-type statistic on the bulkB. We use the first half of the observations to gain partial information
on probabilities pj with j in the bulk B, and then use these estimated values in the randomization of
the second half of the sample. This 2-step procedure is interactive but not of the public-coin type.
For simplicity of exposition, we in fact estimate this `2-type statistic over the whole alphabet.

We define an interactive privacy mechanismQI ∈ Qα and a test ψB ∈ ΦQI as follows. With the first
half of the sample, as in (2) with B = [d], generate an i.i.d. sequence (Wij)i∈[n],j∈[d] of Laplace(1)
random variables, and for each i ∈ [n] and j ∈ [d] write

Zij := 1{Xi=j} +
2

α
Wij .
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We again have that (Zij)i∈[n],j∈[d] is an α-LDP version of X1, . . . , Xn. For each j ∈ [d] set

p̂j :=
1

n

n∑
i=1

Zij .

Set cα = eα+1
eα−1 and τ = (nα2)−1/2. As for the second half of the sample, for each i = n+1, . . . , 2n,

generateZi taking values in {−cα·τ, cα·τ}with probabilities depending on the previously privatized
samples through p̂j :

P(Zi = cα · τ |Xi = j) =
1

2

(
1 +

[p̂j − p0(j)]τ−τ
cα · τ

)
,

where we denote by
[v]τ−τ = (−τ) ∨ v ∧ τ, for all v ∈ R

the censoring operator. Then (Zi)i=n+1,...,2n is an α-LDP version of Xn+1, . . . , X2n [Butucea et
al., 2020]. We then define the test statistic

DB =
1

n

2n∑
i=n+1

Zi −
d∑
j=1

p0(j){[p̂j − p0(j)]τ−τ}

and C3 := e+1
e−1

(4/γ)1/2

nα2 . The final test is

ψB(Z1, . . . , Z3n) :=

{
1 if DB ≥ C3 or TB ≥ C2,B

0 otherwise ,

that is, we reject H0 if either DB ≥ C3 or TB ≥ C2,B .
Theorem 3. There exists a universal constant C such that when α ∈ (0, 1], for any ∅ 6= B ⊆ [d],
we have that

En,α(p0,L1) ≤ C max

{
|B|1/2

(nα2γ2)1/2
, p0(Bc)

}
and En,α(p0,L2) ≤ C

(nα2γ2)1/2
.

In particular, let

j̃ = j̃(nα2, p0,L1) := min

{
j = 1, . . . , d :

j1/2

(nα2)1/2
≥

d∑
j′=j+1

p0(j′)

}
.

Then there exists C1 = C1(γ) such that, when α ∈ (0, 1], we have

En,α(p0,L1) ≤ C1
j̃1/2

(nα2)1/2
.

4 Non-asymptotic optimality

Attaining the rates through a particular randomization of the original sample and an associated test
scheme does not prevent us from trying to improve on these choices. Instead, our lower bound
results show that there are no better choices of privacy mechanisms and test procedures that would
improve the test risk (or the separation rate) uniformly over the set of discrete distributions. It is
of particular interest to show that no other α-LDP Markov kernels could be combined with any of
the tests to improve on the upper bounds of our rates. There are however multiple choices of such
couples leading to the optimal rates that we have described.

Proving the optimality of our methods consists of building a family {pξ : ξ ∈ V} that belongs to
the alternative set of probability distributions H1(δ) with high probability and then reducing the test
problem to testing between p0 under the null and the mixture of the pξ under the alternative.
Proposition 4. If {pξ : ξ ∈ V} is a family of distributions such that

Pξ(pξ 6∈ H1(δ)) ≤ γ1, for some γ1 > 0.

then, for arbitrary η in (0,1), we have

Rn,α(p0, δ) ≥ inf
Q∈Qα

(1− η)

(
1− 1

η
TV (QPn0 , EξQP

n
ξ )

)
− γ1.
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It is sufficient to show that TV (QPn0 , EξQP
n
ξ ) ≤ η · γ2 such that (1 − η)(1 − γ2) − γ1 ≥ γ.

Standard inequalities prove that it is sufficient to bound from above the Kullback–Leibler or the χ2

discrepancy between the private distribution under the null and the average of conveniently chosen
private distributions under the set of alternatives.

The way the previous discrepancies relate to the underlying distributions of the data proves to be sig-
nificantly different in the cases when we are constrained to use non-interactive privacy mechanisms
only, and when we are allowed to use any privacy mechanism.

Information theoretical bounds for testing. For maximal generality, we assume that the pri-
vacy mechanisms may act differently on each sample Xi. An interactive procedure acts through
qi(zi|Xi = j, z1, ..., zi−1) on Xi and the resulting Zi is distributed, conditionally on Z1, ..., Zi−1,
according to mξ

i (zi|Z1, ..., Zi−1) = p>ξ qi(zi|·, Z1, ..., Zi−1). A non-interactive procedure acts
simply through qi(zi|Xi = j) on Xi and the resulting Zi is distributed according to mξ

i (zi) =
pTξ qi(zi|·).

Theorem 5. Given the previous family of distributions {pξ : ξ ∈ V}, we have

KL(QPn0 , EξQP
n
ξ ) ≤ Eξ

[
(pξ − p0)>Ω(pξ − p0)

]
,

where the matrix Ω has elements

Ωj,k=

n∑
i=1

Ep0
∫ (

qi(zi|j, Z1, ..., Zi−1)

m0
i (zi|Z1, ..., Zi−1)

− 1

)(
qi(zi|k, Z1, ..., Zi−1)

m0
i (zi|Z1, ..., Zi−1)

− 1

)
m0
i (zi|Z1, ..., Zi−1)dzi.

In the particular case of non-interactive privacy mechanisms, we have for independent copies ξ, ξ′

χ2(QPn0 , EξQP
n
ξ ) ≤ Eξ,ξ′

[
exp

(
(pξ − p0)>Ω(pξ′ − p0)

)]
− 1,

where Ω takes the simpler form

Ωj,k =

n∑
i=1

∫ (
qi(zi|j)
m0
i (zi)

− 1

)(
qi(zi|k)

m0
i (zi)

− 1

)
m0
i (zi)dzi.

4.1 Non-interactive approach

Recall that ENI
n,α(p0) is the α-LDP minimax testing radius when we restrict to non-interactive privacy

mechanisms. We have the following result.
Theorem 6. There exist c1 = c1(γ) > 0 and c2 = c2(γ) > 0 such that for all α ∈ (0, 1] we have

ENI
n,α(p0,L1) ≥ c1 max

j=1,...,d
min

{
j3/4

(nα2)1/2
,

jp0(j)

log1/2(2j)

}
and

ENI
n,α(p0,L2) ≥ c2 max

j=1,...,d
min

{
j1/4

(nα2)1/2
,
j1/2p0(j)

log1/2(2j)

}
.

We have the following immediate corollary.
Corollary 7. Let

`∗ = `∗(nα
2, p0,L1) := max

{
j = 1, . . . , d :

j3/4

(nα2)1/2
≤ jp0(j)

log1/2(2j)

}
`∗∗ = `∗∗(nα

2, p0,L2) := max

{
j = 1, . . . , d :

j1/4

(nα2)1/2
≤ j1/2p0(j)

log1/2(2j)

}
.

Then there exist c1 = c1(γ) > 0 and c2 = c2(γ) > 0 such that when α ∈ (0, 1] we have

ENI
n,α(p0,L1) ≥ c1

`
3/4
∗

(nα2)1/2
and ENI

n,α(p0,L2) ≥ c2
`
1/4
∗∗

(nα2)1/2
.

According to the behaviour of p0, we may have identical or different values for `∗ and `∗∗.

In many examples of interest, these lower bounds match our previous upper bounds in Corollary 2
up to log factor, even though `∗ and `∗∗ do not solve exactly the same problems as j∗ and j∗∗,
respectively.
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4.2 Interactive approach

Under their most general form the privacy mechanisms we allow are sequentially interactive. As
shown by Theorem 3 and Corollary 7, the optimal rates for testing are faster with interactive proce-
dures than with non-interactive procedures. The following theorem shows that the upper bounds in
Theorem 3 are optimal.
Theorem 8. There exist c1 = c1(γ) > 0 and c2 = c2(γ) > 0 such that when α ∈ (0, 1] we have

En,α(p0,L1) ≥ c1 max
j=1,...,d

min

{
j1/2

(nα2)1/2
,

p0(j)

log1/2(2j)

}
and

En,α(p0,L2) ≥ c2
1

(nα2)1/2
.

In particular, let

˜̀= ˜̀(nα2, p0,L1) := max

{
j = 1, . . . , d :

j1/2

(nα2)1/2
≤ p0(j)

log1/2(2j)

}
.

Then there exist c1 = c1(γ) > 0 such that when α ∈ (0, 1] we have

En,α(p0,L1) ≥ c1
˜̀1/2

(nα2)1/2
.

5 Particular classes of distributions

In this section we explicitly calculate the separation rates in several examples. See Section 5 in the
supplementary material for more detailed and more general calculations. Inequalities & are valid up
to log factors.

Nearly uniform distributions Suppose that p0(j) ∝ j−β for some β ∈ [0, 1), and that
d3/4/(nα2)1/2 ≤ (1− β)/(log1/2(2d)). Then

dp0(d)

log1/2(2d)
=

d1−β

log1/2(2d)
∑d
`=1 `

−β
≥ d1−β

log1/2(2d)
∫ d

0
x−β dx

=
1− β

log1/2(2d)
≥ d3/4

(nα2)1/2
,

and it follows that `∗ = d. Thus, in this setting, ENI
n,α(p0,L1) & d3/4/(nα2)1/2. Concerning the

L2 rates, ENI
n,α(p0,L2) & d1/4/(nα2)1/2 if β ≤ 1/4, whereas it is & d1/4/(nα2)1/2 ∧ d1/2−β ∧

(nα2)−(β−1/2)/(2β−1/2) if β > 1/4.

Polynomially decreasing distributions Suppose that p0(j) ∝ j−1−β for some β > 0, as for
example is the case for the Pareto distributions used in extreme value theory. It is shown in the Sup-
plementary material that, when 1 ≤ nα2 ≤ (d/C)2β+3/2 we have that j∗ ≤ dC(nα2)1/(2β+3/2)e.
On the other hand, if nα2 > (d/C)2β+3/2 then we will just say that j∗ ≤ d. It follows that

ENI
n,α(p0,L1) .

j
3/4
∗

(nα2)1/2
. min

{
(nα2)−

2β
4β+3 ,

d3/4

(nα2)1/2

}
.

From the corresponding lower bounds, we get

ENI
n,α(p0,L1) &

{
nα2 log3/(4β)(nα2)

}−2β/(4β+3) ∧ d3/4

(nα2)1/2
.

So, the lower bounds match the upper bounds up to log factors in this case.

Exponentially decreasing distributions Suppose that p0(j) ∝ exp(−jβ) for some β > 0. More
generally, we may include the geometric distribution with p0(j) ∝ pj = exp(−j log(1/p)) or
p0(j) ∝ jη exp(−cjβ), for η real number and c, β > 0. The upper bounds match the lower bounds
in this case, and lead e.g. in the case of noninteractive privacy mechanisms and L1 norm to the rate

ENI
n,α(p0,L1) � min

{
log3/(4β)(nα2)√

nα2
,
d3/4

√
nα2

}
.

Analogous calculations can be done for interactive mechanisms and L2 norm. Table 1 summarizes
the minimax separation rates, for examples of distrbution probabilities p0. They are optimal up to log
factors except for the L2 distance in the case of uniform and polynomially decreasing distributions.
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Table 1: Separation rates for testing discrete distributions. The non-interactive L1 rate in the
uniform example, marked by (†), was previously established by Acharya et al. [2019a] and Acharya
et al. [2019b]. An upper bound for interactive procedures, equal to the optimal rate established in
this work and marked here by (∗), was also established by Acharya et al. [2019a].

Noninteractive Interactive

p0 L1 L2 L1 L2

Uniform[d] d3/4√
nα2

(†)
≤ d1/4√

nα2

& d1/4√
nα2
∧ 1√

d

d1/2√
nα2

(∗) 1√
nα2

∝ j−1−β (nα2)−
2β

4β+3 ∧ d3/4√
nα2

≤ (nα2)−
2β

4β+1 ∧ d1/4√
nα2

& (nα2)−
2β+1
4β+3 ∧ d1/4√

nα2

(nα2)−
2β

4β+2 ∧ d1/2√
nα2

1√
nα2

∝ jηe−cjβ log3/(4β)(nα2)∧d3/4√
nα2

log1/(4β)(nα2)∧d1/4√
nα2

log2/(4β)(nα2)∧d1/2√
nα2

1√
nα2

Broader impact In many domains of application, the collection and use of personal data are activi-
ties that can have damaging consequences. Data breaches can cause, on the one hand, major distress
for the individuals concerned through identity theft and the publication of private information (such
as medical or financial records), and, on the other hand, can lead to financial ruin and legal battles
for the organizations that are hacked. The study and development of statistical methodology that
respects the privacy of individuals has, therefore, the potential for huge impact on society. As the
performance of the available methodolgy improves, the need for analysts to use outdated and unsafe
procedures will decrease, leading to a positive impact on the world. However, the existence of infor-
mation theoretic lower bounds proving that private procedures necessarily have worse performance
than their non-private counterparts could slightly discourage the use of private methodology, on the
grounds of relative inefficiency. Overall, though, this seems like a small price to pay, and a fuller
understanding of the possibilites and limitations of private data analysis should be very positive. In
this paper we improve upon existing methodology for locally private goodness-of-fit testing, and
provide deeper knowledge on the underlying theory.
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