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Abstract

Compositional generalization is a key challenge in grounding natural language
to visual perception. While deep learning models have achieved great success in
multimodal tasks like visual question answering, recent studies have shown that
they fail to generalize to new inputs that are simply an unseen combination of
those seen in the training distribution [6]. In this paper, we propose to tackle this
challenge by employing neural factor graphs to induce a tighter coupling between
concepts in different modalities (e.g. images and text). Graph representations
are inherently compositional in nature and allow us to capture entities, attributes
and relations in a scalable manner. Our model first creates a multimodal graph,
processes it with a graph neural network to induce a factor correspondence matrix,
and then outputs a symbolic program to predict answers to questions. Empirically,
our model achieves close to perfect scores on a caption truth prediction problem and
state-of-the-art results on the recently introduced CLOSURE dataset, improving on
the mean overall accuracy across seven compositional templates by 4.77% over
previous approaches.2

1 Introduction

In this paper, we explore the problem of systematic generalization to novel questions in the paradigm
of visual question answering (VQA) [4]. Several neural architectures have shown great promise
in learning multimodal representations to solve the task [42, 39, 54]. Recently, neuro-symbolic
methods [55, 38] – a combination of connectionist and symbolic approaches – have pushed these
limits, achieving close to perfect scores on benchmarks like CLEVR [28, 29]. However, these models
lack the ability to generalize to new combinations of linguistic constructs, even if the distribution of
visual inputs remains the same [6]. A key reason behind this is the lack of fine-grained representations
that allow for joint compositional reasoning over both visual and linguistic spaces.

We propose a graph-based approach for multi-modal representation learning – the Multimodal Graph
Network (MGN) – with an explicit focus on enabling better generalization. Our core idea is the
following: representing both text and image as graphs naturally allows for tighter coupling of concepts
between the two modalities and provides a compositional space for reasoning. Specifically, we first
parse both the image and text into individual graphs with object entities and attributes as nodes and
relations as edges. Then, we induce a correspondence factor matrix between pairs of nodes from both
modalities using message passing algorithms similar to the ones used in graph neural networks [16].
The output of our model is a matrix of values that captures the correspondence value of each pair of
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individual nodes between modalities. A high-level overview of our approach is shown in Figure 1,
where one can observe fine-grained connections between nodes from graphs of both modalities.
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Figure 1: Overview of our graph-based ap-
proach to fine-grained multimodal representa-
tion learning. We parse both modalities and
the model induces a correspondence matrix
between every pair of nodes to represent sim-
ilarity.

Our work is different from previous approaches to
multimodal learning for VQA since we explicitly
parse and represent both modalities. This provides
two key advantages – 1) it allows for learning ex-
plicit correspondences between visual concepts and
linguistic symbols at a fine-grained level, and 2) our
representations scale smoothly to longer pieces of
text (e.g. questions) with novel compositions of lin-
guistic constructs. Our entire model is end-to-end
differentiable and can be trained using supervision
provided in the end task (e.g. classification or VQA).

We evaluate MGN on two tasks – a binary classi-
fication task of predicting if a caption matches an
image based on attribute compositions in the CLEVR
dataset [28], and CLOSURE [6] – a recently released
challenge for testing systematic generalization in lan-
guage. We show the efficacy of our approach with
strong compositional reasoning skills, achieving a
≈98% average accuracy rate on statement truth pre-
diction on previously unseen image feature combina-
tions at test time. Further, on CLOSURE, our model
outperforms state-of-the-art approaches by almost
4.77% overall accuracy, especially achieving impres-
sive results on compositional questions entailing log-
ical (and,or) objet relations.

2 Related Work

Neuro-symbolic approaches to VQA There have been several recent attempts at merging symbolic
reasoning with neural networks to boost compositional generalization in models for visual question
answering. Neural module networks [3] parse questions into substructures and dynamically construct
a neural network conditioned on these components. NS-VQA [55] and NS-CL [38] learn explicit
semantic representations over images and sentences, using direct and indirect supervision, respectively.
These representations are used to generate and execute symbolic programs to answer questions. While
we also construct explicit representations, our approach uses probabilistic factor graphs and graph
neural networks to encourage a tighter coupling between concepts in the two modalities.

Graph-based approaches to VQA Several recent papers has explored the use of graphs for
multimodal vision and language tasks. Santoro et al. [42] and Chang et al. [9] employ Relation
Networks, which can be thought of as a basic form of graphical reasoning over pairs of nodes,
and demonstrate very good performance on VQA tasks like CLEVR. Hu et al. [25] also propose a
graph-based representation over objects in an image and use message passing algorithms to update
object representations conditioned on text (e.g. questions). Teney et al. [47] use graphs to represent
both images and text but merely combine the representations using a weighted sum. The main
difference in our work is that we represent both visual and textual inputs as graphs and perform a soft
graph matching to map nodes between the two modalities. Concurrent to this work, Gao et al. [15]
also proposed a fused multimodal representation, using iterative message passing between text and
visual embeddings for the grounded SCAN task [41].

Generalization in VQA The VQA-CP and VQA-2.0 [2, 19] datasets, and corresponding models
(e.g. GVQA [2], which builds on stacked attention networks (SAN) [54]) test generalization across
distributional shifts in train-test class labels. Transformer [48] based models like SAN, LXMERT,
ViLBERT [46, 37] use a two-stream architecture to embed each modality separately, then fuse them
together using attention-based interactions. These approaches are orthogonal to MGN in problem
setting and architecture and could potentially be combined. The CLEVR dataset already incorporates
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non-uniform train-test labels, and SAN performs reasonably well (73.2%) on CLEVR (baseline in
NS-VQA). However, SAN and, by extension, GVQA architectures do not evaluate for, and generalize
poorly on, unseen object attributes (CLEVR-CoGenT) and linguistic structural pattern (CLOSURE)
combinations. While the Neural State Machine (NSM) model [26] also builds a scene graph from the
image similar to our approach, it requires converting the question text into a sequence of instructions
for graph traversal. In contrast, we convert the text input into a graph as well and perform multi-modal
fine-grained matching.

Recent work has explored models with the explicit aim of enabling compositional reasoning and gen-
eralization. [33] propose a challenging dataset for few-shot generalization based on written alphabets.
[35] proposed a task of translating natural language instructions into explicit action sequences, with
the goal of composing terms like ‘jump‘ and ‘twice‘ to intrepret compound instructions. Within the
realm of visual QA, [28] proposed a variant of the CLEVR task that involved a held out set of unseen
combinations of concepts. However, their test is limited to the visual modality since the combinations
swapped were on image object features – it doesn’t test language compositionality. CLOSURE [6] is
a more recently proposed dataset based on CLEVR that aims to test systematic generalization of VQA
models to questions unseen at training time. They created several challenging question templates that
combine atomic constructs used in CLEVR, and construct a new model, Vector-NMN to handle the
challenges.

3 Multimodal Graph Networks (MGN)

We first provide the motivation behind our approach. Consider the image in Figure 1 and the
associated question: ‘Is there a yellow rubber cube behind the large green cylinder’. Answering
this question requires first locating the green cylinder and then scanning the space behind it for a
yellow rubber cube. Specifically, 1) although there may be other objects present (like another ball
for e.g.), information about them can be abstracted away and 2) fine-grained connections between
the visual and linguistic inputs representing ‘yellow’ and ’cube’ need to be established. Neural
architectures that build multimodal representations using convolutional neural networks (CNNs)
process the entire image into a single global representation (e.g. vector), but fail to capture such
fine-grained correlations [29]. Neuro-symbolic approaches like neural module networks [3] or NS-
VQA [55] mitigate this to some extent by using multiple filters to process the image, each conditioned
on different relations extracted from the text. However, these approaches fail to scale well to longer
compositions of linguistic constructs [6].

To satisfy both desiderata, we induce graphical representations over both modalities, which allows
for tighter coupling between fine-grained concepts (e.g ‘yellow’, ‘cube’). Specifically, we parse
both image and text into two different graphs and then use a neural message passing algorithm [16]
to jointly reason over them and induce factor correspondences between each pair of nodes in the
disjoint graphs. Finally, we use a graph-based aggregation mechanism to generate a multi-modal
vector representation.

3.1 Model

Assume each multi-modal input instance to be a tuple (s, t) where s is a source text input (a question
or caption for e.g.), and t is the corresponding target image. Our Multimodal Graph Network (MGN)
architecture is made up of two main components: 1. a Graph Parser, and 2. a Graph Matcher.

3.1.1 Graph Parser

The graph parser takes the input instance (s, t), and outputs corresponding object-centric graphs
Gs = (Vs, As, Xs, Es) and Gt = (Vt, At, Xt, Et). Here, X ∈ R|V |×d is the feature matrix of all
the nodes V in graph G, A is the adjacency matrix, and E ∈ R|E|×d is the feature matrix of all the
edges E in graph G.

For the input text s, the parser uses an entity recognizer [40] to capture the objects and attributes as
graph nodes V , followed by a relation matcher [40] to capture node relations as edges in Gs.
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For an image t, the parser uses a pretrained Mask-RCNN [22, 17], and ResNet-50 FPN [36] image
semantic segmentation pipeline [23] to obtain objects, attributes and positional coordinates (x,y,z).
These form individual nodes in graph Gt.

Is the color of the metal 
block … the same as the 
large metal cylinder? 

GNN-Seq2Seq

Executor

M
ask-RCNNParsed Scenes

Classifier

Graph Parser

FC - Linear Layer

True
False
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Figure 2: MGN Architecture: Both image
and text are parsed into graphs Gt and Gs by
the graph parser. The graph matcher com-
bines them and runs joint neural message pass-
ing to obtain a correspondence matrix. The
joint representations can be used in down-
stream tasks like VQA (left) or classification
(right).

Following the construction of nodes and edges in Gs
and Gt, the embedding matrices X and E are ob-
tained by using word embeddings from a pre-trained
language model (LM) as feature vectors of dimension
d over the graph nodes (object, attributes) and edges
(relations). Similarly, for the image scene graph, we
use the (object, attributes) labels obtained from the
‘parsed scenes’ (from Mask-RCNN pipeline) as input
to the shared LM to get feature embeddings. Figure
2 illustrates the input and output flow of the parser
conceptually.

3.1.2 Graph Matcher

The graph matcher takes as inputs the graphs Gs =
(Vs, As, Xs, Es) and Gt = (Vt, At, Xt, Et) pro-
duced by the graph parser and generates a multi-
modal vector representation ~hs,t ∈ R2d – this cap-
tures a latent joint representation of the source nodes
(in text) and matching target nodes (in image).

We use h(0)i = xi ∈ X as our initial representation of
the nodes across both graphs, and use a shared graph
neural network (GNN), Ψθ, to compute localized,
permutation equivariant [20, 7] node representations.
At the end of this neural message passing, each node
encapsulates information from its surrounding neigh-
bors.

HGs = Ψθ

(
Xs, As, Es

)
∈ R|Vs|×D (1a)

HGt = Ψθ

(
Xt, At, Et

)
∈ R|Vt|×D (1b)

where D is the embedding dimension. For choice of GNN, there are a few variants to pick from given
the considerable recent research in geometric learning and GNNs [32, 49, 43, 20]. At a high-level,
all these networks follow a neural message passing scheme [16], and iteratively update vectorial
node representations by aggregating representations of its neighbours [7, 18]. This involves two key
operations: 1. AGGREGATE, and 2. MERGE. A node’s representation, hkv , after k iterations capture
structural information within a k-hop neighbourhood in the graph. Formally:

a(k)v = AGGREGATE(k)

({
h(k−1)u : u ∈ N (v)

})
, h(k)v = MERGE(k)

(
h(k−1)v , a(k)v

)
,

(2a-b)

The final layer representation, h(K)
G , is obtained using a READOUT function that combines node

features from the final iteration to obtain entire graph’s representation hGs
or hGt

as:

hG = READOUT
({
h(K)
v

∣∣ v ∈ G}) (3)

For group equivariant representation of object attributes, relationships, it is important to have the
READOUT function as a permutation invariant function like summation or a more sophisticated
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graph-level pooling function [57]. To that accord, we use Ψθ as a two-layer graph isomosphism
network (GIN) [53] – a GNN variant that has theoretically maximal representational power under the
Weisfeiler-Lehman (WL) [51] graph isomorphism tests to distinguish between graph structures. This
obtains vectorial local node representations HGs

, HGt
for our source and target graphs in eq 1.

Using HGs
, HGt

, we get a soft correspondence matrix, Φ between the nodes vs ∈ |Vs| and vt ∈ |Vt|
by: Φ̂ = HGs

HT
Gt
∈ R|Vs|×|Vt| – where the i-th row vector Φi,: ∈ RVt is a probability distribution

over potential correspondences to nodes in Gt for ∀i ∈ Vs. Intuitively, one can think of this
distribution as being a likelihood score to measure the goodness of matches between nodes in the two
different graphs. To get a discrete correspondence distribution between the source and target nodes, we
then apply ‘sinkhorn normalization’ [45] to the correspondence matrix to satisfy rectangular doubly-
stochastic [1] matrix constraints such that

∑
j∈Vt

Φi,j = 1, ∀i ∈ Vs and
∑
i∈Vs

Φi,j ≤ 1, ∀j ∈ Vt.

Φ = sinkhorn
(
Φ̂(0)

)
∈
[
0, 1
]|Vs|×|Vt| (4)

Given Φ ∈ R|Vs|×|Vt|, we can project a function in the source (text) latent space L(Gs) ∈ R|Vs| into
the target (image) latent space L(Gt) ∈ R|Vt| using

~h′t = ΦT~hs, ~h′s = Φ~ht, (5a-b)

The final joint multimodal representation hs,t ∈ R2D is obtained by concatenating [hs, ~h′s], ~h
′
s is

target node ht projected in source latent space.

3.2 Using the multimodal representation in downstream tasks

For our caption classification task, the output of the matcher hs,t can be fed to a fully connected
layer with sigmoid activation for discriminative classification. Formally, we optimize the binary
cross-entropy loss function: L = −ylog(ŷ)− (1− y)log(1− ŷ) – where ŷ is the model prediction
for caption correctness, and y is the ground-truth label.

For the VQA tasks, the joint representation, hs,t is fed to an attention-based sequence to sequence
(seq2seq) [5] model with an encoder-decoder structure. We use a bidirectional LSTM [24] as our
encoder. At time step i, the encoder takes a question qi containing variable length word tokens
with added padding and the multimodal Gs, Gt representation hs,t as input. The concatenated input
xi ← [qi;hs,t] is encoded to obtain encoding ei:

ei =
[
eFi , e

B
i

]
, where eFi , h

F
i = LSTM

(
ψE (xi) , h

F
i−1
)
, eBi , h

B
i = LSTM

(
ψE (xi) , h

B
i+1

)
(6)

– where ψE is the trained encoder embedding, and (eFi , h
F
i ), (eBi , h

B
i ) are the outputs and hidden

vectors of the forward and backward networks at time step i.

The decoder is a similar LSTM that generates a vector ot from the previous token of the output
sequence yt−1. ot is then fed to an attention layer to obtain a context vector ct as a weighted sum of
the encoded states by:

ot = LSTM (ψD (yt−1)) , αti ∝ exp
(
o>t WAei

)
, ct =

∑
i

αtiei (7)

– where ψD is the trained decoder embedding. Lastly, the decoder output and context vector is fed to
a fully connected layer with softmax activation to obtain a distribution over the predicted program
sequence token yt ← softmax(Wo[ot, ct]). The predicted program sequence is used by a symbolic
executor to answer a question for the VQA task.

4 Experiments

We empirically test our MGN model on two different tasks involving multi-modal inputs. For our first
task, we consider a binary classification setup where the model has to predict whether a text caption
is true of a given image. For the second, we evaluate systematic generalization using the recently
proposed CLOSURE challenge [6]. The first task tests the model’s ability to handle compositional
variation in the image space, while the second tests its adaptation to variation in linguistic constructs.
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4.1 Task 1: Caption Truth Prediction

In this task, given an image and a caption, the model has to predict if the caption is true (T) or false
(F) in the context of that image. Figure 3 provides an example instance of this task.

Large yellow metal cube

Small green shiny sphere

Large yellow metal cube

Large yellow matte cylinder

Large red rubber cube

Large red shiny ball

Test Set BTrain Set A

True True

TrueFalse

FalseTrue

Figure 3: Sample instances for the Cap-
tion Truth Prediction task. Test set B
contains object-attribute combinations
that are unseen in Train set A.

We use images from the CLEVR dataset [28] and use their
template generator to produce captions that are both true
and false. The generation engine uses programmatic tem-
plates based on object attributes, logical predicates, and
object reference predicates outlined in [28]. Templated
question generation allows us to create complex questions,
testing various aspects of scene understanding.

The original dataset contains 1M questions generated from
100k questions with 90 question template families that can
be broadly categories into five question types: count, exist,
numerical comparison, attribute comparison, and query.
Note that the question types distribution is not uniform.
Each generated question, q, is paired with an answer label,
index of corresponding image, and a set of ground-truth
modular program sequence {m1, ...,mn} ∈ M, such that
M⊆ F , when applied gives the ground truth answer. Here
F is a predefined environment specific function catalog.
We delegate further details of this dataset to the appendix
A.

Variation in visual concepts We train models on a sub-
set of the available image object attribute values. During
testing, the object attribute values are swapped and models are evaluated on whether they can detect
the novel composition of attribute values without performance degradation. This tests whether the
models are able to learn composite image features. The setup is aligned with the earlier proposed
CLEVR-CoGenT dataset [28]. We synthetically generate two image datasets – A and B – with each
image containing just one object. In dataset A, all cubes are gray, blue, brown, or yellow and all
cylinders are red, green, purple, or cyan; in B, cubes and cylinders swap color palettes. Unlike
CoGenT, which focuses of image attribute generalization, this task focuses on linguistic composition
by applying more stringent truthiness test. Here we exhaustively test the variants of a true caption, by
generating captions with all permutations and cardinality of object attributes.

The text input is an image caption describing the object by its attributes. The answer is a label ‘True’
or ‘False’ indicating the correctness of the caption.

4.1.1 Training

Baselines. For this task, we use baseline models – CNN+LSTM and CNN+LSTM+SA from
Johnson et al.[28]. Both use a pretrained ResNet-101 CNN architecture for encoding the image,
and a two-layer LSTM with 512 hidden units per layer for encoding the captions using learned 300-
dimensional word embeddings. The (flattened) image features and encoded question are concatenated
and passed to a two-layer MLP with 1024 units per layer, with ReLU nonlinearities after each layer.
For the stacked-attention (SA) variant, instead of concatenation, the representations are fed to two
consecutive Stacked Attention layers [54] with 512 units per layer. The output is a 512-dimensional
vector that is fed to a linear layer to predict answer.

All models were trained using Adam with a learning rate of 5 × 10−4, a batch size of 64 for a
maximum of 360k iterations, with early stopping based on validation accuracy.

MGN. For our MGN model, we use a simple two-layer GCN [32] model trained in a supervised
fashion. Using the parser[40] we convert the caption and image scene into Gs, Gt and get corre-
sponding graph data embeddings as: (Xs, As)← Gs, (Xt, At)← Gt – where X ∈ Rd is a vector
embedding of the graph nodes of dimension ‘d’ and A is the adjacency matrix denoting edge indices.
Then with the source, s and target, t as a pair-data sample input, and caption truthiness boolean as our

6



label, we use PyTorch Geometric [13] to train our MCN-GCN model. A learning rate of 0.01 with
weight decay 5× 10−4 was used with the cross-entropy loss function.

4.1.2 Results

The findings of this simple focused test reveals (Table 1) our approach is indeed conducive to
systematic generalization for image attributes.

Model Dataset A (seen) Dataset B (unseen)
CNN+LSTM 99.3 (0.5) 77.5 (1.3)

CNN+LSTM+SA 99.4 (0.3) 79.7 (0.7)
MGN-GCN (ours) 99.6 (0.3) 98.2 (1.1)

Table 1: Results on Caption Truth Prediction. Accuracy and standard deviation (in parenthesis) are
computed over 3 random data splits. Dataset B contains novel unseen combinations of objects and
attributes to test generalization ability.

The baseline models are learning image features with a joint embedding of the entire caption, for e.g.,
they are learning ‘a red cylinder’, and a ‘brown cube’ during training, and can’t detect ‘red cube’ and
’brown cylinder’ during testing.

4.2 Task 2: CLOSURE

In this second setup, we train models on the original CLEVR question templates, and test them
against questions provided by CLOSURE templates [6]

CLOSURE questions. The question templates in CLOSURE systematically use primitive language
constructs to create unseen combinations in the generated questions. Seven different templates
are used, targeting one of the five broad CLEVR question types (count, exist, numerical
comparison, attribute comparison, and query). For elucidation, we discuss one template
(and_mat_spa) here. Please see the appendix B for further illustrations.

(a) A ‘query’ question pattern from the original CLEVR dataset

(b) A ‘query’ question pattern from the CLOSURE dataset

Figure 4: The and_mat_spa question template. N.B. the color codes and tags used are for illustrative
purposes only, the model sees unannotated text as input.

In the original dataset, all object attribute query questions with logical conjunctions (and) uses spatial
predicates: {left, right, front, behind}∈ SPATIAL_RE for relational reasoning between
objects. In Fig.4, the and_mat_spa generated questions contain the same type (attribute query
with logical conjunction ‘and’), however, the relation reasoning employs both spatial and ‘matching
relations’ (MATCHING_RE) where object references are made using matching predicates: “same
{shape, color, material, size}”. The rest of the CLOSURE templates employ the same trick
to systematically rearrange known constructs to compose questions of the same type.

4.2.1 Training

We train the MGN components (section 3.1) in two phases: supervised pretraining and end-to-end
fine-tuning using REINFORCE [52].

Supervised pre-training. For the pretraining data, we use 270 stratified question samples from
each of the 90 question families in CLEVR. For obtaining parsed source and target graphs, Gs, Gt,
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Model Mean Accuracy
FiLM 56.91%

PG-Tensor-NMN 64.51%
PG-Vector-NMN 75.57%

NS-VQA 77.19%
MAC 73.80%

MGN-e2e (ours) 80.87%
MGN-e2e (w/o RL finetuning) 72.18%
MGN-e2e (w/o pre-training) 65.25%

Table 2: Mean accuracies of baselines and our model (MGN-e2e) on CLOSURE. Bottom two rows
represent ablations of our full model. Both supervised pre-training and RL fine-tuning play an
important role in effective learning.

we use the CLEVR Parser library [40], whose components are detailed in 3.1.1. For the initial feature
embeddings of Gs, Gt, we use the ‘en_core_web_sm’3 LM trained on the OntoNotes corpus [50].
The LM we use here is a design choice – alternatives can be one-hot vectors in the simplest case, or
transformer/BERT based large LM [14, 42] embedding.

The graph matcher component with GNN Ψθ is pretrained in a supervised, discriminative fashion
using ground truth correspondence labels πgt(.), by optimizing for correct correspondence score
(between source Vs and target Vt nodes) using NLL objective: L = −

∑
i∈Vs

log
(
Φ
i,π

(i)
gt

)
. For

training the GNN, we use the PyTorch Geometric library [13]. The seq2seq program generator is
pretrained with questions and ground-truth program sequences for 25000 iterations. Both the encoder
and decoder have hidden layers with a 256-dim hidden vector. We set the dimensions of both the
encoder and decoder word vectors to be 300, and the multimodal graph vector representation to be
100.

Reinforcement learning. In the fine-tuning phase, we use REINFORCE [52] to train the entire
flow end-to-end using the final answer correctness as the reward objective. We use a learning rate of
1× 10−5 and a batch size of 64 for a maximum of 1,000,000 iterations.

4.2.2 Results

We compare our approach to five other baselines discussed in [6]. Table 2 shows the mean accuracies
over the 7-templates compared with our best performing MGN model. Note that the results reflect
test on ‘zero-shot generalization’ only.

Mean accuracies do not capture the compositional abilities of some the stronger models. For e.g,
the NS-VQA[55] and the MAC model introduced by Hudson et al. [27] perform strongly overall,
however, looking at the performance breakdown by template in Figure 5, we see these models perform
poorly on logical relationships (and_mat_spa, compare_mat). MGN, on the other hand, performs
well across all 7 templates.

Figure 5 shows our model’s mean accuracy over all the 7 CLOSURE templates against the baselines.

Ablation tests. We also perform ablation analyses of our MGN model with respect to the pre-
training and fine-tuning phases used (Table 2). We observe that both the supervised pre-training and
the RL fine-tuning are crucial to obtaining good performance. We report more ablation studies and
discuss them in detail in the Appendix.

5 Conclusion

In this paper, we proposed Multimodal Graph Networks (MGNs) to solve the problem of compo-
sitional generalization for visual question answering. MGNs induce a tighter coupling between
concepts in different modalities (e.g. images and text) by learning joint graph-based representations,

3https://spacy.io/models/en#en_core_web_sm
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Figure 5: MGN vs. Baselines on individual CLOSURE templates. MGN performs consistently well
on almost all templates while baselines like MAC and NS-VQA do well on a subset while performing
worse on others.

which are compositional in nature and allow us to capture entities, attributes and relations in a
scalable manner. Our method predicts a factor correspondence matrix to implicitly induce factor
nodes between concepts that are related in the two modalities. Empirically, our approach results
in state-of-the-art results on the recently introduced CLOSURE dataset, improving on the mean
overall accuracy by 4.77% over previous approaches. Our model also performs consistently well
across different types of compositions of linguistic constructs while prior methods only succeed
on a subset of them. The current results for MGN are promising on synthetic image data with
limited (constrained) language vocabulary. Future work can tackle the challenge of extending MGN’s
compositional characteristics to more natural image datasets by scaling up the graph parser to large
number of object categories and handling larger vocabularies in the text.

Broader Impact

Multimodal reasoning methods that can generalize to novel compositions of linguistic constructs
are key to developing more intelligent systems that can reason and ground language in various
contexts. Though this work is evaluated on synthetic datasets with generated images, we believe
that graph-based techniques can provide smoother scaling and better handle challenging fine-grained
multimodal reasoning than alternative approaches. We envision this work to enable improvements
on various downstream applications like instruction following, autonomous navigation, and robotic
control. However, improved multi-modal reasoning can also result in systems that can be harmful to
society (e.g. surveillance systems) if misused. There is also the aspect of various forms of bias that
the model may pick up if trained with data that only represents a sub-set of the phenomena in the
world. In the current form, MGN does not algorithmically account or correct for bias in multimodal
data even though it may provide a useful starting point due to its use of explicit graphs – this can be
another direction for future research.
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