
A Adversarial Attack

Given a natural example xi with class label yi and a DNN model fw, the goal of an adversary is to
find an adversarial example x′i that fools the network to make incorrect predictions while still remains
in the ε-ball centered at xi (‖x′i − xi‖p ≤ ε). A lot of attacking methods have been proposed for the
crafting of adversarial examples. Here, we only name a few.
Fast Gradient Sign Method (FGSM) [13]. FGSM perturbs the natural example xi for one step by
the amount of ε along the gradient direction:

x′i = xi + ε · sign(∇xi
`(fw(xi), yi)). (13)

Projected Gradient Descent (PGD) [27]. PGD perturbs the natural example xi for K1 steps with
small step size η1. After each step of perturbation, PGD projects the adversarial example back onto
the ε-ball of xi, if it goes beyond the ε-ball:

x
′(k+1)
i = Πε

(
x
′(k)
i + η1 · sign(∇x′

i
`(fw(x

′(k)
i ), yi))

)
, (14)

where Π(·) is the projection operation, and x
′(k)
i is the adversarial example at the k-th step. There are

also other types of attacks including Jacobian-based Saliency Map Attack (JSMA) [35], Carlini and
Wagner (CW) [5], and so on.

B Details for the Weight Loss Landscape Visualization Method

In this section, we first provide the pseudo-code of our proposed visualization method for the weight
loss landscape in the adversarial training, and then verify its reliability.

B.1 Pseudo-code of the Visualization Method

As shown in Algorithm 1 for the visualization of weight loss landscape, we firstly sample a random
direction d from a Gaussian distribution. Then, we apply the “filter normalization” technique (Line
3-7) from Li et al. [22] to avoid the scaling effect§ of DNNs. Next, we calculate the adversarial loss
for a series of perturbed weights independently, i.e., ρ(w + αd), α ∈ {αmin, · · · , αmax}. For a
given perturbed weights w + αd, we generate its own adversarial examples using PGD following
Madry et al. [27] (Line 9-14). Then, we approximate the adversarial loss of the current perturbed
model fw+αd by the cross-entropy loss on these on-the-fly generated adversarial examples (Line 15).
Finally, we plot the weight loss landscape (Line 17).

Algorithm 1 Visualization of Weight Loss Landscape
1: Input: Network fw with L-layer (Fl filters in the l-th layer), training data {(xi, yi)}ni=1, PGD

step size η1, PGD step number K1, the scalar parameter α ∈ [αmin, αmax].
2: Sample a random direction d ∼ N (0, 1)
3: for l = 1, . . . , L do
4: for j = 1, . . . , Fl do
5: dl,j ← dl,j

‖dl,j‖F ‖wl,j‖F
6: end for
7: end for
8: for α = αmin, · · · , αmax do
9: for i = 1, . . . , n (in parallel) do

10: x′i ← xi + εδ, where δ ∼ Uniform(−1, 1)
11: for k = 1, · · · ,K1 do
12: x′i ← Πε

(
x′i + η1sign(∇x′

i
`(fw+αd(x′i), yi))

)
13: end for
14: end for
15: ρ(w + αd)← 1

n

∑n
i=1 `(fw+αd(x′i), yi)

16: end for
17: Plot (α, ρ(w + αd)),∀α ∈ [αmin, αmax]

§In DNNs with ReLU activation, the network remains unchanged if we multiply the weights in one layer by
10, and divide by 10 at the next layer.
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Figure 5: Repeatability of the 1-D visualization along 10 different random directions.
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Figure 6: 2-D visualization of weight loss landscape at the different epoch checkpoints.

B.2 Reliability of the 1-D Visualization

To improve the trustworthiness of our results, we check the reliability of our visualization method
from two perspectives: 1) repeatability; 2) comparisons to 2-D visualization.

Repeatability. We first investigate whether different random directions produce dramatically different
plots. We show the weight loss landscape of PreAct ResNet-18 during vanilla adversarial training
along 10 randomly selected directions in Figure 5. We find the plots of the same checkpoint are very
close in shape, which indicates the stability of our visualization method.

Comparisons to 2-D Visualization. Next, we explore whether 1-D visualization obtains similar
results to 2-D visualization (a much time-consuming method). The 2-D visualization introduces an
extra random filter-normalized direction e, and plots g(α, β) = ρ(w + αd + βe). Different from
the standard training scenario where near-zero loss on the training set can be always achieved, the
adversarial loss on the training set is usually larger than zero, i.e., the center point g(0, 0) in the
weight loss landscape is often larger than zero, which hampers the comparison on the flatness of
weight loss landscape. Therefore, we visualize the relative weight loss landscape |g(α, β)− g(0, 0)|
instead. Figure 6 presents the 2-D visualization of the same model as Figure 5 at the 100-th, 140-th
and 200-th epoch checkpoint. We can see that the weight loss landscape is flatter at the 100-th epoch
and sharper at the 200-th epoch, which is compatible to the findings from the 1-D visualization. For
time costs, it consumes ∼ 4 days for the 2-D visualization of a single adversarially trained PreAct
ResNet-18 using one GeForce RTX 2080Ti, while it is ∼ 2 hours for the 1-D visualization of the
same model. Thus, we adopt the 1-D visualization in most cases.

From the above experiments, we can conclude that our 1-D visualization method can characterize the
property of the high-dimensional weight loss landscape reliably and efficiently.
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C More Evidence for the Connection of Weight Loss Landscape and Robust
Generalization Gap

In this section, we provide more empricial evidence to identify the connection of the weight loss
landscape and the robust generalization gap across learning rate schedules, model architectures,
datasets, and threat models.

C.1 The Connection across Learning Rate Schedules

To investigate whether the learning rate schedule affects the connection of weight loss landscape and
robust generalization gap, we test another two commonly used learning rate schedules:

• Cosine schedule [24]: We decrease the learning rate lr using the cosine function from 0.1 to
0 over 200 epochs, i.e., lr = 0.05(cos(πt/200) + 1)) at the t-th epoch [6];

• Cyclic schedule [44]: We increase lr linearly from 0 to some maximum (0.2 at the 80-th
epoch), and then decrease it linearly to 0 until 200-th epoch [55].

We adversarially train PreAct ResNet-18 with different learning rate schedules using the same
experimental settings in Section 3. The learning curves are shown on the left column in Figure
7, where the whole training process can be split into two stages: the early stage with small robust
generalization gap (≤ 10%) and the late stage with large robust generalization gap (> 10%). In
Figure 7, the weight loss landscapes of checkpoints at different epochs from the early stage (blue
curves) are on the middle column, while the weight loss landscapes from the late stage (red curves)
are on the right column. Due to the different learning rate schedules, the robust generalization gap
becomes large at different epochs. The cosine schedule enlarges the robust generalization gap after
the 120-th epoch with lr < 0.34. The weight loss landscape becomes sharper correspondingly. The
cyclic schedule starts to significantly enlarge the gap much later, almost after the 175-th epoch with
lr < 0.16. Meanwhile, the weight loss landscape also becomes sharp much later. Generally, no
matter which epoch and learning rate it is, we can always find that the weight loss landscape becomes
sharper immediately after the robust generalization gap increases, which implies a clear correlation
between weight loss landscape and robust generalization gap.
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Figure 7: The relationship between weight loss landscape and robust generalization gap across
learning rate schedules (cosine and cyclic) with PreAct ResNet-18 on CIFAR-10 under L∞ attack.

C.2 The Connection across Model Architectures

The previous experiments are all based on PreAct ResNet-18. Here we additionally conduct ex-
periments with VGG-19 [43] and WideResNet-34-10 [60] to verify the connection across network
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architectures. The same experimental settings as Section 3 are adopted and the results are shown
in Figure 8. They all behave similarly: once the robust generalization gap increases (after the first
learning rate decay), the weight loss landscape becomes sharper. This indicates that the connection of
weight loss landscape and robust generalization gap still exists across architectures.
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(b) WideResNet-34-10

Figure 8: The relationship between weight loss landscape and robust generalization gap across model
architectures (VGG-19 and WideResNet-34-10) on CIFAR-10 using piece-wise learning rate schedule
and L∞ attack.
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(b) SVHN

Figure 9: The relationship between weight loss landscape and robust generalization gap across
datasets (CIFAR-100 and SVHN) with PreAct ResNet-18 using piece-wise learning rate schedule
and L∞ attack.
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C.3 The Connection across Datasets

Next, we demonstrate that the connection is an universal phenomenon across datasets on CIFAR-100
[21] and SVHN [32]. We adversarially train PreAct ResNet-18 on different datasets with the same
settings as Section 3. The results are shown in Figure 9. The phenomenon on CIFAR-100 is similar
to that on CIFAR-10, i.e., after the first learning rate decay, the robust generalization gap becomes
larger and the weight loss landscape becomes sharper as well. For SVHN, the robust generalization
gap increases significantly even earlier: it almost achieves its highest robustness around 10-th epoch,
and starts overfitting. Meanwhile, the weight loss landscape also keeps flat at 10-th epoch and
starts to become sharper. In conclusion, the strong connection of weight loss landscape and robust
generalization gap is universal across datasets.

C.4 The Connection on L2 Threat Model

To further explore the universality of the connection, we additionally conduct experiments on L2

threat model in Figure 10. The other experimental settings are the same as Section 3. Under the L2

threat model, the connection still exists: once the robust generalization gap increases (after the first
learning rate decay), the weight loss landscape becomes sharper.
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(a) L2 threat model
Figure 10: The relationship between weight loss landscape and robust generalization gap with PreAct
ResNet-18 on CIFAR-10 using piece-wise learning rate schedule and L2 attack.

D Algorithms for the AWP-based Defense
In this section, we first provide the pseudo-code of the AWP-based vanilla advesraial trainig (AT-
AWP), and then describe how to satisfy the constraint of the perturbation size in Eq. (8) via the
weight update in Eq. (10) and the extensions to other AT variants (TRADES, MART, and RST).

D.1 Pseudo-code of AT-AWP

Algorithm 2 AT-AWP
1: Input: Network fw, batch size m, learning rate η3, PGD step size η1, PGD steps K1, AWP

constraint γ, AWP step size η2, AWP steps K2, alternate iteration A.
2: Output: Robust model fw.
3: repeat
4: Read mini-batch B = {x1, ...,xm} from training set
5: for a = 0 to A− 1 do
6: for i = 1, . . . ,m (in parallel) do
7: x′i ← xi + εδ, where δ ∼ Uniform(−1, 1)
8: for k = 1, · · · ,K1 do
9: x′i ← Πε

(
x′i + η1sign(∇x′

i
`(fw+v(x′i), yi))

)
10: end for
11: end for
12: for k = 1, . . . ,K2 do
13: v← Πγ

(
v + η2

∇v
1
m

∑
i `(fw+v(x

′
i),yi)

‖∇v
1
m

∑
i `(fw+v(x′

i),yi)‖
‖w‖

)
14: end for
15: end for
16: w← (w + v)− η3∇w+v

1
m

∑
i `(fw+v(x′i, yi))− v

17: until training converged
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D.2 Details for the Weight Update under the Constraint

Recall that we restrict the weight perturbation vl in the l-th layer using its relative size to the
corresponding weight wl, i.e., ‖vl‖ ≤ γ‖wl‖. To implement this restriction on weight perturbation,
we apply a layer-wise projection operation, i.e., once the weight perturbation is out of the ball, we
project it back onto the surface of the ball. We have the following layer-wise projection operator,

Πγ(v) =

γ
‖wl‖
‖vl‖

vl, if ‖vl‖ > γ‖wl‖,∀l ∈ {1, · · · , L}

vl, if ‖vl‖ ≤ γ‖wl‖,∀l ∈ {1, · · · , L}.
(15)

By default, we set η2 = γ
A·K2

(the notations refer to Algorithm 2).

D.3 Extensions of AWP to Other Adversarial Training Methods

Our proposed AWP is a general method and can be easily extended to other well-recognized ad-
versarial training variants including TRADES, MART and RST where the only difference is the
method-specific adversarial loss in Eq. (1).

Specifically, for AWP-based TRADES (TRADES-AWP), we also first generate adversarial examples
following TRADES method,

x′i ← Πε

(
x′i + η1sign(∇x′

i
KL(fw+v(xi)‖fw+v(x′i)))

)
, (16)

and then the AWP v and the DNN parameter w of TRADES are updated similarly following Eq.
(10) and Eq. (11) respectively, where `(fw+v(x′i), yi) is TRADES-specific as CE(fw+v(xi), yi) +
β · KL(fw+v(xi)‖fw+v(x′i)).

Similarly, for AWP-based MART (MART-AWP), we generate adversarial examples following MART
method,

x′i ← Πε

(
x′i + η1sign(∇x′

i
`(fw+v(x′i), yi))

)
, (17)

and then update the AWP v follow Eq. (10). Next, the DNN parameter w of MART is updated using
Eq. (11), where `(fw+v(x′i), yi) is MART-specific loss as BCE(fw(x′i), yi)+λ·KL(fw(xi)‖fw(x′i))·
(1− [fw(xi)]yi).

RST, as an SSL-based method, first generates pseudo labels for unlabeled data, and then adversarially
train DNNs using TRADES loss on the new dataset which consists of labeled data and unlabeled data
with pseudo labels. Thus, we can incorporate AWP into RST just like TRADES-AWP.

E More Results for Section 4.3: A Case Study on Vanilla AT and AT-AWP

Following Section 4.3, we provide the complete results (test robustness and natural accuracy) of
AT and AT-AWP in Table 3. Under L2 threat model, AWP improves both the robustness and
natural accuracy on all datasets. While under L∞ threat model, AWP improves the robustness on
condition of sacrificing the natural accuracy on CIFAR-10 and CIFAR-100. This maybe because
natural images (CIFAR) are more complicated than color digits (SVHN). However, for robustness,
AWP demonstrates a general behaviour that consistently improves the best and last robustness by a
recognizable gain across datasets and threat models.

F More Experiments on Comparison to Other Regularization Techniques

Following Section 5.3, here we provide the complete results (test robustness and natural accuracy)
of AWP and several regularization techniques under both L∞ and L2 threat models on CIFAR-
10. Under the L∞ threat model, we follow the best hyper-parameters tuned in Rice et al. [40]:
λ = 5 × 10−6/5 × 10−3 for L1/L2 regularization respectively, patch length 14 for cutout, and
α = 1.4 for mixup. Under the L2 threat model, we use the same hyper-parameters since we find that
they almost have the same trends after parameter tuning. For AWP, we all set γ = 5 × 10−3. We
use the same training settings as Section 5.2 and the test attack is PGD-20. We show test robustness
and test natural accuracy in Table 4 (L∞ threat model) and Table 5 (L2 threat model). We find AWP
indeed improves the test robustness of both the best checkpoint and the last checkpoint by a notable
margin. Besides, we visualize the learning curves in Figure 11. We find that AWP can constantly
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Table 3: Performance (%) of AT and AT-AWP on PreAct ResNet-18 across different datasets and
threat models over 5 random runs.

Dataset Norm Method
Robustness Natural accuracy

Best Last Best Last

SVHN
L∞

AT 53.36 ± 0.09 44.49 ± 0.27 92.18 ± 0.15 89.85 ± 0.33
AT-AWP 59.12 ± 0.26 55.87 ± 0.39 93.85 ± 0.11 92.59 ± 0.52

L2
AT 66.87 ± 0.25 65.03 ± 0.24 93.69 ± 0.12 93.25 ± 0.28
AT-AWP 72.57 ± 0.40 67.73 ± 0.21 95.95 ± 0.36 95.22 ± 0.27

CIFAR-10
L∞

AT 52.79 ± 0.21 44.44 ± 0.39 85.57 ± 0.16 84.56 ± 0.19
AT-AWP 55.39 ± 0.39 54.73 ± 0.16 82.00 ± 0.19 81.11 ± 0.39

L2
AT 69.15 ± 0.13 65.93 ± 0.35 89.57 ± 0.09 88.96 ± 0.18
AT-AWP 72.69 ± 0.19 72.08 ± 0.39 90.18 ± 0.31 89.71 ± 0.17

CIFAR-100
L∞

AT 27.22 ± 0.16 20.82 ± 0.20 56.33 ± 0.23 54.61 ± 0.33
AT-AWP 30.71 ± 0.25 30.28 ± 0.30 54.19 ± 0.39 54.39 ± 0.29

L2
AT 41.33 ± 0.09 35.27 ± 0.29 62.65 ± 0.11 60.50 ± 0.17
AT-AWP 45.60 ± 0.23 44.66 ± 0.22 65.07 ± 0.31 64.40 ± 0.41

improve the robustness under both L∞ and L2 threat models throughout the entire training process,
which demonstrates the superiority of AWP over other regularization methods.

In addition, we find AWP sacrifices the natural accuracy throughout the whole training on CIFAR-10
under L∞ threat model, which indicates AWP is still affected by the trade-off between robustness
and natural accuracy [62]. For L2 threat model on CIFAR-10, AWP just has similar natural accuracy
to vanilla AT. This is because L2 threat model (ε = 128/255) is easier than L∞ threat model and
many techniques have the similar natural accuracy.

Table 4: Performance (%) of AT and AT with other regularization techniques on CIFAR-10 using
PreAct ResNet-18 under L∞ threat model (ε = 8/288) over 5 random runs.

Method
Robustness Natural accuracy

Best Last Best Last

AT 52.79 ± 0.21 44.44 ± 0.39 85.57 ± 0.16 84.56 ± 0.19
+ L1 regularization 51.95 ± 0.51 48.76 ± 0.61 82.77 ± 0.37 83.42 ± 0.26
+ L2 regularization 51.60 ± 0.41 47.37 ± 0.52 81.05 ± 0.44 81.97 ± 0.50
+ Cutout 52.78 ± 0.14 50.37 ± 0.41 80.99 ± 0.19 83.46 ± 0.33
+ Mixup 52.87 ± 0.47 49.76 ± 0.81 78.76 ± 0.61 78.50 ± 1.21

AT-AWP 55.39 ± 0.39 54.73 ± 0.16 82.00 ± 0.19 81.11 ± 0.39

Table 5: Performance (%) of AT and AT with other regularization techniques on CIFAR-10 using
PreAct ResNet-18 under L2 threat model (ε = 128/255) over 5 random runs.

Method
Robustness Natural accuracy

Best Last Best Last

AT 69.15 ± 0.13 65.93 ± 0.35 89.57 ± 0.09 88.96 ± 0.18
+ L1 regularization 67.99 ± 0.27 63.75 ± 0.40 88.04 ± 0.19 88.49 ± 0.27
+ L2 regularization 67.78 ± 0.33 63.62 ± 0.46 88.57 ± 0.14 87.75 ± 0.23
+ Cutout 69.38 ± 0.27 67.68 ± 0.30 88.36 ± 0.31 88.01 ± 0.26
+ Mixup 70.11 ± 0.50 68.20 ± 0.46 87.29 ± 0.71 86.91 ± 0.94

AT-AWP 72.69 ± 0.19 72.08 ± 0.39 90.18 ± 0.31 89.71 ± 0.17
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Figure 11: Performance (%) on the test set of CIFAR-10 during the training for AT, AT-AWP, and AT
with other regularization techniques.
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